RECURRENCE CRITERIA FOR RANDOM WALKS ON COUNTABLE ABELIAN GOUPS

BY
Leopold Flatto and Joel Pitt
1. Introduction

Let μ be a random walk or, equivalently, a probability measure on a countable Abelian group G. The random walk μ is said to be recurrent (transient) iff $\sum_{n=1}^{\infty} \mu^{n}(0)=\infty(<\infty)$ where μ^{n} denotes the n-fold convolution of μ. Probabilistically, recurrence means that the walk starting from the origin 0 revisits the origin infinitely often with probability one while transience means that the origin is visited at most finitely often with probability one. It is desirable to obtain criteria which enable us to decide whether a given walk μ is recurrent or transient. The following criterion is proved in [5].

Theorem 1.1. Let G be a countable Abelian group endowed with the discrete topology. Let μ be a random walk on $G, \hat{\mu}(\gamma)$ the Fourier transform of μ defined on the compact character group $\Gamma . \mu$ is recurrent iff

$$
\begin{equation*}
\int \operatorname{Re}[1 /(1-\hat{\mu}(\gamma))] d P(\gamma)=\infty \tag{1.1}
\end{equation*}
$$

where P is the normalized Haar measure on Γ.
The recurrence criterion (1.1) is thus stated in terms of the transform $\hat{\mu}$. It is natural to ask whether one can obtain criteria in terms of μ itself, i.e. can (1.1) be reinterpreted as a condition on μ. This seems a rather difficult problem and has thus far been done only in certain isolated cases. For instance, if G is the d-dimensional lattice Z^{d}, then recurrence criteria can be obtained in terms of the first and second moments of the walk [4, P. 83]. More recently, Darling and Erdös have obtained such criteria in case G is the direct sum $Z_{2} \oplus Z_{2} \oplus \cdots$. The elements of G are the infinite sequences $g=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}, \cdot\right)$ where each $\varepsilon_{n}=\varepsilon_{n}(g) \in Z_{2}$ (the additive group of integers $\bmod 2$), only a finite number of ε_{n} 's being distinct from 0 . Let g_{n} be the element for which $\varepsilon_{n}\left(g_{n}\right)=1, \varepsilon_{j}\left(g_{n}\right)=0(j \neq n), 1 \leq n<\infty$. We then have the following recurrence criterion [2].

Theorem 1.2. Let $\mu\left(g_{n}\right)=p_{n}>0(1 \leq n<\infty)$ where $\sum_{n=1}^{\infty} p_{n}=1$. Assume, without loss of generality, that $\left\{p_{n}\right\} \varepsilon \downarrow$ and define $f_{n}=\sum_{j=n}^{\infty} p_{j} \cdot \mu$ is recurrent iff $\sum_{n=1}^{\infty} 1 / 2^{n} f_{n}=\infty$.

In this paper, we obtain recurrence criteria in terms of μ for two classes of countable Abelian groups: (i) the groups $G=Z_{m_{1}} \oplus Z_{m_{2}} \oplus \cdots \oplus$

Received January 21, 1972.
$Z_{m_{n}} \oplus \cdots$ and (ii) the infinite subgroups of the group of rationals mod one. In (i), $\left\{m_{n}\right\}$ is any infinite sequence of integers ≥ 2 and $Z_{m_{n}}$ denotes the additive group of integers $\bmod m_{n}$. The elements of G are the infinite sequences

$$
g=\left(\varepsilon_{1}(g), \cdots, \varepsilon_{n}(g), \cdots\right) \quad \text { where } \varepsilon_{n}(g) \in Z_{m_{n}}, \quad 1 \leq n<\infty
$$

only a finite number of the ε_{n} 's being distinct from 0 .
The walks we consider on $Z_{m_{1}} \oplus Z_{m_{2}} \oplus \cdots$ are distinguished by the property that their individual steps fall in distinct summands of the group. The measure μ we consider will be specified by the pair of sequences

$$
\left\{p_{n}, n=1,2, \cdots\right\}, \quad\left\{\alpha_{n j}, n=1,2, \cdots, j=1,2, \cdots, m_{n}-1\right\}
$$

giving respectively the probability that an individual step lies in the nth component and that the step has the value $j g_{n}$ (g_{n} a specified generator of the nth summand) given that it lies in the nth summand. The results we obtain differ in the two cases $\left\{m_{n}\right\}$ bounded, and $\left\{m_{n}\right\}$ unbounded. In either case we will state our recurrence criteria in terms of the sequences

$$
f_{n}=\sum_{n=1}^{\infty} p_{j}, \quad M_{n}=\prod_{j=1}^{n-1} m_{j}, \quad 2 \leq n<\infty, \quad M_{1}=1
$$

It is assumed, without loss of generality, that (i) $\left\{p_{n}\right\} \in \downarrow$ and (ii) the walk μ is aperiodic.

In the case $\left\{m_{n}\right\}$ bounded we obtain a criterion (subject to a mild restriction) which is essentially necessary and sufficient for recurrence. Specifically, we show:

Theorem 2.1. Let $\left\{m_{n}\right\}$ be bounded; then $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty \Rightarrow \mu$ is recurrent.

The necessity of this recurrence criterion is restricted by a condition (condition (A), of Section 2) requiring that not too much mass is concentrated on proper subgroups of the summands, a strong form of aperiodicity. We then have:

Theorem 2.2. Let $\left\{m_{n}\right\}$ be bounded and let μ satisfy condition (A). Then μ is recurrent $\Rightarrow \sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty$.

We show that the conclusion of Theorem 2.2 may be untrue when condition (A) fails to hold.

When $\left\{m_{n}\right\}$ is unbounded our criteria are less complete. The analogue of Theorem 2.1 is shown to hold only with the additional hypothesis that μ is symmetric in the sense that $\alpha_{n j}=\alpha_{n, m_{n}-j}$ for $1 \leq n<\infty, 1 \leq j \leq m_{n}-1$. Necessary conditions for recurrence are obtained under a variety of additional conditions, but these do not generally coincide with our sufficient condition. An example shows that, in fact, the conclusion of Theorem 2.2 fails in the case $\left\{m_{n}\right\}$ unbounded, even when condition (A) is satisfied.

The methods developed in Sections 2 and 3 to treat class (i) carry over with minor modification to treat the class (ii), which we discuss in Section 4.

A noteworthy feature of the argument is our treatment of $\hat{\mu}(\gamma)$ as a random variable. This is possible in view of the fact that the groups we consider are discrete. The duals of discrete groups are, of course, compact, their Haar measures may be normalized, and functions on the duals are indeed random variables. The power of this approach is that it allows us to employ probabilistic tools to study the convergence and divergence of the integrals in (1.1).
2. Random walks on $Z_{m_{1}} \oplus Z_{m_{2}} \oplus \cdots \oplus Z_{m_{n}} \oplus \cdots,\left\{m_{n}\right\}$ bounded

In this section we consider random walks on the group $G=Z_{m_{1}} \oplus Z_{m_{2}} \oplus$ $\cdots \oplus Z_{m_{n}} \oplus \cdots$ where $\left\{m_{n}\right\}$ is assumed to be a bounded sequence. We let g_{n} be that element of G for which $\varepsilon_{j}\left(g_{n}\right)=\delta_{j n}, 1 \leq j<\infty$. The elements $j g_{n}, 0 \leq j \leq m_{n}-1$, form an additive cyclic subgroup of G of order m_{n} which we again designate as $Z_{m_{n}}$. We consider random walks μ with the property $\mu\left(Z_{m_{n}}\right)=p_{n}>0,1 \leq n<\infty$, where $\sum_{n=1}^{\infty} p_{n}=1$; i.e. the support of $\mu \subseteq \mathrm{U}_{n=1}^{\infty} Z_{m_{n}}$. We assume, without loss of generality, that (i) $\left\{p_{n}\right\} \in \downarrow$ and (ii) the walk μ is aperiodic, i.e. the support of μ generates G. (That (i) entails no loss of generality follows from the observation that it may be achieved by a relabeling of indices; as for (ii) we may consider the walk as a walk on the group generated by the support of μ.) Let

$$
\alpha_{n j}=\mu\left(j g_{n}\right) / p_{n} \quad\left(1 \leq n<\infty, 0 \leq j \leq m_{n}-1\right) .
$$

In the usual graphic terminology we may describe our walk as one whose steps lie in distinct components of G. A step falls in the nth component subgroup with probability p_{n}, and given that the step lies in the nth subgroup, it has the value $j g_{n}$ with probability $\alpha_{n j}$. We wish to find recurrence criteria in terms of $\left\{p_{n}\right\}$ and $\left\{\alpha_{n j}\right\}$. Note that $\sum_{j=0}^{n_{n}-1} \alpha_{n j}=1,1 \leq n<\infty$. It will be convenient later on to assume that $\alpha_{n 0}=0,1 \leq n<\infty$. This can always be done in view of the rather obvious statement whose proof we omit.

Theorem 2.0. Let μ be a random walk on the countable group $G, \mu(0)<1$. Define the random walk ν as the conditional probability $\nu(A)=\mu(A \mid G-\{0\})$ for all subsets A of $G . \quad \mu$ is recurrent iff ν is recurrent.

Now $\mu(0)>0$ is equivalent to $\alpha_{n 0} \neq 0$ for some n. In this case we replace μ by ν where $\nu(0)=0$ and the new $\alpha_{n 0}$'s are equal to 0 .

