THE GENUS OF SUBFIELDS OF $K\left(p^{n}\right)$

BY
Joseph B. Dennin, Jr.
1. Introduction

Let Γ be the group of linear fractional transformations

$$
w \rightarrow(a w+b) /(c w+d)
$$

of the upper half plane into itself with integer coefficients and determinant 1. Γ is isomorphic to the 2×2 modular group; i.e., the group of 2×2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. Let $\Gamma(n)$, the principal congruence subgroup of level n, be the subgroup of Γ consisting of those elements for which $a \equiv d \equiv 1(\bmod n)$ and $b \equiv c \equiv 0(\bmod n) . \quad G$ is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. G has a fundamental domain in the upper half plane which can be compactified to a Riemann surface and then the genus of G can be defined to be the genus of the Riemann surface. H . Rademacher has conjectured that the number of congruence subgroups of genus 0 is finite. D. McQuillan [7] has shown that the conjecture is true if n is relatively prime to $2 \cdot 3 \cdot 5$ and J. Dennin [1, 2] has shown that the conjecture is true if $n=2^{m}, 3^{m}$ or 5^{m}. In this paper we show that the number of subgroups of prime power level of genus g is finite for any g. We may assume $g \neq 0$ since the case $g=0$ is done.

2. Preliminary results and definitions

Consider $M_{\Gamma(n)}$, the Riemann surface associated with $\Gamma(n)$. The field of meromorphic functions on $M_{\Gamma(n)}$ is called the field of modular functions of level n and is denoted by $K(n)$. If j is the absolute Weierstrass invariant, $K(n)$ is a finite Galois extension of $C(j)$ with $\Gamma / \Gamma(n)$ for Galois group. Let $S L(2, n)$ be the special linear group of degree two with coefficients in $Z / n Z$ and let $L F(2, n)=S L(2, n) / \pm I$. Then $\Gamma / \Gamma(n)$ is isomorphic to $L F(2, n)$. If $\Gamma(n) \subset G \subset \Gamma$ and H is the corresponding subgroup of $L F(2, n)$, then by Galois theory H corresponds to a subfield F of $K(n)$ and the genus of F equals the genus of G.

The following notation will be standard. A matrix

$$
\pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

will be written $\pm(a, b, c, d)$.

$$
T= \pm(0,-1,1,0) ; \quad S= \pm(1,1,0,1) ; \quad R= \pm(0,-1,1,1)
$$

Received August 1, 1972.
T and S generate $L F(2, n)$ and $R=T S . \quad F$ will be a subfield of $K(n)$ containing $C(j)$ and H the corresponding subgroup of $L F(2, n) . g(H)=$ the genus of H and h or $|H|=$ the order of H. [A] or $[\pm(a, b, c, d)]$ will denote the group generated by A or $\pm(a, b, c, d)$ respectively.

We now concentrate on $L F\left(2, p^{n}\right), p>2$, whose order is $p^{8 n-2}\left(p^{2}-1\right) / 2$. The case $p=2$ will be considered in the last section. McQuillan [7] obtained the following formula for the genus of H.

Let r, t and $s\left(p^{r}\right)$ be the number of distinct cyclic subgroups of H generated by a conjugate in $L F\left(2, p^{n}\right)$ of R, T and $S^{p^{r}}$ respectively where $1 \leq p^{r}<p^{n}$. Then

$$
\begin{align*}
& g(H)=1+p^{2 n-2}\left(p^{2}-1\right)\left(p^{n}-6\right) / 24 h-p^{n-1}(p- \\
& \quad(-3 / p)) r / 3 h-p^{n-1}(p-(-1 / p)) t / 4 h-p^{2 n-2}(p-1)^{2} W / 4 h \tag{2.1}
\end{align*}
$$

where $W=\sum s\left(p^{r}\right)$. One immediate consequence of this is that if two groups are conjugate, they have the same genus.

We now collect some basic facts about subgroups of $L F\left(2, p^{n}\right)$ and conjugates of $S^{p^{r}}, R$ and T which we will use later. First we have three propositions which are found in Gierster [4]. Let f_{r}^{n} be the natural homomorphism from $L F\left(2, p^{n}\right)$ to $L F\left(2, p^{r}\right), 0<r<n$, given by reducing an element $\bmod p^{r}$. The kernel of this homomorphism is denoted by K_{r}^{n} and has order $p^{3(n-r)}$.

Proposition 2.1. If $H \cap K_{n-1}^{n}$ is the identity, $H \cap K_{r}^{n}$ is the identity for $r=1, \cdots, n-2$.

Proposition 2.2. If $\left|H \cap K_{n-1}^{n}\right|=p$, then $H \cap K_{1}^{n}$ is cyclic and

$$
\left|H \cap K_{1}^{n}\right| \leq p^{n-1}
$$

Proposition 2.3. If $\left|H \cap K_{n-1}^{n}\right|=p^{2}$, then $H \cap K_{1}^{n}$ is generated by two transformations U_{1} and U_{2} of order p^{n-r} and p^{n-s} respectively and

$$
\left|H \cap K_{1}^{n}\right|=p^{2 n-r-s} \leq p^{2 n-2}
$$

In Proposition 2.2, $H \cap K_{1}^{n}=[U]$ where

$$
U= \pm\left(u+p^{r} \mu, p^{r} \nu, p^{r} \rho, u-p^{r} \mu\right)
$$

with not all of $\mu, \nu, \rho \equiv 0(\bmod p)$ and $u^{2}+p^{2 r}\left(\mu^{2}+\nu \rho\right) \equiv 1\left(\bmod p^{n}\right)$. Following Gierster, we make the selection of u unique by choosing $u \equiv 1$ $(\bmod p)$ and we write $U=\phi(\mu, \nu, \rho)_{r} . \quad$ The order of U is then p^{n-r} and

$$
[U]=\left\{U^{i}=\phi\left(\mu \xi_{i}, \nu \xi_{i}, \rho \xi_{i}\right)\right\}
$$

where u_{i} and ξ_{i} are given inductively by the formulas

$$
\begin{equation*}
u_{i} \equiv u_{i-1} u+\xi_{i-1}\left(u^{2}-1\right), \quad \xi_{i} \equiv \xi_{i-1} u+u_{i-1} \quad\left(\bmod p^{n}\right) \tag{2.2}
\end{equation*}
$$

where $u_{1}=u$ and $\xi_{1}=1$ [2]. From Proposition 2.3, let

$$
U_{1}=\phi(\mu, \nu, \rho)_{r} \quad \text { and } \quad U_{2}=\phi\left(\mu^{\prime}, \nu^{\prime}, \rho^{\prime}\right)_{s}
$$

