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1. Introduction
Let # be a random walk or, equivalently, a probability measure on a count-

able Abelian group G. The random walk g is said to be recurrent (transient)
iff -1 #’(0) (< ) where g" denotes the n-fold convolution of #.
Probabtically, recurrence means that the walk startg from the ofin 0
re.sits the origin tely often th probability one wle transience means
that the ofig is visited at most fitely often th probability one. It is
desirable to obtain criteria wch enable us to decide whether a ven wa #
is recurrent or transient. The follog criterion is proved [5].

oaE 1.1. Let G be a counble Abeln group eowed with t dise
topology. Let be a random walk on G, () the Fourr traform of defied
on t cpact characr group F. recurrent iff

(1.1) fRe [1/(1 ())]dP()

where P is t normalized Haar measure on .
The recurrence criterion (1.1) is th stated in terms of the trsform .

It is natal to ask whether one can obtain criteria in terms of # itself, i.e.
can (1.1) be reintereted as a contion on #. Ts see a rather fficult
problem and has thus far been done only in certain isolated cases. For
insnce, if G is the d-dimensional lattice Z, then recrence criteria can be
obtaed in ter of the first and second moments of the walk [4, P. 83].
More recently, Darling and ErdSs have obtained such criteria in case G is the
rect sum Z Z .... The elements of G are the inflate sequences

g (e, e, ..., e.,.) where each e. e.(g) Z (the adtive group of
integers rood 2), oy a fite number of e,’s berg distinct from 0. Let
g be the element for wch e.(g,) 1, e(g) 0 (j n), 1 n < .
We then have the follong recurrence criterion [2].

THEOREM 1.2. Let #(g.) p, > 0 (1 n < ) wre

_
p, 1.

Assue’, without loss of generality, that {p,} e and define A 2 p.
is recuent iff 7- 1/2% .

In ts paper, we obtMn recurrence criteria in ter of for two classes
of co,table Abelian groups" (i) the groups G Z Z $
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Zm. and (ii) the infinite subgroups of the group of rationals mod one.
In (i), {m,} is,any infinite sequence of integers _> 2 and Z, denotes the addi-
tive group of integers mod n,. The elements of G are the infinite sequences

g (el(g),"’,e,(g),"’) wheree.(g) eZra., 1

only a finite number of the .’s being distinct from 0.
The walks we consider on ZI Z are distinguished by the prop-

erty that their individual steps fall in distinct summands of the group. The
measure t we consider will be specified by the pair of sequences

{p,,n= 1,2,...}, {a,#,n= 1,2,...,j= 1,2,...,re,-

giving respectively the probability that an individual step lies in the nth
component and that the step has the valuejg, (g, a specified generator of the
nth summand) given that it lies in the nth summand. The results we obtain
differ in the two cases {m,} bounded, and {m,} unbounded. In either case
we will state our recurrence criteria in terms of the sequences

M, II".- m, 2 < n < , M1 1h
It is assumed, without loss of generality, that (i) {p.} and (ii) the walk

is aperiodic.
In the case {m.} bounded we obtain a criterion (subject to a mild restric-

tion) which is essentially necessary and sufficient for recurrence. Specifi-
cally, we show:

THEOREM 2.1. Let {m,} be bounded; then -1 1/M,f, = oo t is re-
current.

The necessity of this recurrence criterion is restricted by a condition (con-
dition (A), of Section 2) requiring that not too much mass is concentrated
on proper subgroups of the summands, a strong form of aperiodicity. We
then have:

TEOREM 2.2. Let Ira,} be bounded and let t satisfy condition (A). Then
t is recurrent ’_ 1/M, f,

We show that the conclusion of Theorem 2.2 may be untrue when condition
(A) fails to hold.
When {m} is unbounded our criteria are less complete. The analogue

of Theorem 2.1 is shown to hold only with the additional hypothesis that
is symmetric in the sense that a, a,.._ for 1 _< n < , 1 _< j _< n, 1.
Necessary conditions for recurrence are obtained under a variety of additional
conditions, but these do not generally coincide with our sufficient condition.
An example shows that, in fact, the conclusion of Theorem 2.2 fails in the
case {m,} unbounded, even when condition (A) is satisfied.
The methods developed in Sections 2 and 3 to treat class (i) carry over

with minor modification to treat the class (ii), which we discuss in Section 4.
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A noteworthy feature of the argument is our treatment of () as a random
variable. This is possible in view of the fact that the groups we consider are
discrete. The duals of discrete groups are, of course, compact, their Haar
measures may be normalized, and functions on the duals are indeed ran-
dom variables. The power of this approach is that it allows us to employ
probabilistic tools to study the convergence and divergence of the integrals
in (1.1).