Our basic tool in establishing recurrence criteria is Theorem (1.1). As G is discrete, its character group Γ is compact. The normalized Haar measure P is a probability measure on the probability space Γ and $\hat{\mu}(\gamma)$ is a random variable defined on Γ.
Specifically, if $\gamma \in \Gamma$, then by definition

$$
\hat{\mu}(\gamma)=\sum_{\sigma \epsilon G} \mu(g) \gamma(g)=\sum_{n=1}^{\infty} p_{n} \sum_{j=1}^{n_{n}-1} \alpha_{n j} \gamma\left(j g_{n}\right) .
$$

We introduce the random variables $U_{n}(\gamma)=\gamma\left(g_{n}\right)$. Then

$$
U_{n}^{j}(\gamma)=\gamma^{j}\left(g_{n}\right)=\gamma\left(j g_{n}\right)
$$

so that

$$
\hat{\mu}(\gamma)=\sum_{n=1}^{\infty} p_{n} \sum_{j=1}^{m_{n}-1} \alpha_{n j} U_{n}^{j}(\gamma)
$$

We make the following observations concerning the random variables $\left\{U_{n}\right\}$.
(1) For any positive integer n let l_{1}, \cdots, l_{n} denote arbitrary integers satisfying $0 \leq l_{j} \leq m_{j}-1,1 \leq j \leq n$. Let

$$
S_{l_{1}, \ldots, l_{n}}=\left\{\gamma \mid U_{1}(\dot{\gamma})=e^{2 \pi i i_{1} / m_{1}}, \cdots, U_{n}(\gamma)=e^{2 \pi i i_{n} / m_{n}}\right\}
$$

Then

$$
P\left(S_{l_{1}, \ldots, l_{n}}\right)=1 / m_{1} \cdots m_{n}
$$

To see this we give a concrete description of the character group Γ. For any character γ, we have $\left[\gamma\left(g_{n}\right)\right]^{m_{n}}=\gamma\left(m_{n} g_{n}\right)=\gamma(0)=1,1 \leq n<\infty$. Hence

$$
\gamma\left(g_{n}\right)=e^{2 \pi i i_{n} / m_{n}}, \quad 1 \leq n<\infty
$$

where $\left\{l_{n}\right\}$ is a sequence of integers satisfying $0 \leq l_{n} \leq m_{n}-1,1 \leq n<\infty$. Conversely, it is readily checked that for any such sequence $\left\{l_{n}\right\}$, the sequence $\gamma\left(g_{n}\right)=e^{2 \pi i l_{n} / m_{n}}, 1 \leq n<\infty$, has a unique extension as a character $\gamma(g)$ on G. Hence Γ may be identified as the set of sequences

$$
\left(\gamma\left(g_{1}\right), \cdots, \gamma\left(g_{n}\right), \cdots\right), \quad \gamma\left(g_{n}\right)=e^{2 \pi i l_{n} / m_{n}} \quad(1 \leq n<\infty)
$$

where $\left\{l_{n}\right\}$ is any sequence of integers satisfying $0 \leq l_{n} \leq m_{n}-1,1 \leq n<$ ∞. It follows in particular that each $S_{l_{1}, \ldots, l_{n}}$ is non-empty. It is readily checked that

$$
S_{l_{1}, \ldots, l_{n}}=\gamma S_{0 \ldots 0} \quad \text { for any } \gamma \in S_{l_{1}, \ldots, l_{n}}
$$

Since P is translation invariant we obtain $P\left(S_{l_{1}, \ldots, l_{n}}\right)=P\left(S_{0 \ldots 0}\right)$. Hence the $m_{1} \cdots m_{n}$ numbers $P\left(S_{l_{1}, \ldots, l_{n}}\right), 0 \leq l_{i} \leq m_{i}-1,1 \leq i \leq n$, all equal $1 / m_{1} \cdots m_{n}$ as their sum equals 1 .
(2) $\left\{U_{n}\right\}$ is a sequence of independent random variables.

This follows from (1) as

$$
P\left\{U_{1}=e^{2 \pi i l_{1} / m_{1}}, \cdots, U_{n}=e^{2 \pi i i_{n} / m_{n}}\right\}=1 / m_{1} \cdots m_{n}
$$

while

$$
\begin{aligned}
P\left\{U_{n}=e^{2 \pi i l_{n} / m_{n}}\right\} & =\sum_{l_{1}=1}^{m_{1}} \cdots \sum_{l_{n-1}-1}^{m_{n}-1} P\left\{U_{1}=e^{2 \pi i l_{1} / m_{1}}, \cdots, U_{n}\right. \\
& \left.=e^{2 \pi i i_{n} / m_{n}}\right\}=m_{1} \cdots m_{n-1} / m_{1} \cdots m_{n}=1 / m_{n}
\end{aligned}
$$

$1 \leq n<\infty$.

Hence

$$
\begin{aligned}
& P\left\{U_{1}=e^{2 \pi i l_{1} / m_{1}}, \cdots, U_{n}=e^{2 \pi i i_{n} / m_{n}}\right\} \\
& \quad \begin{aligned}
& =P\left(U_{1}=e^{2 \pi i l_{1} / m_{1}}\right) \cdots P\left(U_{n}=e^{2 \pi i l_{n} / m_{n}}\right)
\end{aligned} \\
& \begin{aligned}
\text { (3) } \quad & =0, \quad 0<j \leq m_{n}^{j}-1
\end{aligned}
\end{aligned}
$$

For

$$
\begin{aligned}
E\left(U_{n}^{j}\right)=\sum_{l=0}^{m_{n}-1} \int U_{n}^{j}(\gamma) d P(\gamma)=\left(1 / m_{n}\right) \sum_{l=0}^{m_{n}-1} e^{2 \pi i j l / m_{n}}=1, & j=0 \\
=0, & 0<j \\
& \leq m_{n}-1
\end{aligned}
$$

It will be useful to write

$$
V_{n}(\gamma)=1-\sum_{j=0}^{m_{n}-1} \alpha_{n j} U_{n}^{j}(\gamma)
$$

We have $1-\hat{\mu}(\gamma)=\sum_{n=1}^{\infty} p_{n} V_{n}(\gamma)$ and in view of (1), (2), (3) we have
(1') $\left|V_{n}-1\right| \leq 1$.
(2') $\left\{V_{n}\right\}$ is a sequence of independent random variables.
($\left.3^{\prime}\right) \quad E\left(V_{n}\right)=1$.
Furthermore, we have
(4) $\quad V_{n}=0 \Leftrightarrow U_{n}=1$.
$\left(4^{\prime}\right)$ is proven as follows. Let I_{n} denote the set of indices $j, 1 \leq j \leq m_{n}-1$, for which $\alpha_{n j}>0$. Since $V_{n}=1-\sum_{j e s_{n}} \alpha_{n j} U_{n}^{j}$ and $\left|U_{n}^{j}\right|=1$,

$$
V_{n}=0 \Leftrightarrow U_{n}^{j}=1 \quad \text { for } j \in I_{n}
$$

Since (support of μ) $\cap Z_{m_{n}}$ generates $Z_{m_{n}}$, the latter condition is equivalent to $U_{n}=1$. Thus $V_{n} \rightarrow 0 \Leftrightarrow U_{n}=1$.

Since $\hat{\mu}(\gamma)=\sum_{n=1}^{\infty} p_{n}\left(1-V_{n}(\gamma)\right)$, we conclude from (1^{\prime}) that $|\hat{\mu}(\gamma)| \leq$ 1 for $\gamma \in \Gamma$. Furthermore $\hat{\mu}(\gamma)=1 \Leftrightarrow V_{n}(\gamma)=0,1 \leq n<\infty$. Using (4'),

$$
V_{n}(\gamma)=0(1 \leq n<\infty) \Leftrightarrow \gamma\left(g_{n}\right)=1(1 \leq n<\infty) \Leftrightarrow \gamma=e
$$

where e is the identity of Γ. The function $w=1(1-z)$ maps $|z| \leq 1$ onto $\operatorname{Re} w \geq \frac{1}{2}$ with $w(1)=\infty$. Hence

$$
\frac{1}{2} \leq \operatorname{Re}[1 /(1-\hat{\mu}(\gamma))]<\infty, \quad \gamma \neq e
$$

We now obtain a sufficient condition for recurrence. We let

$$
f_{n}=\sum_{j=n}^{\infty} p_{j}, \quad M_{n}=\prod_{j=1}^{n-1} m_{j}(2 \leq n<\infty), \quad M_{1}=1
$$

Theorem 2.1. Let $\left\{m_{n}\right\}$ be bounded. Then $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty \Rightarrow \mu$ is recurrent.