Then $\left[U_{1}\right] \cap\left[U_{2}\right]=\{I\}$ and

$$
\begin{aligned}
H \cap K_{1}^{n}= & \left\{U_{1}^{i} U_{2}^{j}\right\} \\
= & \left\{ \pm\left(u_{i} u_{j}^{\prime}+p^{r} \xi_{i} \mu u_{j}^{\prime}+p^{s} \xi_{j} \mu^{\prime} u_{i}+p^{r+s} \xi_{\xi} \xi_{j}\left(\mu \mu^{\prime}+\nu \rho^{\prime}\right),\right.\right. \\
& \rho^{s} \xi_{j} \nu^{\prime} u_{i}+p^{r} \xi_{i} \nu u_{j}^{\prime}+p^{r+s} \xi_{i} \xi_{j}\left(\mu \nu^{\prime}-\mu^{\prime} \nu\right), \\
& p^{r} \xi_{i} \rho u_{j}^{\prime}+p^{s} \xi_{j} \rho^{\prime} u_{i}+p^{r+s} \xi_{i} \xi_{j}\left(\rho \mu^{\prime}-\rho^{\prime} \mu\right), \\
& \left.\left.u_{i} u_{j}^{\prime}-p^{r} \xi_{i} \mu u_{j}^{\prime}-p^{s} \xi_{j} \mu^{\prime} u_{i}+p^{r+s} \xi_{i} \xi_{j}\left(\mu \mu^{\prime}+\nu^{\prime} \rho\right)\right)\right\}
\end{aligned}
$$

where $1 \leq \xi_{i} \leq p^{n-r}$ and $1 \leq \xi_{j} \leq p^{n-s}$. The power of p dividing ξ_{i} and ξ_{j} determines to which $K_{l}^{n} U_{1}^{i}$ and U_{2}^{j} belong.

We use the groups K_{r}^{n} to define the concept of level for $H . \quad H$ is of level r if H contains K_{r}^{n} and does not contain K_{r-1}^{n}. Similarly we say a subfield F of $K\left(p^{n}\right)$ is of level r if F is a subfield of $K\left(p^{r}\right)$ and not a subfield of $K\left(p^{r-1}\right)$. Note that F is of level r if and only if its Galois group is of level r. Similarly we will use the phrase "at the r-th level" to mean in $K_{n-r}^{n}-K_{n-(r-1)}^{n}$.

A conjugate of $S^{p^{r}}$ has the form $\pm\left(1-p^{r} a c, p^{r} a^{2},-p^{r} c^{2}, 1+p^{r} a c\right)$. The following proposition simplifies the task of counting groups conjugate to [$\left.S^{p^{r}}\right][1]$.

Proposition 2.4. Any group A conjugate to $\left[S^{p^{r}}\right]$, where

$$
\pm\left(1-p^{r} a c, p^{r} a^{2},-p^{r} c^{2}, 1+p^{r} a c\right)
$$

is an element of A and $\left(a, p^{n}\right)=1$, contains one and only one element of the form $\pm\left(x, p^{r}, y, z\right)$ and it is conjugate to $S^{p^{r}}$.

So under the proper conditions, to calculate $s\left(p^{r}\right)$ for H, it is sufficient to count the number of elements of the form $\pm\left(1-p^{r} c, p^{r},-p^{r} c^{2}, 1+p^{r} c\right)$ in H. Unless otherwise indicated, the phrase " a conjugate of $S^{p r}$ " will mean one in this form. If $U= \pm\left(1-p^{r-1} c, p^{r-1},-p^{r-1} c^{2}, 1+p^{r-1} c\right)$ is a conjugate of $S^{p^{r-1}}$ and V is a conjugate of $S^{p^{r-1}}$ such that $U^{p}=V^{p}$, then

$$
V= \pm\left(1-p^{r-1}\left(c+x p^{n-r}\right), p^{r-1},-p^{r-1}\left(c^{2}+2 c x p^{n-r}\right), 1+p^{r-1}\left(c+x p^{n-r}\right)\right)
$$

where $0 \leq x<p$.
The following proposition simplifies the calculation of the number of conjugates of T and R in H.

Proposition 2.5. Let H be a subgroup of $L F\left(2, p^{n}\right)$ and \vec{H} be its image in $L F(2, p)$. If \bar{T} (respectively \bar{R}) in \bar{H} has k pre-images in H conjugate to $T(R)$, then each conjugate of $\bar{T}(\bar{R})$ in \bar{H} has 0 or k pre-images conjugate to $T(R)$ in H.

Proof. Suppose \bar{T} in \bar{H} has $U_{1} T U_{1}^{-1}=T, U_{2} T U_{2}^{-1}, \cdots, U_{k} T U_{k}^{-1}$ as its pre-images in H conjugate to T. Suppose \bar{T}_{1} is conjugate to \bar{T} in \bar{H} and that \bar{T}_{1} has at least one pre-image conjugate to T so that we may assume T_{1} is conjugate to T. Then there is a B in $L F\left(2, p^{n}\right)$ such that $B T B^{-1}=T_{1}$ in H
and so $\bar{B} \bar{T} \bar{B}^{-1}=\bar{T}_{1}$ in \bar{H}. Then, for $i=1, \cdots, k$,

$$
\left(B\left(U_{i} T U_{i}^{-1}\right) B^{-1}\right)^{-}=\bar{T}_{1}
$$

so that \bar{T}_{1} has at least k pre-images conjugate to T in H. Suppose

$$
\left(U T U^{-1}\right)^{-}=\bar{T}_{1} \text { and } U T U^{-1} \neq B\left(U_{i} T U_{i}^{-1}\right) B^{-1} \text { for any } i=1, \cdots, k
$$

Then $B^{-1}\left(U T U^{-1}\right) B \neq U_{i} T U_{i}^{-1}$ for any i and yet $\left(B^{-1}\left(U T U^{-1}\right) B\right)^{-}=\bar{T}$ in \vec{H} which is a contradiction. Therefore \bar{T}_{1} has at most k pre-images in H conjugate to T. A similar argument works for R and \bar{R}.