2. Random walks on Z,, Z, Z, ..., {m,l bounded
In this section we consider random walks on the group G Z EE) Z,. E)

E) Z, E) where {m.} is assumed to be a bounded sequence. We
let g. be that element of G for which e(g,,) ,,, 1

_
j < oo. The ele-

ments jg,,, 0 _< j _< m. 1, form an additive cyclic subgroup of G of order
m which we again designate as Z, We consider random walks with the
property (Z,) p. > 0, 1

_
n < oo, where ._ p 1; i.e. the sup-

port of

___
L]:_ Z,. We assume, without loss of generality, that (i)

{p,} $ and (ii) the walk is aperiodic, i.e. the support of generates G.
(That (i) entails no loss of generality follows from the observation that it may
be achieved by a relabeling of indices; as for (ii) we may consider the walk
as a walk on the group generated by the support of .) Let

(1 < n < 0 _< j <

In the usual graphic terminology we may describe our walk as one whose
steps lie in distinct components of G. A step falls in the nth component sub-
group with probability p., and given that the step lies in the nth subgroup,
it has the value jg,, with probability a.. We wish to find recurrence cri-
teria in terms of {p} and {}. Note that 2-i 1, 1

_
n < .

It will be convenient later on to assume that a,0 O, 1 _< n < . This
can always be done in view of the rather obvious statement whose proof we
omit.

THEOREM 2.0. Let be a random walk on the countable group G, (0) < 1.

Define the random walk as the conditional probability (A) (A G {0}
for all subsets A of G. is recurrent iff is recurrent.

Now (0) 0 is equivalent to a0 0 for some n. In this case we re-
place by g where (0) 0 and the new a0’s are equal to 0.
Our basic tool in establisng recurrence criteria is Theorem (1.1). As G

is discrete, its character group r is compact. The normalized Haar measure
P is a probabifity measure on the probability space r and (v) is a random
variable defined on .
Speccally, if v e F, then by definition
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We introduce the random variables U,() (g,). Then

u(,),) ,,,.(.)
so that

() Z::-, .-7’ .; u().
We make the following observations concerning the random variables {U,}.

(1) For any positive integer n let 11,
satisfying 0 _< l _< m- 1, 1 _< 3" -< n. Let

,S. ,.. {".,1 u.(’i’) e"’""’.
Then

l. denote arbitrary integers

P(Sh l.) 1/ml

To see this we give a concrete description of the character group F. For
any character , we have [(g,)]m, (m, g,) /(0) 1, 1 _< n < .
Hence

7(g,) e2"a"m", 1 _< n < ,
where {/,} is a sequence of integers satisfying 0 _< l, <_ m, 1, 1 n < =.
Conversely, it is readily checked that for any such sequence {/,}, the sequence
(g) e’a"/", 1 _< n < =, has a ique extension as a cracter (g) on
G. Hence F may be identified as the set of sequences

((g), ...,(g.),...), (g.) e’’"" (i n < =),

where {/.} is any sequence of integers satisfying 0 l. m. 1, 1 n <
=. It fofiows particar that each S . is non-empty. It h really
checked that

S ,. S0...o for any , Sh ..
Sce P is translation invafiant we obtain P(S, .) P(So...o). Hence
the m ...m. numbers P(S, .), 0 l m, 1, 1 i n, a equal
1/m...m. as their sum equals 1.

(2) U.} is a sequence of independent random variables.

Ts follows from (1) as

P{ Uz e’’’’, U. e’’’""} 1/m...m.
wle

’ P{ U, U.P{V. e’’’"’"} ,,-, ’ e’"’’,
e’’’} ... ._/.... 1/.,

ln<.
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Hence

P{ U

(3)

:For

"7 Vn el/m}
P( U1 e’’’1’I) P( U,,

E(U) r V(’r) dP(’),) 1, j 0

=0, 0<j_< m,,-- 1.