Proof. Let

$$
E_{n}=\left\{\gamma \mid V_{1}(\gamma)=\cdots=V_{n-1}(\gamma)=0, \quad V_{n}(\gamma)=1\right\}
$$

From our above remarks, $\Gamma-\{e\}=\bigcup_{n=1}^{\infty} E_{n}$ so that $\sum_{n=1}^{\infty} P\left(E_{n}\right)=1$ and

$$
\int_{\Gamma} \operatorname{Re}[1 /(1-\hat{\mu}(\gamma))] d P(\gamma)=\sum_{n=1}^{\infty} \int_{E_{n}} \operatorname{Re}[1 /(1-\hat{\mu}(\gamma))] d P(\gamma)
$$

For any complex number z for which $\operatorname{Re} z>0$, we choose $\arg z$ to be that value of the argument for which $|\arg z|<\pi / 2$. We have

$$
\operatorname{Re}\left[\frac{1}{1-\hat{\mu}(\gamma)}\right]=\frac{\cos \arg [1-\hat{\mu}(\gamma)]}{|1-\hat{\mu}(\gamma)|}
$$

Now

$$
1-\hat{\mu}(\gamma)=\sum_{n=1}^{\infty} \sum_{j=1}^{m_{n}-1} p_{n} \alpha_{n j}\left[1-U_{n}^{j}(\gamma)\right]
$$

Suppose that $1-U_{n}^{j}(\gamma) \neq 0$. Then $U_{n}^{j}(\gamma)=e^{2 \pi i r / m_{n}}$ for some integer r, $1 \leq r \leq m_{n}-1$. Using the identity $\arg \left(1-e^{i \theta}\right)=(\theta-\pi) / 2,0<$ $\theta<\pi$ we conclude that

$$
\left|\arg \left[1-U_{n}^{j}(\gamma)\right]\right| \leq \pi / 2-\pi / m_{n}
$$

Hence the numbers $p_{n} \alpha_{n j}\left[1-U_{n}^{j}(\gamma)\right]$ lie in the angular sector

$$
|\theta| \leq \pi / 2-\pi / m
$$

where $m=\max _{1 \leq n<\infty} m_{n}$. It follows that for $\gamma \neq e$,

$$
|\arg (1-\hat{\mu}(\gamma))| \leq \pi / 2-\pi / m \quad \text { and } \quad \cos \arg [1-\hat{\mu}(\gamma)] \geq \sin \pi / m
$$

Furthermore for $\gamma \in E_{n}, 1-\hat{\mu}(\gamma)=\sum_{j=n}^{\infty} p_{j} V_{j}(\gamma)$ so that $|1-\hat{\mu}(\gamma)| \leq$ $2 \sum_{j=n}^{\infty} p_{j}=2 f_{n}$. Hence for $\gamma \in E_{n}$,

$$
\operatorname{Re}\left[\frac{1}{1-\hat{\mu}(\gamma)}\right] \geq \frac{1}{2}\left(\sin \frac{\pi}{m}\right) \frac{1}{f_{n}}
$$

so that

$$
\int_{\Gamma} \operatorname{Re}\left[\frac{1}{1-\hat{\mu}(\gamma)}\right] d P(\gamma) \geq \frac{1}{2}\left(\sin \frac{\pi}{m}\right) \sum_{n=1}^{\infty} \frac{1}{f_{n}} P\left(E_{n}\right)
$$

Property (4^{\prime}) implies

$$
E_{n}=\left\{\gamma \mid U_{1}(\gamma)=\cdots=U_{n-1}(\gamma)=1, \quad U_{n}(\gamma) \neq 1\right\}
$$

and property $\left(2^{\prime}\right)$ that

$$
P\left(E_{n}\right)=\left(1 / M_{n}\right)\left(1-1 / m_{n}\right) \geq 1 / 2 M_{n}
$$

Hence

$$
\int_{\Gamma}[1 /(1-\hat{\mu}(\gamma))] d P(\gamma) \geq \frac{1}{4}(\sin \pi / m) \sum_{n=1}^{\infty} 1 / M_{n} f_{n}
$$

from which the theorem follows.
We now proceed to show that $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty$ is necessary for recurrence. To prove this we impose the following condition on the walk.

Condition (A). There exists $c, 0<c<1$, such that $\sum_{j \in H} \alpha_{n j} \leq c$ where $1 \leq n<\infty$ and H is any proper subgroup of $Z_{m_{n}}=\left\{0,1, \cdots, m_{n}-1\right\}$.

Roughly speaking, condition A demands that μ is not too concentrated on proper subgroups of the $Z_{m_{n}}$'s and may be viewed as a strong form of aperiodicity. Indeed (A) implies that μ is aperiodic. It is easily seen that it is equivalent to aperiodicity iff a finite number of the m_{n} 's are composite. We use (A) to establish the following estimate needed later on.

$$
\begin{equation*}
X_{n}(\gamma)=\operatorname{Re}\left(V_{n}(\gamma)\right) \geq \alpha / m_{n}^{2}, \quad \gamma \in E_{n} \text { where } \alpha=8(1-c) \tag{2.1}
\end{equation*}
$$

(2.1) is proven as follows.

$$
X_{n}=\sum_{j=1}^{m_{n}-1} \alpha_{n j}\left[1-\operatorname{Re}\left(U_{n}^{j}\right)\right]
$$

so that on E_{n}, X_{n} assumes the values

$$
\sum_{j=1}^{m_{n}-1} \alpha_{n j}\left[1-\cos 2 \pi j l / m_{n}\right], \quad 1 \leq l \leq m_{n}-1
$$

Let $H_{l}=\left\{j \mid j l \neq 0\left(\bmod m_{n}\right)\right\}, 1 \leq l \leq m_{n}-1$. H_{l} is a proper subgroup of $Z_{m_{n}}$. We have

$$
1-\cos 2 \pi j l / m_{n}=0 \quad \text { for } j \in H_{l}
$$

while

$$
1-\cos 2 \pi j l / m_{n} \geq 1-\cos 2 \pi / m_{n} \text { for } j \notin H_{l}
$$

Using the estimate $1-\cos \theta \geq 2 \theta^{2} / \pi^{2}, 0 \leq \theta \leq \pi$, we have

$$
1-\cos 2 \pi j l / m_{n} \geq 8 / m_{n}^{2}
$$

Thus for given l,

$$
\sum_{j=1}^{m_{n}-1} \alpha_{n j}\left[1-\cos 2 \pi j l / m_{n}\right] \geq\left(8 / m_{n}^{2}\right) \sum_{j \notin H_{l}} \alpha_{n j}
$$

and we conclude from (A) that $X_{n}(\gamma) \geq \alpha / m_{n}^{2}$ for $\gamma \in E_{n}$.
We obtain the following result.
Theorem 2.2. Let $\left\{m_{n}\right\}$ be bounded and let μ satisfy condition (A). Then μ is recurrent $\Rightarrow \sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty$.

To prove the above theorem we establish two lemmas, the first one being of some independent interest.

Lemma 2.1. Let $\left\{X_{n}\right\}$ be a sequence of independent random variables with $E\left(X_{n}\right)=0$ and $\left|X_{n}\right| \leq 1,1 \leq n<\infty$. Let $S_{n}=\sum_{i=1}^{n} X_{i}, 1 \leq n<\infty$.

Then for each $\varepsilon>0, \sum_{j=1}^{\infty} P\left[\left|S_{n}\right| \geq\right.$ en for some $\left.n \geq j\right] \leq C_{\varepsilon}$ where C_{ε} is a positive constant independent of $\left\{X_{n}\right\}$.

Proof. We observe that for any choice of $a_{1}, \cdots, a_{n} \geq 0$ we have

$$
\left|E\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)\right| \leq 1
$$

Since $E\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)=E\left(X_{1}^{a_{1}}\right) \cdots E\left(X_{n}^{a_{n}}\right)$, we also have

$$
E\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)=0
$$

whenever some $a_{i}=1$. Hence

$$
\begin{aligned}
E\left(S_{n}^{6}\right)= & \sum_{1 \leq i \leq n} E\left(X_{i}^{6}\right)+15 \sum_{1 \leq i, j \leq n} \mathrm{w}\left(X_{i}^{4} X_{j}^{2}\right)+20 \sum_{1 \leq i<j \leq n} E\left(X_{i}^{3} X_{j}^{3}\right) \\
& +90 \sum_{1 \leq i<j<k \leq n} E\left(X_{i}^{2} X_{j}^{2} X_{k}^{2}\right) \\
\leq & \\
\leq & +15 C(n, 2)+20 C(n, 2)+90 C(n, 3) \\
\leq & 50 n^{3} .
\end{aligned}
$$

Using Chebycheff's inequality, we obtain

$$
P\left(\left|S_{n}\right| \geq \varepsilon_{n}\right) \leq E\left(S_{n}^{6}\right) / \varepsilon^{6} n^{6} \leq\left(50 / \varepsilon^{6}\right)\left(1 / n^{3}\right)
$$

so that
$P\left[\left|S_{n}\right| \geq \varepsilon_{n} \quad\right.$ for some $\left.\quad n \geq j\right] \leq \sum_{n=j}^{\infty} P\left[\left|S_{n}\right| \geq \varepsilon_{n}\right]$

$$
\leq\left(50 / \varepsilon^{6}\right) \sum_{n=j}^{\infty} 1 / n^{3} \leq 100 / \varepsilon^{6} j^{2}
$$

Hence
$\sum_{j=1}^{\infty} P\left[\left|S_{n}\right| \geq \varepsilon_{n}\right.$ for some $\left.n \geq j\right] \leq\left(100 / \varepsilon^{6}\right) \sum_{j=1}^{\infty} 1 / j^{2}=50 \pi^{2} / 3 \varepsilon^{6}$.
For any sequence of positive constants $\left\{c_{n}\right\}$ we introduce the sets

$$
A_{n r}=\left\{\gamma \mid f_{n}>r c_{n} \operatorname{Re}(1-\hat{\mu}(\gamma))\right\}, \quad 1 \leq n, r<\infty .
$$

Lemma 2.2. Suppose that $\sum_{n=1}^{\infty} P\left(A_{n r} \mid E_{n}\right)<C$ where C is a positive constant independent of n. Then $\sum_{n=1}^{\infty} c_{n} / M_{n} f_{n}<\infty \Rightarrow \mu$ is transient.