By conjugating H, we may assume that T is an element of H. By Proposition 2.5, it is sufficient to count the number of elements in H conjugate to T which are in $\left(H \cap K_{1}^{n}\right) \cdot T$. By Gierster [4], for $p>2, T_{1}$ in $L F\left(2, p^{n}\right)$ is conjugate to T if and only if the trace of T_{1} is congruent to $0 \bmod p^{n}$. Let $U=\phi(\mu, \nu, \rho)_{r}$. Then

$$
U \cdot T= \pm\left(p^{r} \nu,-u-p^{r} \mu, u-p^{r} \mu,-p^{r} \rho\right)
$$

which has trace 0 if and only if $p^{r}(\nu-\rho) \equiv 0\left(\bmod p^{n}\right)$ if and only if $\nu \equiv \rho\left(\bmod p^{n-r}\right)$ where $1 \leq \nu, \rho \leq p^{n-r}$.

Definition 2.1. $U=\phi(\mu, \nu, \rho)_{r}$ has property A if and only if $\nu \equiv \rho$ $\left(\bmod p^{n-r}\right)$.

We will want to calculate the number of elements in H with property A.
Similarly, by conjugating H, we may assume that R is an element of H and again by Proposition 2.5, it is sufficient to count the number of elements in H conjugate to R which are in $\left(H \cap K_{1}^{n}\right) \cdot R$. By Gierster [4], for $p>3, R_{1}$ in $L F\left(2, p^{n}\right)$ is conjugate to R if and only if the trace of R_{1} is congruent to $\pm 1 \bmod p^{n}$.

$$
U \cdot R= \pm\left(p^{r} \nu, \quad-u-p^{r} \mu+p^{r} \nu, \quad u-p^{r} \mu, \quad u-p^{r} \mu-p^{r} \rho\right)
$$

which has trace congruent to $u+p^{r}(\nu-\mu-\rho) \bmod p^{n}$.
Definition 2.2. $U=\phi(\mu, \nu, \rho)_{r}$ has property B if and only if

$$
u+p^{r}(\nu-\mu-\rho) \equiv 1 \quad\left(\bmod p^{n}\right)
$$

It it sufficient to count the U with property B in H since the previous assumption that $u \equiv 1(\bmod p)$ implies that p divides $1-u$. But if

$$
u+p^{r}(\nu-\mu-\rho) \equiv-1\left(\bmod p^{n}\right)
$$

then p divides $-(1+u)$ so that p divides $(1-u)+(1+u)=2$, a contradiction. Here we have used the + sign in front of the matrix; using the sign would have given all the relevant matrices trace -1 .

First we are going to show that it is enough to consider $L F\left(2, p^{n}\right)$ for a fixed p. In doing this and later in applying Proposition 1.5, it is necessary to
have a list of subgroups of $\operatorname{LF}(2, p)$. The possibilities are [3, 7]:
(1) a cyclic group C_{m} of order m where $m=p, m$ divides $(p-1) / 2$ or $(p+1) / 2$;
(2) a dihedral group $D_{2 n}$ of order $2 n$ where n divides $p-1$ or $p+1$;
(3) a metacyclic group $M_{p u}$ of order $p u$ where u divides $(p-1) / 2$;
(4) a tetrahedral group \mathcal{J} for each p, an octahedral group \mathcal{O} if $p \equiv \pm 1$ $(\bmod 8)$ or an icosahedral group \mathcal{G} if $p \equiv \pm 1(\bmod 5)$.
Proposition 2.6. Fix $g>0$. There exists a p_{0} such that if $p \geq p_{0}$, then $K(p)$ has no subfields of genus g.

Proof. D. McQuillan has formulas for the genus of subgroups of $L F^{\prime}(2, p)$, $p>5$ [7]. Using them we see that
(1) $g(I)=1+(p-6)\left(p^{2}-1\right) / 24$,
(2) $g(J) \geq 1+\left(p^{3}-6 p^{2}-p+6\right) / 288-(p+1) / 9-(p+1) / 16$,
(3) $g(\theta) \geq 1+\left(p^{3}-6 p^{2}-p+6\right) / 576-(p+1) / 18-3(p+1) / 32$,
(4) $g\left(C_{p}\right)=\left(p^{2}-12 p+35\right) / 24$,
(5) $g\left(C_{m}\right) \geq 1+(p+\epsilon)((p-6)(p-\epsilon) / 12-7 / 6) / 2 m$,
(6) $g\left(D_{2 n}\right) \geq 1+(p+\epsilon)((p-6)(p-\epsilon) / 48-1 / 6-(p+1) / 4) / n$,
(7) $g\left(M_{p u}\right) \geq 1+(p-11) / 12-7 / 6$,
(8) $g(\mathscr{g}) \geq 1+\left(p^{3}-6 p^{2}-p+6\right) / 1440-(p+1) / 18-(p+1) / 16$,
where $\epsilon= \pm 1$. So $\lim _{p \rightarrow \infty} g(H)=\infty$ where H is a proper subgroup of $L F$ ($2, p$). Further $g(L F(2, p))=0$. So for p sufficiently large, $L F(2, p)$ contains no subgroups of genus g and hence $K(p)$ has no subfields of genus g.

To show that the same result is true for $K\left(p^{n}\right), n \geq 2$, we need the following fact.

Lemma 2.7. If F is a subfield of L, then $g(F) \leq g(L)$.
Proof. By the relative genus formula,

$$
2 g(L)-2=(2 g(F)-2)[L: F]+d\left(D_{L / F}\right)
$$

where $d\left(D_{L / F}\right)$ is the degree of the discriminant of L over F. But $[L: F] \geq 1$ and $d\left(D_{L / F}\right) \geq 0$ so that $2 g(L)-2 \geq 2 g(F)-2$ which implies that $g(L) \geq g(F)$.

Theorem 1. Fix $g>0$. There exists a p_{0} such that if $p \geq p_{0}$, then $K\left(p^{n}\right)$ has no subfields of genus g.

Proof. We proceed by induction on n. By Proposition 2.6, there is a p_{0} such that if $p \geq p_{0}, K(p)$ has no subfields of genus less than or equal to g except for $C(j)$ which has genus 0 . Suppose F is a subfield of $K\left(p^{n}\right)$ of genus g. Then by Lemma 2.7, $F_{1}=F \cap K\left(p^{n-1}\right)$ which is a subfield of F has genus $g_{1} \leq g$. By the induction hypothesis, $K\left(p^{n-1}\right)$ has no subfield of genus less than or equal to g except $\mathcal{C}(j)$ so that $F_{1}=C(j)$. Let $H=G\left(K\left(p^{n}\right) / F\right)$.