E(U{) 2 f U{(’y) dP(f) (l/re.)2 e’’’’’ 1,

0

It will be useful to write

j=0

0<j

< m,, 1.

V() 1- -0

We have 1 #(,) :-t V V(,) and in view of (1), (2), (3) we have

(1’) IV-l[ <1.
(2’) {V} is a sequence of independent random variables.
(3’) E(V) 1.

Furthermore, we have

(4’) V--0c=U= 1.

(4’) is proven as follows.
for which a# > 0.

Let I. denote the set of indices j, 1 _< j _< m. 1,
Since Vn 1- ’,san U{ and IV{] 1,

V=0c, U{ 1 forjI.

Since (support of tt) n Z= generates Z., the latter condition is equivalent
to U 1. Thus V. --. 0 c, U 1.
Since/() ’:_t p,(1 V(3,) ), we conclude from (1’) that () -<

1 for el. Furthermore /(,) lvaV(.) 0, i < n < . Using
(4’),

V,() 0(1_< n < oo) :* v(g,) 1 (1_< n< o) :, , e

where e is the identity of F. The function w 1(1 z) maps zl < 1
onto Rew > 1/2withw(1) . Hence

1/2 < Re [1/(1-(v))] < o, v#e.

We now obtain a sufficient condition for recurrence. We let

f .=,p., M H-m.(2_< n< ), M 1.
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TEOREM 2.1. Let {m.} be bounded. Then -1 1/M, f,‘ is
recurrent.

Proof. Let

E. {y[ V,() V.-,(V) O, V.(V) I}.

From our above remarks, r {e} =E so that

_
P(E) 1 and

f Re [1/(1 (v))] dP() :=, f_ Re [1/(1 ())] dP().

For any complex number z for which Re z > 0, we choose arg z to be that value
of the argument for which ]arg z < /2. We have

[ 1 cosarg[1--()]

Now
vf(v)].

Suppose that 1 U() 0. Then U() e’’ for some teger r,
1 r m, 1. Using the identity arg (1 e) (0 )/2, 0 <
0 < v we conclude that

]arg [1 U()] /2 r/m.

Hence the numbers p, a,[1 U()] fie in the angular sector

where m max.< m,. It follows that for # e,

arg (1 ())i v/2- vim and cos arg [1 ()] sin /m.

Furthermore for e E., 1 () ,p V() so that 1 ()
2 -p 2f,. Hence for e E,,

11 1 (sin :)Re[l--()]
1 l(sin) 1 p(N)

so that

fr Re
Property (4’) implies

E. {71 Uz(’) U-,(7) I,

and property (2’) that

U(v) !}

P(E,‘) (l/M,,) (1 l/m,,) >_



RECURRENCE CRITERIA FOR RANDOM WALKS

Hence
1

[1/(1 /() )] dP(’) > - (sin

from which the theorem follows.
We now proceed to show that

__
1/M,f,, is necessary for recur-

rence. To prove this we impose the following condition on the walk.

Condition (A). There exists c, 0 < c < 1, such that ’,H anj < c where
1 _< n < and H is any proper subgroup of Z {0,1,...,mn- 1}.

Roughly speaking, condition A demands that/, is not too concentrated on
proper subgroups of the Z’s and may be viewed as a strong form of aperiodic-
ity. Indeed (A) implies that/, is aperiodic. It is easily seen that it is equiv-
alent to aperiodicity iff a finite number of the m.’s are composite. We use
(A) to establish the following estimate needed later on.

(2.1) X.(/) Re (V.(,)) > /m, " E,, where a 8(1 c)

(2.1) is proven as follows.

Xn /__.j-1 ..,[1 Re

so that on E., Xn assumes the values

,-1 a.’[1 cos 2rjl/m,], l<_l<m,,--1.

LetH-- {jljl O(modm.)},l_< l_< ran- 1. Hz is a proper subgroup
of Z. We have

1 cos 2,rjl/m,, 0 for j H
while

1 cos 2rjl/m,, > 1 cos 2r/m. for j H.
Using the estimate 1- cos 0 >_ 202/, 0 < 0 < v, we have

1 cos 2rjl/rn,, > 8/m.
Thus for given l,

’-"- a.[1 cos 2rjl/m,] >_ (S/m) .,,, a,).

and we conclude from (A) that X,() >_ a/m for , E,.
We obtain the following result.