Proof. Since $\operatorname{Re}[1 /(1-\hat{\mu})] \leq 1 / \operatorname{Re}[1-\hat{\mu}]$, it suffices to show that

$$
\sum_{n=1}^{\infty} c_{n} / M_{n} f_{n}<\infty \Rightarrow E(1 / \operatorname{Re}[1-\hat{\mu}])<\infty
$$

$\left(E(f)\right.$ stands as an abbreviation for $\left.\int_{\Gamma} f(\gamma) d P(\gamma)\right)$. We use the elementary inequality

$$
E(X) \leq \sum_{r=1}^{\infty} P(X>r)+1
$$

valid for any non-negative random variable X. Let $\Psi=\operatorname{Re}[1-\hat{\mu}]$. We have

$$
E\left(\Psi^{-1} \mid E_{n}\right)=\frac{c_{n}}{f_{n}} E\left(\left.\frac{f_{n}}{c_{n} \Psi} \right\rvert\, E_{n}\right) \leq \frac{c_{n}}{f_{n}}\left[\sum_{r=1}^{\infty} P\left(A_{n r} \mid E_{n}\right)+1\right] \leq(C+1) \frac{c_{n}}{f_{n}}
$$

Hence

$$
E\left(\Psi^{-1}\right)=\sum_{n=1}^{\infty} E\left(\Psi^{-1} \mid E_{n}\right) P\left(E_{n}\right) \leq(C+1) \sum_{n=1}^{\infty} c_{n} / M_{n} f_{n}
$$

proving the lemma.
Proof of Theorem 2.2. We must show that for bounded $\left\{m_{n}\right\}$,

$$
\sum_{n=1}^{\infty} m_{n}^{2} / M_{n} f_{n}<\infty \Rightarrow \mu
$$

is transient, provided (A) is fulfilled. This establishes Theorem 2.2, as

$$
\sum_{n=1}^{\infty} 1 / M_{n} f_{n}<\infty \Leftrightarrow \sum_{n=1}^{\infty} m_{n}^{2} / M_{n} f_{n}<\infty \text { for bounded }\left\{m_{n}\right\}
$$

In view of Lemma 2.2, it suffices to demonstrate the existence of a constant C such that $\sum_{r=1}^{\infty} P\left(A_{n r} \mid E_{n}\right)<C, 1<n<\infty$, for the choice $c_{n}=m_{n}^{2} / \alpha$. On E_{n} we have $\Psi=\sum_{j=n}^{\infty} p_{j} X_{j}$. Let $S_{n j}=\sum_{i=1}^{j} X_{n+i}, 1 \leq n, j<\infty$. Using summation by parts we obtain

$$
\Psi(\gamma)=p_{n} X_{n}(\gamma)+\sum_{j=1}^{\infty} S_{n j}(\gamma)\left[p_{n+j}-p_{n+j+1}\right], \quad \gamma \in \Gamma
$$

It follows from (2.1) that

$$
\begin{equation*}
r c_{n} \Psi(\gamma) \geq r p_{n}+r c_{n} \sum_{j=1}^{\infty} S_{n j}(\gamma)\left[p_{n+j}-p_{n+j+1}\right], \quad \gamma \in E_{n} \tag{2.2}
\end{equation*}
$$

Using summation by parts again, $f_{n}=p_{n}+\sum_{j=1}^{\infty} j\left[p_{n+j}-p_{n+j+1}\right]$ from which we conclude

$$
\begin{equation*}
f_{n} \leq r p_{n}+\sum_{j=r}^{\infty}\left[p_{n+j}-p_{n+j+1}\right] \tag{2.3}
\end{equation*}
$$

It follows from (2.2) and (2.3) that for $\gamma \epsilon E_{n}$,

$$
f_{n}>r c_{n} \Psi(\gamma) \Rightarrow r c_{n} S_{n j}(\gamma)<j \text { for some } j \geq r
$$

Since $c_{n}=m_{n}^{2} / 8(1-c) \geq \frac{1}{2}, 1 \leq n<\infty$, we conclude that for $r \geq 3$,

$$
\left(A_{n r} \cap E_{n}\right) \subseteq\left(B_{n r} \cap E_{n}\right)
$$

where

$$
B_{n r}=\left\{\gamma \mid S_{n j}(\gamma)<(2 / 3) j \text { for some } j \geq r\right\}
$$

Let $X_{n}^{\prime}=X_{n}-1,1 \leq n<\infty, S_{n j}^{\prime}=\sum_{i=1}^{j} X_{n+i}^{\prime}$. We have
$B_{n r} \subseteq B_{n r}^{\prime} \quad$ where $\quad B_{n r}^{\prime}=\left\{\gamma| | S_{n j}^{\prime}(\gamma) \mid>j / 3\right.$ for some $\left.j \geq r\right\}$.
The sequence $\left\{X_{n}\right\}$ clearly has the properties $\left(1^{\prime}\right)-\left(4^{\prime}\right)$ satisfied by $\left\{V_{n}\right\}$. It follows that for given $n \geq 1$, the random variables $\left\{X_{n+1}^{\prime}, \cdots, X_{n+j}^{\prime}\right\}$ defined on E_{n} are independent and $E\left(X_{n+j}^{\prime} \mid E_{n}\right)=E\left(X_{n+j}-1\right)=0$, $\left|X_{n+j}^{\prime}\right| \leq 1$. We may therefore apply Lemma 2.1 to conclude that

$$
\sum_{r=1}^{\infty} P\left(B_{n r}^{\prime} \mid E_{n}\right) \leq C_{1 / 3}, \quad 1 \leq n<\infty
$$

Hence

$$
\sum_{r=1}^{\infty} P\left(A_{n r} \mid E_{n}\right) \leq 2+C_{1 / 3}, \quad 1 \leq n<\infty
$$

and we may choose $C=2+C_{1 / 3}$.

The question arises as to whether Theorem 2.2 remains true in case μ fails to satisfy condition (A). The answer is no. Let $\left\{m_{n}\right\}$ be any bounded sequence of integers ≥ 2 containing an infinite number of composite integers. We produce an aperiodic recurrent walk μ on $Z_{m_{1}} \oplus Z_{m_{2}} \oplus \cdots \oplus Z_{m_{n}} \oplus \cdots$ for which $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}<\infty$. (The walk μ will of course violate condition (A).)

We first require the following:
Lemma 2.3. Let $0<a_{n} \leq b_{n} \quad(1 \leq n<\infty)$ and $b_{n} / a_{n} \uparrow \infty$. Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}<\infty$. Then there exists $\left\{x_{n}\right\}$ such that x_{n} is a strictly increasing sequence $\uparrow \infty, \sum_{n=1}^{\infty} a_{n} x_{n}<\infty, \sum_{n=1}^{\infty} b_{n} x_{n}=\infty$.

Proof. Let $A_{n}=\sum_{j=n}^{\infty} a_{j}, B_{n}=\sum_{j=n}^{\infty} b_{j}$. Then $\lim _{n \rightarrow \infty} B_{n} / A_{n}=\infty$. Let $u_{n}=x_{n}-x_{n-1}, 1 \leq n<\infty$, where x_{0} is defined to be 0 . Using summation by parts we obtain

$$
\sum_{j=1}^{n} a_{j} x_{j}=\sum_{j=1}^{n}\left(A_{j}-A_{n+1}\right) u_{j}, \quad \sum_{j=1}^{n} b_{j} x_{j}=\sum_{j=1}^{n}\left(B_{j}-B_{n+1}\right) u_{j}
$$

Since $\lim _{n \rightarrow \infty} B_{n} / A_{n}=\infty$ we can certainly find a sequence $\left\{v_{n}\right\}$ such that

$$
v_{n}>0, \quad \sum_{n=1}^{\infty} v_{n}<\infty, \quad \sum_{n=1}^{\infty}\left(B_{n} / A_{n}\right) v_{n}=\infty
$$

Let $u_{n}=v_{n} / A_{n}$. Thus $u_{n}>0, \sum_{n=1}^{\infty} A_{n} u_{n}<\infty \quad \sum_{n=1}^{\infty} B_{n} u_{n}=\infty$. Since $B_{n} u_{n}=O\left(u_{n}\right)$ we must also have $\sum_{n=1}^{\infty} u_{n}=\infty$. It follows that $x_{n}=\sum_{j=1}^{n} u_{j}$ is a strictly increasing positive sequence $\uparrow \infty$. Since

$$
\sum_{j=1}^{n} a_{j} x_{j} \leq \sum_{j=1}^{\infty} A_{j} u_{j}
$$

we conclude $\sum_{n=1}^{\infty} a_{n} x_{n}<\infty$. For any positive integer n,

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(B_{j}-B_{n+1}\right) u_{j}=\sum_{j=1}^{n} B_{j} u_{j}
$$

Hence $\lim \inf \sum_{j=1}^{n} b_{j} x_{j} \geq \sum_{j=1}^{n} B_{j} u_{j}$. Since n is arbitrary we conclude $\sum_{n=1}^{\infty} b_{n} x_{n}=\infty$.