Then $H\left(\bmod p^{n-1}\right)=G\left(K\left(p^{n-1}\right) / F_{1}\right)=L F\left(2, p^{n-1}\right)$ since $F_{1}=C(j)$. So H contains K_{m-1}^{m} [7] implying that $F \subseteq K\left(p^{n-1}\right)$. So by induction, $F=C(j)$ and $g(F)=0 \neq g$, a contradiction.

$$
\text { 3. } L F\left(2, p^{n}\right), p>3
$$

By Theorem 1, we may assume that p is a fixed prime and we continue to assume that $p>2$. Fix $g>0$. We will show that

$$
\left\{F \mid F \subseteq K\left(p^{n}\right) \text { for some } n, g(F)=g\right\}
$$

is finite by showing that there is an r_{0} such that for $r \geq r_{0}$ there are no fields of level r and genus g in $K\left(p^{n}\right), n>r$. So we must show that any subfield of $K\left(p^{n}\right)$ of genus g is already a subfield of $K\left(p^{r_{0}}\right)$. Therefore it is enough to assume that F is a subfield of $K\left(p^{n}\right)$ and is not a subfield of $K\left(p^{n-1}\right)$ and show that $g(F)>g$. In terms of the associated subgroup H of $L F\left(2, p^{n}\right)$, this means there are three cases to consider:

$$
\text { (1) } H \cap K_{n-1}^{n}=\{I\}, \text { (2) }\left|H \cap K_{n-1}^{n}\right|=p \text {, (3) }\left|H \cap K_{n-1}^{n}\right|=p^{2}
$$

since if $\left|H \cap K_{n-1}^{n}\right|=p^{3}$, then $K_{n-1}^{n} \subseteq H$ and so $F \subseteq K\left(p^{n-1}\right)$.
The first case is easy and is done in the following proposition.
Proposition 3.1. There exists an n_{1} such that if $n \geq n_{1}$ and $H \cap K_{n-1}^{n}=\{I\}$, then $g(H)>g$.

Proof. Suppose $H \cap K_{n-1}^{n}=\{I\}$. By Proposition 2.1, $H \cap K_{1}^{n}=\{I\}$. Then $t \leq 15, r \leq 10$ and $h \leq\left(p^{2}-1\right) / 2 \leq p^{2}$. To see this, apply f_{1}^{n}, whose kernel is K_{1}^{n}, to H and then count the appropriate elements in the image of H in $L F(2, p)$. Further $W=0$ since any conjugate of a power of S raised to some power is in K_{1}^{n}. Therefore, by formula (2.1),

$$
\begin{aligned}
g(H) \geq 1 & +\left\{p^{3 n-2}\left(p^{2}-1\right)-\left(6 p^{2 n-2}+80 p^{n-1}(p+1)\right.\right. \\
& \left.\left.+90 p^{n-1}(p+1)\right)\right\} / 24 p^{2} \\
= & 1+f(n)
\end{aligned}
$$

where $\lim _{n \rightarrow \infty} f(n)=\infty$. So there is an n_{1} such that for $n \geq n_{1}, g(H)>g$.
For the second case we use the bounds on r, t and W given in the following lemma.

Lemma 3.2. Suppose $\left|H \cap K_{n-1}^{n}\right|=p$. Then $W \leq n, t \leq 15 p^{n+1}$ and $r \leq 20 p^{n}$.

Proof. Since $\left|H \cap K_{n-1}^{n}\right|=p$, by Proposition 2.2, $H \cap K_{1}^{n}$ is cyclic with $\left|H \cap K_{1}^{n}\right| \leq p^{n-1}$. If $W \neq 0$, conjugate H so that $S^{p^{n-1}}$ is in H. Then $W \leq n-1+s(1)$. Suppose U and V are conjugates of S such that $U^{p}=V^{p}$. Then

$$
U= \pm\left(1-c, 1,-c^{2}, 1+c\right)
$$

and

$$
V= \pm\left(1-\left(c+x p^{n-1}\right), 1,-\left(c^{2}+2 c x p^{n-1}\right), 1+\left(c+x p^{n-1}\right)\right)
$$

where $1 \leq x<p$ and p divides c since $U^{p^{n-1}}=S^{p^{n-1}}$. Then

$$
U^{-1} V= \pm\left(1-x p^{n-1},-x p^{n-1}, 0,1+x p^{n-1}\right)
$$

is in $H \cap K_{n-1}^{n}$. But $H \cap K_{n-1}^{n}=\left\{ \pm\left(1, y p^{n-1}, 0,1\right) \mid 0 \leq y \leq p^{n-1}\right\}$. So $s(1) \leq 1$ and $W \leq n$. To calculate t and r we use Proposition 2.5. From McQuillan [7], we see that in $L F(2, p) t \leq 15(p+2)$ and $r \leq 20 p$. Since $\left|H \cap K_{1}^{n}\right| \leq p^{n-1}$,

$$
t \leq 15(p+2) p^{n-1} \leq 15 p^{n+1} \text { and } \quad r \leq 20 p^{n}
$$

Proposition 3.3. There exists an n_{2} such that if $n \geq n_{2}$ and $\left|H \cap K_{n-1}^{n}\right|=p$, then $g(H)>g$.

Proof. By Lemma 3.2, $W \leq n, t \leq 15 p^{n+1}$ and $r \leq 20 p^{n}$. Since

$$
|L F(2, p)|=p\left(p^{2}-1\right) / 2 \leq p^{3} \quad \text { and } \quad\left|H \cap K_{1}^{n}\right| \leq p^{n-1}
$$

$h \leq p^{n+2}$. So by formula (2.1),

$$
\begin{aligned}
g(H) \geq 1 & +\left\{p^{3 n-2}\left(p^{2}-1\right)-\left(6\left(p^{2}-1\right) p^{2 n-2}+160 p^{2 n-1}(p+1)\right.\right. \\
& \left.\left.+90 p^{2 n}(p+1)+6 n p^{2 n-2}(p-1)^{2}\right)\right\} / 24 p^{n+2} \\
=1 & +f(n)
\end{aligned}
$$

where $f(n)=p^{n-4}\left(a p^{n}-b n-c\right)$ with $a>0, b$ and c constants. But $\lim _{n \rightarrow \infty} f(n)=\infty$ so that there is an n_{2} such that for $n \geq n_{2}, g(H)>g$.