THEOREM 2.2. Let {m.} be bounded and let satisfy condition (A).
is recurrent

Then

To prove the above theorem we establish two lemmas, the first one being
of some independent interest.

LEMt 2.1. Let {X,} be a sequence of independent random variables with
E(X,,) Oand X, <_ 1,1 <_ n < . LetS,, % X, l <_ n < .
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Then for each e > O, ’-1 P[I S,, >- en for some n >_ j] <_ C, where C, is a
positive constant independent of {Xn}.

Proof. We observe that for any choice of al, an >_ 0 we have

I(XV X’)i < .
Since E(X’ Xn) E(XP) E(Xn), we also have

(x’ x;-) o
whenever some a 1. Hence

XX) + 20 _<,<_<. E(X,X)
"F 90 _<<<< E(XXX)

< n + 5 C(n, 2) + 20 C(n, 2) + 90 V(n, 3)

< 50n.
Using Chebycheff’s inequality, we obtain

(i , > ,) < Z(Z)/dn’ < (50/d)(1/n)
so that

for some n >_

< (50/e6) ]7_- 1/n <_ lO0/e6j2.
Hence
-, P[I Sn >_ e, for some n >_ j] _< (100/e) ’i-, 1/j 50/3e.

For any sequence of positive constants {c,} we introduce the sets

Ant {/[f
LEaIX 2.2. Suppose that :_ P(An, En) K C where C is a positive

constant independent of n. Then ’:_ c,,/M,,f,, < oo is transient.

Proof. Since Re [1/(1 )] _< 1/Re [1 --/], it suffices to show that

:-, c/Mnf

(E(f) stands as an abbreviation for ]r f(v) dP(’)). We use the elementary
inequality

(X) < 7.., P(X > r) + 1,

valid for any non-negative random variable X. Let Re [1 #]. We
have

E(I,-I E)
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Hence
E(-1) ,:_, E(- E.)P(E,) <_ (C W 1) :_ c./M.y.

proving the lemma.

Proof of Theorem 2.2. We must show that for bounded {m.},
2

traient, prodded (A) is flled. Ts establishes Theorem 2.2,

./M.f. < for bounded {m.}.

In ew of Lemma 2.2, it sces to demonstrate the existence of a constant
C such that, P(A, E,) C, 1 n , for the choice c. /a.
OnE.wehave .pX. Let S. _X.+, 1 n,j .
Using summation by pts we obtain

(v) + v r.

It follows from (2.1) that

(2.2) rc, (V) rp. + rc._ S.(V).+ p.++], v E..
Using summation by parts again, f. p. W j[p.+- p.++t] from
wch we conclude

(2.3) A rp. T .+- p.++]

It foows from (2.2) and (2.3) that for E.,

A > rc.() rc.S.() <jforsomej r.

Sincec. m/8(1 c) ,1 g n < ,we conclude that for r 3,

(A. n E.) (B. a E.)
where

B. {[ S() < (2/3)j for somej >_ r}.

L tx’ x. Z_, X.+. We have

S.r

_
n’.r where S’. {/I] S’.y(/) > j/3 for some j>_r}.

The sequence {X,} clearly has the properties (1’)-(4’) satisfied b,y {y,}.
It follows that for given n >_ 1, the random variables {X,+, X,+}
defined on E. are independent and E(X.+IE.) E(X.+- 1)= 0,
X.+I _< 1. We may therefore apply Lemma 2.1 to conclude tha

Hence
l<n< .
l<n<

and we may choose C 2 -’1"- Cla.
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The question arises as to whether Theorem 2.2 remains true in case fails
to satisfy condition (A). The answer is no. Let {m,‘} be any bounded
sequence of integers >_ 2 containing an infinite number of composite integers.
We produce an aperiodic recurrent walk on ZI 9 Z, 9 9 Z, 9
for which -1 1/M,‘f,‘ < oo. (The walk will of course violate condition
(A) .)
We first require the following"

LEMMA 2.3. Let 0 < a,‘ <_ b,, (1 <_ n < ) and b,/a,‘ . Let
_

a,‘, "’_ b,‘ < . Then there exists {x.} such that x,, is a strictly
increasing sequence T

Proof. Let A,‘ ’-,‘ a., B,‘ -,‘ b-. Then lim,.(R) B,‘/A,‘
Let u,‘ x, x,-a, 1 _< n < , where z0 is defined to be 0. Using sum-
mation by parts we obtain