We now construct a recurrent random walk μ for which $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}<$ ∞. We specify the p_{n} 's and $\alpha_{n j}$'s which define μ. For each composite m_{n} choose d_{n} to be a proper divisor of $m_{n}, 1<d_{n}<m_{n}$. For m_{n} prime let $d_{n}=m_{n}$. Let $D_{n}=d_{1} \cdots d_{n-1}, 2 \leq n<\infty, D_{1}=1$. Thus $2^{n} \leq$ $D_{n} \geq M_{n}$ and $\lim _{n \rightarrow \infty} M_{n} / D_{n}=\infty$, as there is an infinite number of composite m_{n}. It follows from Lemma 2.3 that there exists $\left\{x_{n}\right\}$, where $\left\{x_{n}\right\}$ is positive and strictly increasing to ∞, such that

$$
\sum_{n=1}^{\infty} x_{n} / M_{n}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty} x_{n} / D_{n}=\infty
$$

We may assume that $x_{1}=1$. Let $f_{n}=1 / x_{n}, p_{n}=f_{n}-f_{n+1}, 1 \leq n<\infty$. We then have

$$
p_{n}>0, \quad \sum_{n=1}^{\infty} p_{n}=1, \quad \sum_{n=1}^{\infty} 1 / M_{n} f_{n}<\infty, \quad \sum_{n=1}^{\infty} 1 / D_{n} f_{n}=\infty .
$$

We now define the $\alpha_{n j}$'s. Let $\left\{\varepsilon_{n}\right\}$ denote a decreasing sequence of numbers in $(0,1)$ to be specified later. For m_{n} prime choose $\left\{\alpha_{n}\right\}$ as any sequence
satisfying

$$
\alpha_{n j}=\alpha_{n m_{n}-j}>0, \quad 1 \leq j \leq m_{n}-1, \quad \sum_{j=1}^{m_{n}-1} \alpha_{n j}=1
$$

For m_{n} composite choose $\left\{\alpha_{n}\right\}$ as any sequence satisfying
and

$$
\alpha_{n j}=\alpha_{n m_{n}-j}>0, \quad 1 \leq j \leq m_{n}-1
$$

$$
\alpha_{n j}=\left(1-\epsilon_{n}\right) /\left(d_{n}-1\right) \quad \text { for } j=k e_{n}, \quad 1 \leq k \leq m_{n}-1,
$$

where $e_{n}=m_{n} / d_{n} . \quad \mu$ is aperiodic as $\alpha_{n j}>0$ for $1 \leq n<\infty, 1 \leq j \leq$ $m_{n}-1$. Using the requirement $\alpha_{n j}=\alpha_{n m_{n}-j}$, we obtain

$$
\begin{aligned}
\bar{V}_{n}=\sum_{j=1}^{m_{n}-1} \alpha_{n j}\left(1-\bar{U}_{n}^{j}\right)=\sum_{j=1}^{m_{n}-1} \alpha_{n j}(1 & \left.-U_{n}^{m_{n}-j}\right) \\
& =\sum_{j=1}^{m_{n}-1} \alpha_{n} m_{n}-j\left(1-U_{n}^{j}\right)=V_{n}
\end{aligned}
$$

so that V_{n} is real. Thus $1-\hat{\mu}$ is real and $\int_{\Gamma} \operatorname{Re}[1 /(1-\hat{\mu})] d P$. We choose the ε_{n} 's so that the latter integral diverges, thus obtaining a recurrent walk μ for which $\sum 1 / M_{n} f_{n}<\infty$.

Let $V_{n}=V_{n}^{\prime}+V_{n}^{\prime \prime}$ where

$$
\begin{aligned}
& V_{n}^{\prime}=\sum_{e_{n} \mid j} \alpha_{n j}\left(1-U_{n}^{j}\right), \quad V_{n}^{\prime \prime}=\sum_{e_{n} \nmid j} \alpha_{n j}\left(1-U_{n}^{j}\right) \\
& 1 \leq j \leq m_{n}-1 .
\end{aligned}
$$

(For m_{n} prime, $e_{n}=1$ divides all j. In this case $V_{n}^{\prime \prime}$ is defined to be 0 .) We have

$$
\left|V_{n}^{\prime \prime}\right| \leq 2 \sum_{e_{n} \nmid j} \alpha_{n j}<2 \varepsilon_{n} .
$$

U_{n} assumes the values $2 \pi i l / m_{n}, 0 \leq l \leq m_{n}-1$. If $d_{n} \mid l$, then $V_{n}^{\prime}=0$, i.e. $V_{n}^{\prime}=0$ whenever $U_{n} \in \mathcal{Z}_{e_{n}}$, the symbol $Z_{e_{n}}$ denoting the $e_{n} e_{n}{ }^{\text {th }}$ roots of 1 . For m_{n} composite, let

$$
\begin{array}{r}
F_{n k}=E_{n} \cap\left\{\gamma \mid U_{n}(\gamma) \in \mathbb{Z}_{e_{n}}, \cdots, U_{n+k-1}(\gamma) \in \mathcal{Z}_{e_{n+k-1}}, U_{n+k}(\gamma) \notin \mathcal{Z}_{e_{n+k}}\right\} \\
1 \leq n, \quad k<\infty
\end{array}
$$

Then

$$
\begin{aligned}
P\left(F_{n k}\right) & =\frac{1}{m_{1} \cdots m_{n-1}} \frac{e_{n}-1}{m_{n}} \frac{1}{d_{n+1} \cdots d_{n+k-1}}\left(1-\frac{1}{d_{n+k}}\right) \\
& =\left(1-\frac{1}{e_{n}}\right)\left(1-\frac{1}{d_{n+k}}\right) \frac{1}{e_{1} \cdots e_{n-1}} \frac{1}{D_{n+k}} .
\end{aligned}
$$

$e_{n} \geq 2$ as m_{n} is composite and $d_{n+k} \geq 2$ by definition. Hence

$$
P\left(F_{n k}\right) \geq \frac{1}{4} \frac{1}{e_{1} \cdots e_{n-1}} \frac{1}{D_{n+k}}, \quad 1 \leq n<\infty
$$

whenever m_{n} is composite.
On $F_{n k}$ we have $V_{j}=0,1 \leq j<n,\left|V_{j}\right|<2 \varepsilon_{n}, n \leq j<n+k$. Thus on $F_{n k}$,

$$
1-\hat{\mu}=\sum_{j=n}^{\infty} p_{j} V_{j} \leq 2 \varepsilon_{n} \sum_{j=n}^{n+k-1} p_{j}+2 \sum_{j=n+k}^{\infty} p_{j} \leq 2\left(\varepsilon_{n} f_{n}+f_{n+k}\right)
$$

We conclude that

$$
\begin{aligned}
\int_{E_{n}} \frac{1}{1-\hat{\mu}} d P & \geq \sum_{k=1}^{\infty} \int_{F_{n k}} \frac{1}{1-\hat{\mu}} d P \\
& \geq \frac{1}{8} \frac{1}{e_{1} \cdots e_{n-1}} \sum_{k=1}^{\infty} \frac{1}{\varepsilon_{n} f_{n}+f_{n+k}} \frac{1}{D_{n+k}} .
\end{aligned}
$$

Let

$$
g_{n}(x)=\sum_{k=1}^{\infty} \frac{1}{f_{n} x+f_{n+k}} \frac{1}{D_{n+k}}
$$

$g_{n}(x)$ is well defined for $x>0$, as

$$
g_{n}(x) \leq\left(1 / f_{n} x\right) \sum_{n=1}^{\infty} 1 / D_{n}<\infty .
$$

Since $\sum_{n=1}^{\infty} 1 / f_{n} D_{n}=\infty, \lim _{x \rightarrow 0+} g_{n}(x)=\infty$. We may therefore choose $\left\{\varepsilon_{n}\right\}$ as any decreasing sequence for which $g_{n}\left(\varepsilon_{n}\right)>1,1 \leq n<\infty$, and obtain

$$
\int_{E_{n}} 1 /(1-\hat{\mu}) d P \geq 1
$$

whenever m_{n} is composite. As there are an infinite number of composite m_{n}, we obtain

$$
\int_{\Gamma} 1 /(1-\hat{\mu}) d P=\infty
$$

so that the random walk μ is recurrent
We summarize the above discussion:
Theorem 2.3. For $\left\{m_{n}\right\}$ bounded, recurrence of μ is equivalent to

$$
\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty
$$

iff only a finite number of the m_{n} 's are composite.
3. Random walks on $Z_{m_{1}} \oplus Z_{m_{2}} \oplus \cdots \oplus Z_{m_{n}} \oplus \cdots,\left\{m_{n}\right\}$ unbounded

We now obtain various necessary and sufficient conditions for the recurrence of μ in case $\left\{m_{n}\right\}$ is unbounded.

Theorem 3.1. Let μ be symmetric, i.e. $\alpha_{n j}=\alpha_{n m_{n}-j}$ for $1 \leq n<\infty$, $1 \leq j \leq m_{n}-1$. Then $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty \Rightarrow \mu$ is recurrent.

Proof. $\hat{\mu}$ is real valued as μ is symmetric. Hence

$$
\int_{\Gamma} \operatorname{Re}\left[\frac{1}{1-\hat{\mu}}\right] d P=\int_{\Gamma} \frac{1}{1-\hat{\mu}} d P=\sum_{n=1}^{\infty} \int_{E_{n}} \frac{1}{1-\hat{\mu}} d P
$$

On $E_{n}, 1-\hat{\mu}=\sum_{j=n}^{\infty} p_{j} V_{j}$ so that $0 \leq 1-\hat{\mu} \leq 2 f_{n}$.
Hence

$$
\int_{E_{n}} \frac{1}{1-\hat{\mu}} d P \geq \frac{1}{2 f_{n}} P\left(E_{n}\right) \geq \frac{1}{4 M_{n} f_{n}}
$$

It follows that $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty \Rightarrow \mu$ is recurrent.
Remarks. For $\left\{m_{n}\right\}$ bounded, the above result holds also when μ is asymmetric (Theorem 2.1). We don't know whether this is the case for $\left\{m_{n}\right\}$ unbounded.

Theorem 3.2. (i) Let μ satisfy condition (A). Then μ is recurrent \Rightarrow $\sum_{n=1}^{\infty} m_{n}^{2} / M_{n} f_{n}=\infty$.
(ii) Let $\alpha_{n j}=0$ for $1 \leq n<\infty, j \neq 1, m_{n}-1$. Then μ is recurrent \Rightarrow $\sum_{n=1}^{\infty} m_{n} / M_{n} f_{n}=\infty$.