In the case $\left|H \cap K_{n-1}^{n}\right|=p^{2}$, we will use the following notation from Gierster [4]. Let $U=\phi(\mu, \nu, \rho)$ and set $\pi=\mu^{2}+\nu \rho$. Then K_{n-1}^{n} contains 3 different conjugacy classes of groups of order p :
(1) $(p+1) G_{p}(I)$ determined by $\pi \equiv 0(\bmod p)$, e.g. $\left[\pm\left(1, p^{n-1}, 0,1\right)\right]$,
(2) $p(p+1) / 2 G_{p}(I I)$ determined by $(\pi / p)=1$, e.g. $\left[\pm\left(1+p^{n-1}, 0\right.\right.$, $\left.0,1-p^{n-1}\right)$],
(3) $p(p-1) / 2 G_{p}(I I I)$ determined by $(\pi / p)=-1$, e.g. $\left[\pm\left(1, p^{n-1} \nu\right.\right.$, $\left.\left.p^{n-1}, 1\right)\right]$ where $(\nu / p)=-1$.
Similarly the subgroups of order p^{2} in K_{n-1}^{n} divide into 3 conjugacy classes:
(1) $\quad(p+1) G_{p^{2}}(I)$ containing $1 G_{p}(\mathrm{I})$ and $p G_{p}(I I)$,
(2) $p(p+1) / 2 G_{p^{2}}(I I)$ containing $2 G_{p}(I),(p-1) / 2 G_{p}(I I)$ and $(p-1) / 2 G_{p}(I I I)$,
(3) $p(p-1) / 2 G_{p^{2}}(I I I)$ containing $(p+1) / 2 G_{p}(I I)$ and $(p+1) / 2$ $G_{p}(I I I)$.
We now give a series of propositions which give bounds on W, t and r in the case $\left|H \cap K_{n-1}^{n}\right|=p^{2}$.

Proposition 3.4. Suppose $H \cap K_{n-1}^{n}$ is conjugate to $G_{p^{2}}$ (II). Then

$$
W \leq 2(n+p-1)
$$

Proof. By conjugating H, we can assume the $G_{p^{2}}(I I)$ is generated by $S^{p^{n-1}}= \pm\left(1, p^{n-1}, 0,1\right)$ and $S_{1}= \pm\left(1-p^{n-1}, p^{n-1},-p^{n-1}, 1+p^{n-1}\right)$ and so a typical element in $G_{p^{2}}(I I)$ is

$$
\pm\left(1-i p^{n-1}, p^{n-1}(i+j),-i p^{n-1}, 1+i p^{n-1}\right)
$$

Suppose $U= \pm\left(1-p^{r} c, p^{r},-p^{r} c^{2}, 1+p^{r} c\right)$ and V are conjugates of $S^{p r}$, $r \geq 1, U^{p}=V^{p}$ and U is in H. Then
$V= \pm\left(1-p^{r}\left(c+x p^{n-r-1}\right), p^{r},-p^{r}\left(c^{2}+2 c x p^{n-r-1}\right), 1+p^{r}\left(c+x p^{n-r-1}\right)\right)$ with $(p, x)=1$. If V is in H, then

$$
U^{-1} V= \pm\left(1-x p^{n-1}, 0,-2 c x p^{n-1}, 1+x p^{n-1}\right)
$$

is in $H \cap K_{n-1}^{n}$. But the only elements in $H \cap K_{n-1}^{n}$ with 0 in the upper right corner are

$$
\pm\left(1-i p^{n-1}, 0,-i p^{n-1}, 1+i p^{n-1}\right)
$$

So $2 c x \equiv x(\bmod p)$ which implies that $1 \equiv 2 c(\bmod p) . \quad$ But $U^{p^{n-r-1}}=S^{p^{n-1}}$ or S_{1} so that $c \equiv 0$ or $1(\bmod p)$ and hence $1 \not \equiv 2 c(\bmod p)$. So each level from 1 to $n-1$ has at most two groups conjugate to $S^{p^{r}}$ and so

$$
W \leq 2(n-1)+s(1)
$$

But $s(1) \leq 2 p$ since each of the two conjugates to S^{p} has at most $p p$-th roots conjugate to S and so $W \leq 2(n-1)+2 p$.

Lemma 3.5. Suppose $H \cap K_{n-1}^{n}$ is generated by

$$
S^{p^{n-1}} \text { and } \pm\left(1+p^{n-1}, 0,0,1-p^{n-1}\right)
$$

Consider all the conjugates of powers of S in H and let m be the smallest integer such that there is $a c_{0}$ with $p^{n-m} c_{0}^{2} \not \equiv 0\left(\bmod p^{n}\right)$. Suppose $m<\frac{2}{3} n-\frac{1}{3}$ and let $s=(m+1) / 2$ and r be such that $m+1 \leq r \leq \frac{2}{3} n-\frac{1}{3}$. Consider $\left\{U_{t}\right\}$, a set of conjugates of $S^{p^{r}}$, such that the p^{s}-th powers of any two are the smallest powers which are equal. Then at most two of the U_{t} are in H.

Proof. A typical element in $H \cap K_{n-1}^{n}$ is $\pm\left(1+i p^{n-1}, j p^{n-1}, 0,1-i p^{n-1}\right)$ where $0 \leq i, j \leq p-1 . \quad m$ is odd since $p^{m-1} \| c_{0}^{2}$. U, a conjugate of $S^{p^{r}}$ in H, has p dividing c since $U^{p^{r-1}}$ has 0 in the lower left corner. Conjugate H so that $S^{p^{r}}$ is in H for each r for which $S^{p^{r}}$ has some conjugate in H. Then

$$
S^{\prime}= \pm\left(1+p^{n-m} c_{0}, p^{n-m},-p^{n-m} c_{0}^{2}, 1-p^{n-m} c_{0}\right)^{p^{m-1}-1}
$$

which equals $\pm\left(1-p^{n-m} c_{0}, p^{n-1}-p^{n-m}, p^{n-m} c_{0}^{2}, 1+p^{n-m} c_{0}\right)$ since p divides
c_{0}, is in H. Then

$$
S^{\prime} \cdot S^{p^{n-m}}= \pm\left(1-p^{n-s} x^{-1}, p^{n-1}, p^{n-1} y, 1+p^{n-s} x^{-1}\right)
$$

where $\left(x^{-1}, p\right)=(y, p)=1$ is in H and so

$$
\left(S^{\prime} \cdot S^{p r}\right)^{x}=U^{\prime}= \pm\left(1-p^{n-s}, p^{n-1} x, p^{n-1} x y, 1+p^{n-s}\right)
$$

with $(x y, p)=1$ is in H. Let

$$
U= \pm\left(1+p^{n-r} c, p^{n-r},-p^{n-r} c^{2}, 1-p^{n-r} c\right)
$$

be in H and suppose

$$
V= \pm\left(1+p^{n-r} \gamma, p^{n-r},-p^{n-r} \gamma^{2}, 1-p^{n-r} \gamma\right)
$$

with $m+1 \leq r \leq \frac{2}{3} n-\frac{1}{3}$. Then $U^{p^{s}}=V^{p^{s}}$ if and only if $\gamma \equiv c\left(\bmod p^{r-s}\right)$ and the p^{s}-th powers of U and V are the smallest which are equal if and only if $\gamma=c-t p^{r-s}$ where $(t, p)=1 .\left\{U_{t}\right\}$ in the hypothesis is a subset of $\{U$ and V 's in H obtained by different choices of $\gamma\}$. Then

$$
\begin{aligned}
U \cdot V^{k}= \pm & \left(1+p^{n-r}(c+k \gamma)+p^{2 n-2 r} k \gamma(c-\gamma)\right. \\
& p^{n-r}(k+1)+p^{2 n-2 r} k(c-\gamma) \\
& -p^{n-r}\left(c^{2}+k \gamma^{2}\right)-p^{2 n-2 r} c k \gamma(c-\gamma) \\
& \left.1-p^{n-r}(c+k \gamma)-p^{2 n-2 r} k c(c-\gamma)\right)
\end{aligned}
$$