Since lim,‘(R) B,‘/A,‘ we can certainly find a sequence {v,‘} such that

Let u= v=/A=. Thus u= > 0, :-A,u= < :_xB=u= .
Since B= u= O(u=) we must also have :_ u= . It foHows that
x= -u is a strictly creasing positive sequence . Since

ai x Au
we conclude :_ a= x= < . For any positive integer n,

Hence lim inf xb x ]xBu. Since n is arbitrary we con-
clude :-x b, x, .
We now construct a recurrent random wa u for wMch -x 1/M, f, <. We specify the p,’s and a,’s wch define u. For each composite m,

choose d, to be a proper divisor of m,, 1 < d, < m,. For m, prime let
d, m,. Let D= d:...d,_:, 2 n < , D: 1. Thus 2
D= M, and lim,= M,/D, , as there is an inite number of com-
posite m,. It fofiows from Lemma 2.3 that there exists {x,}, where {x,} h
positive and strictly increasing to , such that

:-xx/M, < and :_x/D .
We may assume that x 1.
We then have

Letf l/x,,, p,‘ A A+ 1 <_ n < .
We now define the a,‘’s. Let {e} denote a decreasing sequence of numbers
in (0, 1) to be specified later. For m,‘ prime choose {a,‘.} as any sequence
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satisfying

a, a._.> O, 1 _.<3"_< m-- 1, .,’-1 1.

For m, composite choose {,i} as any sequence satisfying-- =o-i> O, 1 _<j_< m- 1,
and

ai (1 e,)/(d,- 1) forj ke,,, 1 <_ k <_ m,,- 1,

where e m,/d,. is aperiodic as > 0 for 1 _<n < o, l_<j_<
m- 1. Using the requirement .-- a =._., we obtain

r ’m--1 -i ’m-’l-x (1

so that V is real. Thus 1- is real and fr Re[1/(1-)]dP. We
choose the e’s so that the latter integral diverges, thus obtaining a recurrent
walk u for which

Let V V + V: where

ljm-l.

(For m prime, e 1 des all j. In ts case V: is defined to be 0.)
We have

U. assumes he values 2il/m., 0 m.- 1. If d.[1, hen V’. 0,
i.e. V’. 0 whenever U. Z,., he symbol Z,. denoting he e. e. roos of 1.
For m. composite, le

v. . n {,[ u.(,) z. ,...
Then

u.+_,(,) z.+_,, u.+(,), z..+},
l_<n, k< oo.

1 e---1 1 (11)P(F,,,)
mx m,,_t m, d,+l ..- dr,+-x d+

( 1)( 1 ) 1 1
1--. 1

d.+ e..-e._D.+"
e. >_ 2 as m. is composite and d.+ >_ 2 by definition. Hence

1 1 1P(F.) >_el... e,_lD,+’
1 _< n < ,

whenever m, is composite.
On F, we have V. 0, 1 _<j < n, IVy’[ < 2e,, n _< j < n + k.

Thus on F.,
+k--11 t Y’-. P" V <_ 2e.._ p. + 2._+ p. _< 2(e.f. + f.+).
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We conclude that

Let

dP

1 1 x" 1 1

g.(x) . 1 1
A x +

g,(x) is well defined for x > 0, as

Since -1 1/:, D, , lim0+ g,(z) . We may therefore choose
{e,} as any decreasing sequence for which g,(e,) > 1, 1 _< n < , and ob-
tain

, 1/(1 ) >_dP 1

whenever m. is composite. As there are an infinite number of composite
m, we obtain

fr 1/(I ) dP

so that the random walk u is recurrent
We summarize the above discussion:

THEOREM 2.3. For {rn} bounded, recurrence of is equivalent o

Z:--1 I/M,, f,,

iff only a finite nunber of the n.’s are composite.

3. Random walks on Zr ( Z, ( Z=. ( {m.} unbounded
We now obtain various necessary and suffiden conditions for he recur-

rence of in case {m.} is unbounded.

THEOREM 3.1. Let be synetric, i.e.a. o.,,,._ for 1
Then ’’,-1 1/M,f, === is recurrent.