Proof. In proving Theorem 2.2 we have actually shown that

$$
\sum_{n=1}^{\infty} m_{n}^{2} / M_{n} f_{n}<\infty \Rightarrow \mu
$$

is transient, which is part (i) of the above theorem. Part (ii) is proven in a similar fashion. Let

$$
E_{n l}=\left\{V_{1}=0, \cdots, V_{n-1}=0, \quad V_{n}=1-\cos 2 \pi l / m_{n}\right\}
$$

$$
1 \leq n<\infty, \quad 1 \leq l \leq m_{n}-1
$$

Since $\alpha_{n j}=0$ for $j \neq 1, m_{n}-1, X_{n}(\gamma)$ assumes the values $1-\cos 2 \pi l / m_{n}$, $0 \leq l \leq m_{n}-1$. Since $1-\cos \theta \geq 2 \theta^{2} / \pi^{2}$ for $0 \leq \theta \leq \pi$, and $\cos \theta=$ $\cos (2 \pi-\theta)$ we have

$$
1-\cos \theta \geq 8 \operatorname{Min}\left[(\theta / 2 \pi)^{2}, \quad(1-\theta / 2 \pi)^{2}\right], \quad 0 \leq \theta \leq 2 \pi .
$$

Hence

$$
\begin{equation*}
X_{n}(\gamma) \geq 8 \operatorname{Min}\left[\left(l / m_{n}\right)^{2}, \quad\left(1-l / m_{n}\right)^{2}\right], \quad \gamma \in E_{n l} \tag{3.1}
\end{equation*}
$$

Let $c_{n l}=(1 / 8) \operatorname{Max}\left[\left(m_{n} / l\right)^{2},\left(m_{n} /\left(m_{n}-l\right)\right)^{2}\right]$. It follows from (3.1) that

$$
\begin{equation*}
r c_{n l} \Psi_{n}(\gamma) \geq r p_{n}+r c_{n l} \sum_{j=1}^{\infty} S_{n j}(\gamma)\left[p_{n+j}-p_{n+j+1}\right], \quad \gamma \in E_{n l} \tag{3.2}
\end{equation*}
$$

Let $A_{n l r}=\left\{\gamma \mid f_{n}>r c_{n l} \Psi\right\}, 1 \leq n, r<\infty, 1 \leq l \leq m_{n}-1$. Arguing as in the proof of Theorem 2.2, we conclude from (3.2) and (2.3) that

$$
\sum_{r=1}^{\infty} P\left(A_{n l r} \mid E_{n l}\right) \leq C
$$

where C is a positive constant independent of n and l. Hence

$$
\begin{aligned}
E\left(\Psi^{-1} \mid E_{n l}\right) & \leq \frac{c_{n l}}{f_{n}} E\left(\left.\frac{f_{n}}{C_{n l} \Psi} \right\rvert\, E_{n l}\right) \\
& \leq \frac{c_{n l}}{f_{n}}\left[\sum_{r=1}^{\infty} P\left(A_{n l r} \mid E_{n l}\right)+1\right] \\
& \leq(C+1) \frac{c_{n l}}{f_{n}}
\end{aligned}
$$

We have
$E\left(\Psi^{-1}\right)=\sum_{n=1}^{\infty} \sum_{l=1}^{m_{n}-1} E\left(\Psi^{-1} \mid E_{n l}\right) P\left(E_{n l}\right)$

$$
\leq(C+1) \sum_{n=1}^{\infty} 1 / M_{n} m_{n} f_{n} \sum_{l=1}^{m_{n}-1} c_{n l} .
$$

Since

$$
\begin{aligned}
\sum_{l=1}^{m_{n}-1} c_{n l} & =\frac{1}{8} \sum_{l=1}^{m_{n}-1} \operatorname{Max}\left[\left(\frac{m_{n}}{l}\right)^{2},\left(\frac{m_{n}}{m_{n}-l}\right)^{2}\right] \\
& \leq \frac{m_{n}^{2}}{8} \sum_{l=1}^{m_{n}-1}\left[\frac{1}{l^{2}}+\frac{1}{\left(m_{n}-l\right)^{2}}\right] \\
& \leq \frac{m_{n}^{2}}{4} \sum_{l=1}^{\infty} \frac{1}{l^{2}}=\frac{\pi^{2} m_{n}^{2}}{24}
\end{aligned}
$$

we conclude $E\left(\Psi^{-1}\right) \leq(C+1)\left(\pi^{2} / 24\right) \sum_{n=1}^{\infty} m_{n} / M_{n} f_{n}$. Hence

$$
\sum_{n=1}^{\infty} m_{n} / M_{n} f_{n}<\infty \Rightarrow E\left(\Psi^{-1}\right)<\infty
$$

so that $\sum_{n=1} m_{n} / M_{n} f_{n}<\infty \Rightarrow \mu$ is recurrent.
We now give an example showing that for $\left\{m_{n}\right\}$ unbounded,

$$
\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty
$$

is no longer necessary for recurrence even though condition (A) prevails. Indeed we give an example of a recurrent walks satisfying the hypothesis of Theorem 3.2 (ii) (in which case (A) is satisfied) for which $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}<$ ∞ so that $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty$ is not necessary for recurrence.
Let $p_{n}=C(s) n^{s} / n!$ where s is to be specified and $C(s)$ so chosen that $\sum_{n=1}^{\infty} p_{n}=1$. Let $m_{n}=n$ and $\alpha_{n}=\alpha_{n-1}=\frac{1}{2}, 1 \leq n<\infty$. Thus $M_{n}=(n-1)$!. It is easily verified that $f_{n} \sim p_{n}\left(\right.$ i.e. $\left.\lim _{n \rightarrow \infty} f_{n} / p_{n}=1\right)$ so that $1 / M_{n} f_{n} \sim 1 / C(s) n^{s-1}$. Hence $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}<\infty$ for $s>2$. Using $1-\cos \theta \leq \theta^{2} / 2$ we have

$$
X_{n}(\gamma)=1-\cos 2 \pi l / n \leq 2 \pi^{2} l^{2} / n^{2}, \quad \gamma \in E_{n l} .
$$

Thus $\Psi(\gamma) \leq 2 \pi^{2} C(s) l^{2} n^{s-2} / n!+2 f_{n+1}$ on $E_{n l}$. Since $f_{n+1} \sim C(s) n^{s-1} / n!$, we conclude that there exists a positive constant $C_{1}(s)$ independent of n, l for which

$$
\begin{equation*}
\Psi(\gamma) \leq C_{1}(s)\left(n^{s-2} / n!\right)\left(l^{2}+n\right), \quad \gamma \in E_{n l} . \tag{3.3}
\end{equation*}
$$

Hence

$$
\int_{E_{n l}} \frac{1}{\Psi} d P \geq \frac{1}{C_{1}(s)} n!\quad \frac{n^{2-s}}{l^{2}+n} P\left(E_{n l}\right)=\frac{1}{C_{1}(s)} \frac{n^{2-s}}{l^{2}+n}
$$

and

$$
\int_{E_{n}} \frac{1}{\Psi} d P \geq \frac{1}{C_{1}(s)} n^{2-s} \sum_{l=1}^{n-1} \frac{1}{l^{2}+n} .
$$

Since

$$
\sum_{l=1}^{n-1} \frac{1}{l^{2}+n} \sim \int_{0}^{n} \frac{d x}{x^{2}+n}=\frac{1}{\sqrt{n}} \quad \arctan \quad \sqrt{n} \sim \frac{\pi}{2 \sqrt{n}}
$$

we conclude that there exists a positive constant $C_{2}(s)$ independent of n for which

$$
\begin{equation*}
\int_{E_{n}}(1 / \Psi) d P \geq C_{2}(s) / n^{o-8 / 2}, \quad 1 \leq n<\infty, \tag{3.4}
\end{equation*}
$$

so that $\int_{\Gamma}(1 / \Psi) d P=\infty$ for $s \leq 5 / 2$. Hence for $2<s \leq 5 / 2, \mu$ is recurrent while $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}<\infty$.

Remark. It is also possible to construct transient random walks satisfying the hypotheses of Theorem 3.2 (ii) for which $\sum_{n=1}^{\infty} m_{n} / M_{n} f_{n}=\infty$. Thus $\sum_{n=1}^{\infty} m_{n} / M_{n} f_{n}=\infty$ is not sufficient for recurrence of these random walks.

The problem of obtaining conditions both necessary and sufficient for recurrence seems to be rather difficult for unbounded $\left\{m_{n}\right\}$ and is not resolved here. Nevertheless, such conditions are easily obtained for the uniform walk. μ is said to a uniform random walk provided $\alpha_{n j}=1 /\left(m_{n}-1\right)$, $1 \leq n<\infty, 1 \leq j \leq m_{n}-1$. In this case we have:

Theorem 3.3. Let μ be the uniform walk on $Z_{m_{1}} \oplus Z_{m_{2}} \oplus \cdots \oplus Z_{m_{n}} \oplus$ \cdots. Then μ is recurrent iff $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty$.
Proof. Since μ is symmetric, we conclude from Theorem 3.1 that

$$
\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty \Rightarrow \text { recurrence }
$$

Conversely we show that $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}<\infty \Rightarrow$ transience. We have

$$
X_{n}=\left(1 /\left(m_{n}-1\right)\right) \sum_{j=1}^{m_{n}-1}\left[1-U_{n}^{j}\right],
$$

and

$$
\begin{aligned}
\left(1 /\left(m_{n}-1\right)\right) \sum_{j=1}^{m_{n}-1} U_{n}^{j} & =1 & & \text { if } U=1 \\
& =-1 /\left(m_{n}-1\right) & & \text { if } U_{n} \neq 1 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
X_{n} & =0 & & \text { if } U=1 \\
& =m_{n} /\left(m_{n}-1\right) & & \text { if } U_{n} \neq 1
\end{aligned}
$$

so that on $E_{n}, X_{n}=m_{n} /\left(m_{n}-1\right)$. It follows that inequality (2.2) holds with the choice $c_{n}=1,1 \leq n<\infty$, from which we conclude

$$
\sum_{n=1}^{\infty} P\left(A_{n r} \mid E_{n}\right)<C, \quad 1 \leq n<\infty,
$$

for some positive C independent of n. Lemma 2.2 therefore yields

$$
\sum_{n=1}^{\infty} 1 / M_{n} f_{n}<\infty \Rightarrow \mu
$$

is transient.