Suppose $p^{l} \| c$ and let $a=r-(m-1)$. Then $U^{p^{a}}$ has lower left corner equal to

$$
-p^{n-r+r-(m-1)} c^{2} \equiv-p^{n-(m-1)+2 l} y \equiv 0 \quad\left(\bmod p^{n}\right)
$$

if and only if $2 l \geq m-1$. But by choice of $m,-p^{n-(m-1)} c^{2} \equiv 0\left(\bmod p^{n}\right)$ so that $l \geq(m-1) / 2=s-1$. So p^{s-l} divides c. Let $k=p^{n-1}-1$ so that

$$
U \cdot V^{k}= \pm\left(1+t p^{n-s}, p^{n-1}, 2 p^{n-1} t c^{*}, 1-t p^{n-s}\right)
$$

since p^{s-1} divides $c, r \leq \frac{2}{3} n-\frac{1}{3}$ and $s \leq r / 2$. Now if V is in H, then

$$
U^{\prime} \cdot U \cdot V^{k}= \pm\left(1, p^{n-1}(1+x), p^{n-1} x y+2 c^{*} t, 1\right)
$$

is in $H \cap K_{n-1}^{n}$ and so $x y+2 c^{*} t \equiv 0(\bmod p)$. If p divides c^{*}, i.e. if p^{*} divides c, then $x y+2 c^{*} t \equiv x y \neq 0(\bmod p)$ so that V is not in H. If p does not divide c^{*}, then $t \equiv-(x y)\left(2 c^{*}\right)^{-1}(\bmod p)$ and so there is exactly one choice for γ for which V belongs to H. So at most two from the set $\left\{U_{t}\right\}$ are in H.

Proposition 3.6. Suppose $H \cap K_{n-1}^{n}$ is $a G_{p^{2}}(I)$. Then $W \leq p^{7 n / 9+4}$ for $n \geq 9$.

Proof. Conjugate H so that $H \cap K_{n-1}^{n}$ is generated by

$$
S^{p^{n-1}} \text { and } \pm\left(1+p^{n-1}, 0,0,1-p^{n-1}\right)
$$

If H can be conjugated so that all the conjugates of $S^{p^{r}}$ have 0 in the lower
left corner, then each conjugate of ${S^{p^{n-r}}}^{\text {in }} H$ has p^{r} dividing c^{2} and so

$$
W \leq 1+2 \sum_{i=1}^{n / 2-1} p^{i}+p^{n / 2}=1+2 p\left(p^{n / 2-1}-1\right) /(p-1)+p^{n / 2}
$$

if n is even and

$$
W \leq 1+2 p\left(p^{(n-1) / 2}-1\right) /(p-1)
$$

if n is odd both of which are less than $p^{7 n / 9+4}$ for $n \geq 9$.
If H can not be so conjugated, let m be the smallest integer such that

$$
p^{n-m} c_{0}^{2} \not \equiv 0\left(\bmod p^{n}\right)
$$

for some c_{0} and suppose $m \leq \frac{2}{3} n-\frac{1}{3}$. Now if U in H is conjugate to $S^{p^{r}}$ and V in H is a conjugate of $S^{p^{r-1}}$ such that $V^{p}=U$, then there are p conjugates V_{i} of $S^{p^{r-1}}$ in H such that $V_{i}^{p}=U$ and these are given by

$$
V_{i}=V \cdot \pm\left(1-i p^{n-1}, 0,0,1+i p^{n-1}\right)
$$

since p divides the c for V. At the ($m-1$)-st level, since p^{m-1} divides c^{2} there are at most $p^{(m-1) / 2}$ conjugates of $S^{p^{n-(m-1)}}$ in H so that at the m-th level there are at most p^{8} conjugates of $S^{p^{n-m}}$ in H and at the $(m+1)$-st level, there are at most p^{s+1} conjugates of $S^{p^{n-(m+1)}}$ in H. These p^{s+1} conjugates can be partitioned into p^{s} sets of p elements each where if c determines one element in a set, then $c-k p^{r-s}$ where $(k, p)=1$ determine the others. By Lemma 3.5, H contains at most two elements from each of these sets and so $s\left(p^{n-(m+1)}\right) \leq 2 p^{8}$. Continuing this argument, one sees that

$$
s\left(p^{n-(m+i)}\right) \leq 2^{i} p^{2} \text { for } m+i \leq \frac{2}{3} n-\frac{1}{3} .
$$

Let x be the greatest integer less than or equal to $\frac{2}{3} n-\frac{1}{3}$. Then for $r>x$,

$$
s\left(p^{n-r}\right) \leq p \cdot s\left(p^{n-r+1}\right)
$$

So

$$
\begin{gathered}
W \leq 1+2 \sum_{i=1}^{s} p^{i}+p^{s} \sum_{i=1}^{x-m} 2^{i}+2^{x-s} p^{s} \sum_{i=1}^{n-x} p^{2} \\
\leq 1+2 p\left(p^{s}-1\right) /(p-1)+p^{s}\left(2^{x-m+1}-2\right) \\
\quad+2^{x-s} p^{s+1}\left(p^{n-x}-1\right) /(p-1) \\
\leq 1+p^{n / 3+1}+p^{n / 3-2 / 3} \cdot 2^{2 n / 8-s+1}+2^{2 n / 8-s} p^{s+1} p^{n / 3+1}
\end{gathered}
$$

since $1 \leq s=(m+1) / 2 \leq n / 3-\frac{2}{3}$. But $2^{2 n / 3}=\left(2^{6}\right)^{n / 9}<\left(3^{4}\right)^{n / 9} \leq p^{4 n / 9}$ so that

$$
W \leq 1+p^{n / 3+1}+p^{8 n / 9-2 / 8} p^{4 n / 9}+p^{4 n / 9+1} p^{3 n / 9+1} \leq p^{7 n / 9+4}
$$

Lemma 3.7. Suppose $U=\phi(\mu, \nu, \rho)_{r}$ has property A, $U^{\prime}=\phi\left(\mu^{\prime}, \nu^{\prime}, \rho^{\prime}\right)_{s}$ does not have property A and $[U] \cap\left[U^{\prime}\right]=\{I\}$. Then if $U^{p^{n-r-1}}$ and $U^{p^{n--}-1}$ have property A, p does not divide $\left(\mu\left(\nu^{\prime}+\rho^{\prime}\right)-2 \mu^{\prime} \nu\right)$.