Proof. is real valued as is symmetric. Hence

dP r, dP.Re i - dP i ,-1 1

OnE,I y_p.V.sothat0_< 1 <_ 2f.
Hence
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1 dP > 1 P(.E,,) > 1
,,1-- f

It follows that )-:-1 l/M,, f, t is recurrent.

Remarks. For {m.} bounded, the above result holds also when t is asym-
metric (Theorem 2.1). We don’t know whether this is the case for {m.}
unbounded.
TH,OR, 3.2. (i) Let t satisfy condition (A). Then

m./M.$

(ii) Leta, O for l <_ n < ,j 1, m,, 1. Then

Proof. In proving Theorem 2.2 we have actually shown that

m,/M,,fi, <
is ransien, which is pr (i) of he bove heorem.
similar fshion. Le
E,,, VI 0,..., V,_ O, V, 1-- cos

l_<n< , l <_ l<_ m,,-1.

Since a 0 for ff 1, m 1, X(/) ssumes the vlues 1 eo
0_< l_< m-- 1. Since 1- cos a>_ 20/ for 0_< a<_ r, ad cos a--
cos (2r- a) we have

1- cos0>_ 8Min[(#/2,r), (1- #/2,r)], 0_<

Hence

(3.1) X() >_ 8 Min [(l/m,,) , (1 l/m,)], E,,.

Let c (1/8) Max [(m,,/l), (m,/(m,,- /))]. It follows from (3.1)
that

(3.2) rc,,’,,(’) >_ rp,, + rc,,,: S.()[p.+ p.++],

Let A, {lf- > rc,}, 1_< n, r < , 1_< l_< m- 1. Arguing
as in the proof of Theorem 2.2, we conclude from (3.2) and (2.3) that

P(A,z E,) <_ C
where C is a positive constant independent of n and l. Hence

< (c+ ) N
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We have

E(-) ,:__ ’’
Since

Z] c. Max

m. 1 1
-, +(m.-)

2

T- 24

we conclude E(-) (C 1)(/24)ffi/Mf. Hence

so that =/Mf is recurrent.
We now give an example shong that for {} unbounded,

is no longer necessary for recurrence even though condition (A) prevails.
Indeed we give an example of a recurrent was satisfng the hothesis of
Theorem 3.2 (H) (in which case (A) is satisfied) for wch

so that

_
1/Mf is not necessary for recurrence.

Let p C()/I where is to be specified and C() so chosen that
ffixp 1. Let and

_ , 1 . Thus
M (- 1)]. It is easily verified that f p (i.e. lim f/p 1)
so that 1/A 1/C()’-. Hence _x 1/My.
Using 1 cos P P2/2 we have

x() cos 2z/ /, .
Th () 2C(s)12s-2/] 2f.+l on Enl. Since fn+l
we conclude that there ests a positive constant C(s) independent of n,
for wMch

() ,() (n’-/n) ( + n),(3.3)

Hence

and

Since

1 1 n! P(E.)., dP >_
C’x(s) + n x(s) + n

n--1l l n._, 1
dP > C(s)’
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we conclude that there exists a positive constant C(s) independent of n for
which

(3.4) f_ (1/)dP >_ C.(s)/n"-, 1 <_ n

so thatfr(1/)dP o for s< 5/2. Hence for 2 < s _< 5/2, / is
recurrent while 7:_ 1/M,,f,, < o.

Remark. It is also possible to construct transient random walks satisfy-
ing the hypotheses of Theorem 3.2 (ii) for which
Thus Y:. m/M,,f, oo is not sufficient for recurrence of these random
walks.

The problem of obtaining conditions both necessary and sufficient for
recurrence seems to be rather difficult for unbounded {m.} and is not re-
solved here. Nevertheless, such conditions are easily obtained for the uni-
form walk. tt is said to a uniform random walk provided a. 1/(n. 1),
1 _< n < ,1_<j_< m,,-- 1. In this case we have"

THEORE’VI 3.3. Let g be the uniform walk on Z,, Z,... Then is recurrent iff :-x 1/M,,f .
Proof. Since is symmetric, we conclude from Theorem 3.1 that

_,’- 1/M,,A recurrence.

Conversely we show that

_
1/M,,f,, < oo transience. We have

and

Hence

if U-- 1

X,,=O ifU=l

m,,/(m,,-- 1) ifU 1

so that on E,,, X,, m,,/(m,, 1). It follows that inequality (2.2) holds
with the choice c, 1, 1 _< n < , from which we conclude

’_P(A,,,IE) < C, 1 < n < o,

for some positive C independent of n. Lemma 2.2 therefore yields

is transient.