4. Random walks on subgroups of the rationals mod one

We now obtain recurrence criteria for random walks on the subgroups of infinite order of the rationals mod one. (We denote the latter as Q / Z.) Most of the analysis of Sections 2 and 3 apply here, the essential new feature being that $1-\hat{\mu}$ is no longer a sum of independent random variables.

We give a brief description of these groups and their duals. The group Q / Z may be identified as the set of complex numbers $e^{2 \pi i r}, r$ rational. Let G be an infinite subgroup of $Q / Z . G$ has a denumerable set of generators $\left\{x_{n}\right\}$. Let G_{n} be the subgroup of G generated by x_{1}, \cdots, x_{n}. It is readily seen that G_{n} is cyclic. Let $\left[G_{n}: G_{n-1}\right]=m_{n}, 1 \leq n<\infty$, where $G_{0}=\{1\}$. Thus G_{n} consists of $m_{1} \cdots m_{n}$ numbers $e^{2 \pi i j i m_{1} \ldots m_{n}}, 0 \leq j \leq m_{1} \cdots m_{n}-1$, while $G=U_{n=1}^{\infty} G_{n}$ consists of the numbers $e^{2 \pi i j i m_{1} \ldots m_{n}}, 1 \leq n<\infty, 0 \leq$ $j \leq m_{1} \cdots m_{n}-1$. We denote G_{n} by $Z\left(m_{1}, \cdots, m_{n}\right)$ and G by $Z\left(m_{1}\right.$, $\left.\cdots, m_{n}, \cdots\right)$. Thus the infinite subgroups of the rationals mod one are precisely the $Z\left(m^{\infty}\right)$ groups discussed in [3, p. 403].

We now describe the dual of $Z\left(m_{1}, \cdots, m_{n}, \cdots\right)$. Let $g_{n}=e^{2 \pi i / m_{1} \ldots m_{n}}$, $1 \leq n<\infty . g_{n}$ generates $Z\left(m_{1}, \cdots, m_{n}\right)$ and $\left\{g_{n}\right\}$ is a set of generators for $Z\left(m_{1}, \cdots, m_{n}, \cdots\right)$. Any character $\gamma(g)$ of $Z\left(m_{1}, \cdots, m_{n}, \cdots\right)$ is thus determined by the values $\left\{\gamma\left(g_{n}\right)\right\}$. Since $g_{1}^{m_{1}}=1, g_{n}^{m_{n}}=g_{n-1}, 2 \leq$ $n<\infty$, we have the relations

$$
\begin{equation*}
\left[\gamma\left(g_{1}\right)\right]^{m_{1}}=1, \quad\left[\gamma\left(g_{n}\right)\right]^{m_{n}}=\gamma\left(g_{n-1}\right), \quad 2 \leq n<\infty . \tag{4.1}
\end{equation*}
$$

Conversely, it is easily verified that any sequence $\left\{\gamma\left(g_{n}\right)\right\}$ satisfying (4.1) can be uniquely extended as a character $\gamma(g)$ on G. Thus the dual of $Z\left(m_{1}\right.$, $\left.\cdots, m_{n}, \cdots\right)$ may be identified as the set of sequences $\left\{\gamma\left(g_{1}\right), \cdots, \gamma\left(g_{n}\right)\right.$, \cdots) satisfying the relations (4.1).
Let μ be a random walk on G. Without loss of generality, let μ be aperiodic. We may therefore choose a set of generators $\left\{x_{n}\right\}$ of G satisfying $\mu\left(x_{n}\right)>0$, $1 \leq n<\infty$. Let G_{n} denote the subgroup of G generated by x_{1}, \cdots, x_{n}; we may assume that G_{n} is a proper subgroup of $G_{n+1}(1 \leq n<\infty)$. Denote, as above, G_{n} by $Z\left(m_{1}, \cdots, m_{n}\right)$ and G by $Z\left(m_{1}, \cdots, m_{n}, \cdots\right)$. Thus, without loss of generality, we assume that (support of μ) $\cap Z\left(m_{1}, \cdots, m_{n}\right)$ generates $Z\left(m_{1}, \cdots, m_{n}\right), 1 \leq n<\infty$.

Let

$$
\begin{gathered}
Z^{\prime}\left(m_{1}, \cdots, m_{n}\right)=Z\left(m_{1}, \cdots, m_{n}\right)-Z\left(m_{1}, \cdots, m_{n-1}\right), 2 \leq n<\infty, \\
Z^{\prime}\left(m_{1}\right)=Z\left(m_{1}\right)-\{1\} .
\end{gathered}
$$

Thus $Z^{\prime}\left(m_{1}, \cdots, m_{n}\right)$ consists of the numbers $e^{2 \pi i j / m_{1} \ldots m_{n}}, j \in S_{n}$, where S_{n} denotes the set of positive integers which are not multiples of m_{n}. We define $\left\{p_{n}\right\}, 1 \leq n<\infty$, and $\left\{\alpha_{n j}\right\}, 1 \leq n<\infty, j \in S_{n}$, as

$$
p_{n}=\mu\left[Z^{\prime}\left(m_{1}, \cdots, m_{n}\right)\right], \quad \alpha_{n j}=\mu\left(e^{2 \pi i j / m_{1} \ldots m_{n}}\right) / p_{n}
$$

We may assume $\mu(1)=0$ (in view of Theorem 2.0). Thus $p_{n}>0,1 \leq$ $n<\infty, \sum_{n=1}^{\infty} p_{n}=1, \sum_{j e s_{n}} \alpha_{n j}=1,1 \leq n<\infty$. Let $\hat{\mu}(\gamma)$ denote the Fourier transform of μ. We then have

$$
\hat{\mu}(\gamma)=\sum_{g \epsilon G} \mu(g) \gamma(g)=\sum_{n=1}^{\infty} \sum_{j \epsilon s_{n}} \alpha_{n j} \gamma\left(g_{n}^{j}\right), \quad \gamma \in \Gamma .
$$

We seek recurrence criteria for μ in terms of $\left\{p_{n}\right\}$ and $\left\{\alpha_{n j}\right\}$. Let
$U_{n}(\gamma)=\gamma\left(g_{n}\right), \quad V_{n}(\gamma)=\sum_{j \epsilon s_{n}} \alpha_{n j}\left[1-U_{n}^{j}(\gamma)\right], \quad X_{n}(\gamma)=\operatorname{Re}\left(V_{n}(\gamma)\right)$.

We establish:
Lemma 3.1. $\left\{V_{n}\right\}$ satisfies the following properties:
(1) $\left|V_{n}-1\right| \leq 1$.
(2) $E\left(V_{n} \mid U_{1}, \cdots, U_{n-1}\right)=1, \quad 1 \leq n<\infty$.
(3) $V_{1}=\cdots=V_{n}=0 \Leftrightarrow U_{1}=\cdots=U_{n}=1$.
A similar statement applies to the sequence $\left\{X_{n}\right\}$.
Proof. (1) $1-V_{n}=\sum_{j e S_{n}} \alpha_{n j} U_{n}^{j}$ so that

$$
\left|1-V_{n}\right| \leq 1, \quad\left|1-X_{n}\right| \leq 1
$$

(2) Let $\zeta_{1}, \cdots, \zeta_{n}$ be any set of numbers satisfying $\zeta_{1}^{m_{1}}=1, \zeta_{k}^{m_{k}}=$ $\zeta_{k-1} 2 \leq k \leq n$. It is easily verified that

$$
P\left\{U_{1}(\gamma)=\zeta_{1}, \cdots, U_{n}(\gamma)=\zeta_{n}\right\}=1 / m_{1} \cdots m_{n}
$$

It follows that

$$
E\left(U_{n}^{j} \mid U_{1}=\zeta_{1}, \cdots, U_{n-1}=\zeta_{n-1}\right)=\left(1 / m_{1} \cdots m_{n}\right) \sum_{\zeta^{m}-\zeta_{n-1}} \zeta^{j}
$$

The sum

$$
\sum_{\zeta^{m} m_{n}-\zeta_{n-1}} \zeta^{j}
$$

extends over the $m_{n} m_{n}^{\text {th }}$ roots of 1 and equals 0 for $m_{n} \not \backslash j$. We conclude that

$$
E\left(U_{n}^{j} \mid U_{1}, \cdots, U_{n-1}\right)=0, \quad j \in S_{n}
$$

Hence

$$
\begin{aligned}
E\left(V_{n} \mid U_{1}, \cdots, U_{n-1}\right) & =E\left(1-\sum_{j \epsilon s_{n}} \alpha_{n j} U_{n}^{j} \mid U_{1}, \cdots, U_{n-1}\right) \\
& =1-\sum_{j \epsilon S_{n}} \alpha_{n j} E\left(U_{n}^{j} \mid U_{1}, \cdots, U_{n-1}\right)=0
\end{aligned}
$$