Proof. Since $U^{p^{n-\epsilon-1}}$ has property $\mathrm{A}, \nu^{\prime} \equiv \rho^{\prime}(\bmod p)$. Recall we are assuming that not all of μ, ν and ρ (and $\mu^{\prime}, \nu^{\prime}$ and ρ^{\prime}) are divisible by p. There
are four cases to consider. Suppose p does not divide ν. Then, by taking an appropriate power of U, we can assume that

$$
\nu \equiv \rho \equiv 1 \quad\left(\bmod p^{n-s}\right)
$$

(1) If p divides ν^{\prime}, then p divides ρ^{\prime} and so p does not divide μ^{\prime}. So p does not divide $2 \mu^{\prime} \nu$ and divides $\mu\left(\nu^{\prime}+\rho^{\prime}\right)$ so that p does not divide the sum. (2) If p does not divide ν^{\prime}, then p does not divide ρ^{\prime} and we may assume $\nu^{\prime} \equiv \rho^{\prime} \equiv 1$ $(\bmod p)$. Since $[U] \cap\left[U^{\prime}\right]=\{I\}$, it is false that

$$
\mu \equiv c \mu^{\prime}, \quad \nu \equiv c \nu^{\prime}, \quad \rho \equiv c \rho^{\prime}
$$

for any c. So

$$
\mu \not \equiv \mu^{\prime}(\bmod p) \quad \text { and } \quad \mu\left(\nu^{\prime}+\rho^{\prime}\right)-2 \mu^{\prime} \nu \equiv 2\left(\mu-\mu^{\prime}\right) \not \equiv 0(\bmod p)
$$

Suppose p divides ν and ρ. Then p does not divide μ. (3) If p divides ν^{\prime} and ρ^{\prime}, then p does not divide μ^{\prime}. So for some $c \not \equiv 0(\bmod p)$

$$
\mu \equiv c \mu^{\prime}, \quad \nu \equiv c \nu^{\prime} \equiv 0, \quad \rho \equiv c \rho^{\prime} \equiv 0
$$

which is a contradiction. (4) If p does not divide ν^{\prime} and ρ^{\prime}, then

$$
\mu\left(\nu^{\prime}+\rho^{\prime}\right)-2 \mu^{\prime} \nu \equiv 2 \mu \nu^{\prime} \not \equiv 0 \quad(\bmod p)
$$

since $\nu^{\prime} \equiv \rho^{\prime}(\bmod p)$.
Proposition 3.8. Suppose $\left|H \cap K_{n-1}^{n}\right|=p^{2}$. The number of elements in $H \cap K_{r}^{n}$ with property A is bounded by $(n+1) p^{n+3}$.

Proof. Let a denote the number of elements with property A in $H \cap K_{1}^{n}$. Suppose r is the smallest number such that $H \cap K_{r}^{n}$ contains an element with property A. Let $U_{1}=\phi(\mu, \nu, \rho)_{r}$ and $U_{2}=\phi\left(\mu^{\prime}, \nu^{\prime}, \rho^{\prime}\right)_{s}$ be generators of $H \cap K_{1}^{n}$ with $s \geq r$ and U_{1} having property A. Then $\left[U_{1}\right] \cap\left[U_{2}\right]=\{I\}$ and $\left\{U_{1}^{i} U_{2}^{j}\right\}$ is as described in Section 2. Now $p^{n-r-x-1}(p-1)$ of the ξ_{i} and $p^{n-s-x-1}(p-1)$ of the ξ_{j} are divisible by precisely p^{x} since ξ_{i} and ξ_{j} determine which K_{l}^{n}, U_{1}^{i} and U_{2}^{j} belong to. Suppose U_{2} also has property A. We want the number of elements in $\left\{U_{1}^{i} U_{2}^{j}\right\}$ such that

$$
\begin{align*}
& p^{r} \xi_{i} \nu u_{j}^{\prime}+p^{s} \xi_{j} \nu^{\prime} u_{i}+p^{r+s} \xi_{i} \xi_{j}\left(\nu \mu^{\prime}-\nu^{\prime} \mu\right) \tag{3.1}\\
& \equiv p^{s} \xi_{j} \nu^{\prime} u_{i}+p^{r} \xi_{i} \nu u_{j}^{\prime}+p^{r+s} \xi_{i} \xi_{j}\left(\mu \nu^{\prime}-\mu^{\prime} \nu\right) \quad\left(\bmod p^{n}\right)
\end{align*}
$$

which is true if and only if

$$
\begin{equation*}
2 \xi_{i} \xi_{j}\left(\nu \mu^{\prime}-\mu \nu^{\prime}\right) \equiv 0 \quad\left(\bmod p^{n-r-s}\right) \tag{3.2}
\end{equation*}
$$

We claim that $\nu \mu^{\prime} \not \equiv \mu \nu^{\prime}(\bmod p)$. Since U_{1} and U_{2} have property A, $\nu \equiv \rho$ and $\nu^{\prime} \equiv \rho^{\prime}(\bmod p)$. There are 3 cases to consider: (1) Suppose p does not divide ν, ρ, ν^{\prime} and ρ^{\prime}. Then, as in Lemma 3.7, we can assume $\nu \equiv \rho \equiv \nu^{\prime} \equiv \rho^{\prime} \equiv 1(\bmod p) . \quad$ But then $\mu^{\prime} \not \equiv \mu(\bmod p)$ since there is no c such that

$$
\nu \equiv c \nu^{\prime}, \quad \rho \equiv c \rho^{\prime}, \quad \mu \equiv c \mu^{\prime}
$$

so $\nu \mu^{\prime} \equiv \mu^{\prime} \not \equiv \mu \equiv \mu \nu^{\prime}(\bmod p)$. (2) Suppose p divides all of ν, ρ, ν^{\prime} and ρ^{\prime}. Then $U_{1}^{\xi i}=U_{2}^{\neq j}$ for some ξ_{i}, ξ_{j} divisible by p^{n-r-1} and p^{n-s-1} respectively which is a contradiction to $\left[U_{1}\right] \cap\left[U_{2}\right]=\{I\}$. (3) Suppose $\nu \equiv \rho \equiv 1(\bmod p)$ and p divides ν^{\prime} and ρ^{\prime}. Then p does not divide μ^{\prime} and so $\mu^{\prime} \nu \not \equiv 0 \equiv \mu \nu^{\prime}$ $(\bmod p)$. Therefore the solutions $\left(\xi_{i}, \xi_{j}\right)$ to (3.2) are the same as the solutions to

$$
\begin{equation*}
\xi_{i} \xi_{j} \equiv 0 \quad\left(\bmod p^{n-r-s}\right) \tag{3.3}
\end{equation*}
$$