4. Random walks on subgroups of the rationals mod one
We now obtain recurrence criteria for random walks on, the subgroups of

infinite order of the rationals rood one. (We denote the latter as Q/Z.)
Most of the analysis of Sections 2 and 3 apply here, the essential new feature
being that 1 is no longer a sum of independent random variables.
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We give a brief description of these groups and their duals. The group
Q/Z may be identified as the set of complex numbers e’, r rational. Let G
be an infinite subgroup of Q/Z. G has a denumerable set of generators
{x}. Let G be the subgroup of G generated by xl, x. It is readily
seen that G is cyclic. Let [G "G_I] m, 1 n < , where G0 {1}.
Thus G consists of m m numbers e/1"’’n, 0 _< j _< m m 1,
while G U_ G consists of the numbers e’/1’’’n 1
j_<m...m- 1. We denote G by Z(ml,..., n) and Gby Z(m,.., m ,...). Thus the infinite subgroups of the rationals rood one .are
precisely the Z(n) groups discussed in [3, p. 403].
We now describe the dual of Z(m, m, -..) Let g

1 _< n < . g generates Z(m, ..., m) and {g} is a set of generators
forZ(m,..., m,...). Any character(g) ofZ(m,..., m,...) is
thus determined by the values {(g)}. Since g’= 1, g"---g,,_, 2
n < , we have the relations

(4.1) b(g)]’ 1, b(g)] ,(g_), 2 _< n <
Conversely, it is easily verified that any sequence {,(g,)} satisfying (4.1)

can be uniquely extended as a character (g) on G. Thus the dual of Z(nl,
m, ...) may be identified as the set of sequences {,(g), (g),
satisfying the relations (4.1).

Let be a random walk on G. Without loss of generality, let be aperiodic.
We may therefore choose a set of generators {x} of G satisfying (x) > 0,
1 _< n < . Let G denote the subgroup of G generated by x, x
we may assume that G is a proper subgroup of G+ (1

_
n < ). Denote,

as above, G by Z(m m) and G by Z(m,..., m,...). Thus,
without loss of generality, we assume that (support of ) Z(m, n)
generates Z(ml, m), 1 <_ n <: .

Let
g’(,, m,,) Z(, ) Z(, _), 2 _< n < ,

Z’(m) Z(mx) -{1}.

Thus Z’(m ,..., ) consists of the numbers e’’’, j S, where
denotes the set of positive integers which are not multiples of m. We
define{p},l _< n < ,and{a.},l _< n < ,jeS,as

p [z’(, ..., ) 1, , ,(e’’’’’’’’)/p,,.
We may assume /(1) 0 (in view of Theorem 2.0). Thus p > 0, 1 _<
n< o, :_p. 1, ,sa. 1, 1 < n < o. Let /() denote
the Fourier transform of/. We then have

() F.o()() :_ ., ,.(.), r.
We seek recurrence criteria for in terms of {p.} and {a-}. Let

U.(,) (g.), V.() .,sn a.[1 V(,)], X.(,) Re (V.()).
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We establish:

LEMA 3.1. {Vn} satisfies the following properties:
(1) IV.- 1[_ 1.
(2)
(3) v v.=ou u. I.

A similar statement applies to the sequence {X.}.

Proof. (1) 1 V,, ..,s. a,, U so that

[1--V,,[ _< 1, [I-X.[_< I,

(2) Let h,’", ’. be any set of numbers satisfying ’’ I, "--’_, 2 _< _< n. It is easily verified that

P{ U(v) ,’", U,,(’y) ,,} 1/m... n,,.

It follows that

E(U[ U h ,"" U._t ’._1) (1/nt m.) r.,.-r.-, ’.
The sum

extends over the m. m roots of 1 and equals 0 for m. f j. We conclude
that

E(U U
Hence

1 .y.s.a.yE(U[U,"’, U,,_,) O.