A similar proof works for the X_{n} 's.
(3) We make use of the assumption that (support of $\mu) \cap Z\left(m_{1}, \cdots, m_{n}\right)$ generates $Z\left(m_{1}, \cdots, m_{n}\right), 1 \leq n<\infty$ which may be restated as follows. Let H_{n} denote the positive integers $\leq m_{1} \cdots m_{n}$ which are multiples of m_{n}. Let $I_{n} \subseteq S_{n}$ consist of those integers j for which $\alpha_{n j}>0, j \in S_{n}$. Then $I_{n} \cup S_{n}$ generates the additive group of integers $\bmod m_{1} \cdots m_{n}$. Since $V_{n}=$ $\sum_{j \epsilon \mathcal{S}_{n}} \alpha_{n j}\left[1-U_{n}{ }^{j}\right]$, we have $V_{n}=0 \Leftrightarrow{U_{n}}^{j}=1, j \in I_{n}$. Since I_{1} generates the integers $\bmod m_{1}$ and $U_{1}^{m_{1}}=1$, we have $U_{1}^{j}=1\left(j \in I_{n}\right) \Leftrightarrow U_{1}=1$. Thus $V_{1}=0 \Leftrightarrow U_{1}=0$. Suppose, by hypothesis for induction, that $V_{1}=\cdots=$ $V_{n-1}=0 \Leftrightarrow U_{1}=\cdots=U_{n-1}=1$. Thus

$$
V_{1}=\cdots=V_{n}=0 \Leftrightarrow U_{1}=\cdots=U_{n-1}=1 \quad \text { and } \quad U_{n}^{j}=1\left(j \in I_{n}\right)
$$

Now $U_{n}^{m_{n}}=U_{n-1}=1$ so that we also have $U_{n}^{j}=1\left(j \in H_{n}\right)$. Since $H_{n} U$ I_{n} generate the integers $\bmod m_{1} \cdots m_{n}$, we conclude

$$
V_{1}=\cdots=V_{n}=0 \Leftrightarrow U_{1}=\cdots=U_{n}=1
$$

As $X_{n}=1 \Leftrightarrow V_{n}=1$, we obtain a similar result for $\left\{X_{n}\right\}$.

Let $E_{n}=\left\{\gamma \mid V_{1}=0, \cdots, V_{n-1}=0, V_{n} \neq 0\right\}, 1 \leq n<\infty$. We conclude from property (3) that

$$
\left.\left.P\left(E_{n}\right)=\right) 1 / m_{1} \cdots m_{n-1}\right)\left(1-1 / m_{n}\right)
$$

exactly as in Section 2.
We now state several recurrence criteria. We again let

$$
M_{n}=m_{1} \cdots m_{n-1} 2 \leq n<\infty, \quad M_{1}=1
$$

Theorem 4.1. Let $\sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty$. μ is recurrent provided (i) $\left\{m_{n}\right\}$ is bounded or (ii) μ is symmetric, i.e. $\alpha_{n j}=\alpha_{n, m_{1} \ldots m_{n}-j}, 1 \leq n<\infty, 1 \leq$ $j \leq m_{1} \cdots m_{n}-1$.
(i), (ii) are the respective analogs of Theorems 2.1, 3.1. The proofs are omitted as they are identical with the proofs of these former theorems. We just observe that on $E_{n}, U_{n}^{m_{n}}=1$, as this fact is essential for the proof of part (i).

In order to state our next result, we stipulate the following condition on μ which is just the analog of condition (A) in Section 2.

Condition (A^{\prime}). There exists $c, 0<c<1$, such that $\mu(H) / p_{n} \leq c$ for all proper subgroups H of $Z\left(m_{1}, \cdots, m_{n}\right), 1 \leq n<\infty$.

Reasoning as in Section 2, condition (A^{\prime}) yields the inequality (2.1).
Theorem 4.2. Let $\left\{p_{n}\right\} \in \downarrow$ and $\left\{m_{n}\right\}$ bounded. Let μ satisfy condition (A'). Then μ is recurrent $\Rightarrow \sum_{n=1}^{\infty} 1 / M_{n} f_{n}=\infty$.

Proof. We try to mimic the proof of Theorem 2.2. Let $\alpha=8(1-c)$ be the constant appearing in inequality (2.1) and let $m=\operatorname{Max}_{1 \leq n<\infty} m_{n}<\infty$. Define $S_{n j}=\sum_{i=1}^{j} X_{n+i}$ for $1 \leq n, j<\infty$. Arguing exactly as in the proof of Theorem 2.2 it suffices to demonstrate the existence of a constant C such that

$$
\sum_{r=1}^{\infty} P\left(B_{n r} \mid E_{n}\right)<C, \quad 1 \leq n<\infty
$$

where $B_{n r}=\left\{\gamma \mid S_{n j}(\gamma)<j / 2 m\right.$ for some $\left.j \geq r\right\}$. The latter inequality no longer follows from Lemma 2.1 as the sequences of random variables $\left\{X_{n}\right\}$ fail to be independent. To prove the inequality we compare the X_{n} 's with another sequence of independent random variables $\left\{Y_{n}\right\}$ defined as follows.

Let $\zeta_{1}, \cdots, \zeta_{n}$ be any set of numbers satisfying $\zeta_{1}^{m_{1}}=1, \zeta_{k}^{m_{k}}=\zeta_{k-1}$, $2 \leq k \leq n$, and let

$$
S_{\zeta_{1}, \ldots \zeta_{n}}=\left\{\gamma \mid U_{1}(\gamma)=\zeta_{1}, \cdots, U_{n}(\gamma)=\zeta_{n}\right\}
$$

For given $\zeta_{1}, \cdots, \zeta_{n-1}$ we have $E\left(X_{n} \mid U_{1}=\zeta_{1}, \cdots, U_{n-1}=\zeta_{n-1}\right\}=1$ so that we may choose one value of ζ_{n}, call it ξ_{n}, such that $X_{n} \geq 1$ on $S_{\zeta_{1}, \ldots, \zeta_{n-1}, \xi_{n}}$. For given $\zeta_{1}, \cdots, \zeta_{n-1}$ we define

$$
\begin{aligned}
Y_{n}(\gamma) & =1, \quad \gamma \in S_{\zeta_{1}, \ldots, \xi_{n-1}, \xi_{n}} \\
& =0, \quad \gamma \in S_{\zeta_{1}, \ldots, \xi_{n}} \text { where } \zeta_{n} \neq \xi_{n}
\end{aligned}
$$

It is readily checked that $\left\{Y_{n}\right\}$ is a sequence of independent random variables on Γ with $0 \leq Y_{n} \leq 1, E\left(Y_{n}\right)=1 / m_{n}$ for $1 \leq n<\infty$. Let

$$
Z_{n}=Y_{n}-1 / m_{n}, \quad 1 \leq n<\infty
$$

The Z_{n} 's form a sequence of independent random variables with $E\left(Z_{n}\right)=0$, $\left|Z_{n}\right| \leq 1$ for $1 \leq n<\infty$. Since $Y_{n} \leq X_{n}$ we conclude that

$$
\begin{aligned}
B_{n r} & =\left\{\gamma \mid \sum_{i=1}^{j} X_{n+i}(\gamma)<j / 2 m \text { for some } j \geq r\right\} \\
& \subseteq\left\{\gamma \mid \sum_{i=1}^{j} Y_{n+i}(\gamma)<j / 2 m \text { for some } j \geq r\right\} \\
& \subseteq\left\{\gamma\left|\left|\sum_{i=1}^{j} Z_{n+i}(\gamma)\right|>j / 2 m \text { for some } j \geq r\right\}\right.
\end{aligned}
$$

For $n \geq 1$, the sequence $\left\{Z_{n+1}, \cdots, Z_{n+j}, \cdots\right\}$ satisfies the hypotheses of Lemma 2.1. Hence

$$
\sum_{r=1}^{\infty} P\left(B_{n r}\right) \leq \sum_{n=1}^{\infty} P\left\{\left|\sum_{i=1}^{j} Z_{n+i}(\gamma)\right|>j / 2 m\right. \text { for some }
$$

$$
j \geq r\} \leq C / 2 m
$$

for $1 \leq n<\infty$, thus proving Theorem 4.2.
We remark that Theorem 4.2 permits us to construct a random walk on the additive group of rationals Q which is topologically recurrent under the usual topology but not pointwise recurrent, i.e., for any $\varepsilon>0$, the walk visits the interval $(-\varepsilon, \varepsilon)$ infinitely often with probability one and yet the walk visits the origin at most finitely often with probability one. Let $\left\{m_{n}\right\}$ be a bounded sequence of integers ≥ 2. Let $\mu\left(\pm 1 / m_{1} \cdots m_{n}\right)=p_{n} / 2$ where $\left\{p_{n}\right\} \in \downarrow$ and $\sum_{n=1}^{\infty} p_{n}=1$. Suppose that $\sum_{n=1}^{\infty} 1 / m_{1} \cdots m_{n} f_{n}<\infty$. Considered as a walk on $Q / Z, \mu$ is pointwise transient according to Theorem 4.2. Hence μ is certainly pointwise transient as a walk on Q. Now

$$
\int_{-\infty}^{\infty}|x| d \mu(x)=\sum_{n=1}^{\infty} p_{n} / m_{1} \cdots m_{n} \leq \sum_{n=1}^{\infty} 1 / m_{1} \cdots m_{n} f_{n}<\infty
$$

Since $\int_{-\infty}^{\infty} x d \mu(x)=0$, we conclude from a result of Chung and Fuchs [1] that μ is topologically recurrent.

References

1. K. L. Chuna and W. H. J. Fuchs, On the distribution of values of sums of random variables, Mem. Amer. Math. Soc., no. 6, 1951.
2. D. A. Darling and P. Erdös, On the recurrence of a certain chain. Proc. Am. Math. Soc., vol. 19 (1968), pp. 336-338.
3. E. Hewitt and K. Ross, Abstract harmonic analysis, vol. I, Academic Press, New York, 1963.
4. F. Spitzer, Principles of random walk, Van Nostrand, Princeton, N. J. 1964.
5. F. Spitzer and H. Kesten, Random walk on countably infinite Abelian groups, Acta. Math., vol. (1963), pp. 237-264.

Belfer Graduate School of Science
New York, New York
State University of New York
New Paltz, New York