A sitar proof works for the X.’s.
(3) We make use of the assumption that (support of) Z(m, .)

generates Z(m,, ..., m.), 1 n < which may be restated as follows.
Let H. denote the positive integers m, m. which are mtiples of m..
Let I.
generates the additive group of integers rood m,...m.. Sce V.,s. a.#[1 U.], we have V. 0 U. 1, j e I.. SceI generates the
integersmodmand’ 1, wehave U{ 1 (jeI.) U1 1. Thus
V, 0 U1 0. Suppose, by hothesis for induction, that V
V._, 0U, U._, 1. Thus

V, V. 0U U._, 1 and U l(jeI).

Now
I generate the integers mod ml m., we conclude

v, V.=0 u,=...=U.=.

X 1 V. 1, we obtain a silar reset for {X.}.
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eE {l 0,...,

_
0, 0}, _< < .

from property (3) that
We conclude

P(En) 1/1 T/r--l) (1

exactly as in Section 2.
We now state several recurrence criteria. We again let

M, ?y/1 9T/n_l 2 _< n < , M1 1.

THEOREM 4.1. Let :--1 1/M,,f,, oo. is recurrent provided (i) {m,}
is bounded or (ii) t is symmetric, i.e. a, o.,1...,._, 1 <_ n < , 1 <_
j<_m...m,,.-- 1.

(i), (ii) are the respective analogs of Theorems 2.1,, 3.1. The proofs are
omitted as they are identical with the proofs of these former theorems. We
just observe that on E., U." 1, as this fact is essential for the proof of
part (i).

In order to state our next result, we stipulate the following condition on
which is just the analog of condition (A) in Section 2.

Condition (A’). There exists c, 0 < c < 1, such that (H)/p,, <_ c for all
proper subgroups H of Z(ml m,,), 1 <_ n

Reasoning as in Section 2, condition (A’) yields the inequality (2.1).

THEOREM 4.2. Let {p_,_,. $ and {m,I 5ounded. Let satisfy condition (A’).
Then t is recurrent

Proof. We try to mimic the proof of Theorem 2.2. Let a 8(1 c)
be the constant appearing in inequality (2.1) and let m Maxx<,< m, < .
Define S, =1 X,+ for 1 _< n, j < . Arguing exactly as in the proof
of Theorem 2.2 it suffices to demonstrate the existence of a constant C such
that

Y’,xP(B,,IE,) < C, 1 <_ n < ,
where B,, {y S,(/) < j/2m for some j >_ r}. The latter inequality no
longer follows from Lemma 2.1 as the sequences of random variables {X,}
fail to be independent. To prove the inequality we compare the X,’s with
another sequence of independent random variables {Y,} defined as follows.

Let ;x, , be any set of numbers satisfying ’1 1, ’ _,
2_<k_<n, andlet

st, . {,] u(,) h,"’, u.(,)

For given x,..-,
_

we have E(X,,[ Ux x, U,,_I ,,-a} 1
so that we may choose one value of , call it , such that X, >_ 1
on Sra r._a,.. For given a, ,_x we define

0, -/eS . where
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It is readily checked that {Y} is a sequence of independent random vari-
ables on r with 0 _< Y __< 1, E(Y) 1/n for 1 _< n < oo. Let

z=Y-i/, <n<
The Z’s form a sequence of independent random variables with E(Z,,) O,
Znl <- lforl_<n< . Since Y _< X we conclude that

B,r { 1X,+,() < j/2n for some j >_ rl

{1 --1 Y,+,() < j/2n for some j >_ rl
c..C_. {11 ,Z,+, (f) > j/2 for some j >_ r}.

For >_ 1, the sequence {Z+I, Z +, ...} satisfies the hypotheses of
Lemma 2.1. Hence

for some

j >_ r} _< C/2m

Since

_
x du(x) 0, we conclude from a result of Chung and Fuchs [1]

that is topologically recurrent.
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for i <_ n <: o, thus proving Theorem 4.2.
We remark that .Theorem 4.2 permits us to construct a random walk on

the additive group of rationals Q which is topologically recurrent under the
usual topology but not pointwise recurrent, i.e., for any e > 0, the walk
visits the interval (- e, e) infinitely often with probability one and yet the
walk visits the origin at most finitely often with probability one. Let
be a bounded sequence of integers >_2. Let (-4, 1/... n)
where IP} and :-_1 p 1. Suppose that :_ 1/ nf <
Considered as a walk on Q/Z, is pointwise transient according to Theorem
4.2. Hence is certainly pointwise transient as a walk on Q. Now