If p^{n-r} divides ξ_{i}, there is one choice for ξ_{i} and p^{n-s} choices for ξ_{j} since ξ_{j} can be chosen arbitrarily. If $p^{n-r-x} \| \xi_{i}$ where $1 \leq x \leq s$, there exist $p^{x-1}(p-1)$ choices for ξ_{i} and p^{n-s} choices for ξ_{j} since ξ_{j} can be chosen arbitrarily. If $p^{n-r-x} \| \xi_{i}$ where $s+1 \leq x \leq n-r$, there exist $p^{x-1}(p-1)$ choices for ξ_{i} and p^{n-x} choices for ξ_{j} since p^{x-s} has to divide ξ_{j}. So

$$
\begin{aligned}
a & \leq p^{n-s}+p^{n-s}\left(\sum_{i=1}^{s} p^{i-1}(p-1)\right)+\sum_{i=s+1}^{n-r} p^{n-1}(p-1) \\
& =p^{n-s}+(p-1)\left(p^{n-s}\left(p^{s}-1\right) /(p-1)+(n-r-s-1) p^{n-1}\right) \\
& <p^{n+s}+n p^{n-1}<(n+1) p^{n+3}
\end{aligned}
$$

Now suppose U_{2} does not have property A. We want the number of elements such that

$$
\begin{align*}
& p^{s} \xi_{j} \nu^{\prime} u_{i}+p^{r+s} \xi_{i} \xi_{j}\left(\mu \nu^{\prime}-\nu \mu^{\prime}\right) \tag{3.4}\\
& \equiv p^{s} \xi_{j} \rho^{\prime} u_{i}+p^{r+s} \xi_{i} \xi_{j}\left(\nu \mu^{\prime}-\rho^{\prime} \mu\right) \quad\left(\bmod p^{n}\right)
\end{align*}
$$

which is true if and only if

$$
\begin{equation*}
p^{s} \xi_{j} u_{i}\left(\nu^{\prime}-\rho^{\prime}\right)+p^{r+s} \xi_{i} \xi_{j} \zeta \equiv 0 \quad\left(\bmod p^{n}\right) \tag{3.5}
\end{equation*}
$$

where $\zeta=\mu\left(\nu^{\prime}+\rho^{\prime}\right)-2 \mu^{\prime} \nu$. However by Lemma 3.7, p does not divide ζ. Let $p^{x} \|\left(\nu^{\prime}-\rho^{\prime}\right)$. Then $x \geq 1$ since $\nu^{\prime} \equiv \rho^{\prime}(\bmod p)$. Now $x \leq n-s$ since $1 \leq \nu^{\prime}, \rho^{\prime} \leq p^{n-s}$ and we may assume $r+s<n$ since otherwise the number of elements in $\left\{U_{1}^{i} U_{2}^{j}\right\}$ is bounded by p^{n} and so $a \leq p^{n}$. Equation (3.5) becomes

$$
\begin{equation*}
p^{x+s} \xi_{j} u_{i} y+p^{r+s} \xi_{i} \xi_{j} \zeta \equiv 0 \quad\left(\bmod p^{n}\right) \tag{3.6}
\end{equation*}
$$

where $(y, p)=(\zeta, p)=1$. Now if $x<r$, then p^{n-s-x} has to divide ξ_{j} and so a is bounded by $p^{x} \cdot p^{n-r} \leq p^{n}$. So assume $r \leq x \leq n-s$ and let $p^{l} \| \xi_{j}$ where $0 \leq l \leq n-s$. There are $p^{n-s-l-1}(p-1)$ choices for ξ_{j}. Suppose $0 \leq l \leq n-s-r$. Then equation (3.6) becomes

$$
\begin{equation*}
p^{x-r} y^{\prime}+\zeta^{\prime \prime} \xi_{i} \equiv 0 \quad\left(\bmod p^{n-r-s-l}\right) \tag{3.7}
\end{equation*}
$$

where $\left(y^{\prime}, p\right)=\left(\zeta^{\prime \prime}, p\right)=1$. So, $\bmod p^{n-r-s-l}$, there is a unique solution for ξ_{i} and so there are $p^{n-r-(n-r-s-l)}=p^{s+l}$ choices for ξ_{i} which gives

$$
p^{n-s-l-1} p^{s+l}(p-1)=p^{n-1}(p-1)
$$

elements with property A. Suppose $n-s-r \leq l \leq n-s-1$. Then there are $p^{n-s-l-1}(p-1)$ choices for ξ_{j} and p^{n-r} choices for ξ_{i} since ξ_{i} can be chosen arbitrarily. For $l=n-s$, there is one choice for ξ_{j} and p^{n-r} choices for ξ_{i}. So

$$
\begin{aligned}
a & \leq p^{n-r}+p^{n-r} \sum_{n=n-s-r}^{n-s-1} p^{n-s-l-1}(p-1)+(n-s-r) p^{n-1}(p-1) \\
& \leq p^{n-r}+p^{n-r}\left(p^{r}-1\right)(p-1)+(n-s-r) p^{n-1}(p-1) \\
& <(n-s-r+2) p^{n+1}<(n+1) p^{n+3}
\end{aligned}
$$

Lemma 3.9. Let $p>3$. Suppose $U=\phi(\mu, \nu, \rho)_{r}$ and $U^{\prime}=\phi\left(\mu^{\prime}, \nu^{\prime}, \rho^{\prime}\right)_{s}$ with $r \leq s<n / 2$ and $[U] \cap\left[U^{\prime}\right]=\{I\}$. Then if U and U^{\prime} both have property B, U and U^{\prime} can not generate a group of order $p^{2 n-r-s}$.

Proof. Since $[U] \cap\left[U^{\prime}\right]=\{I\}$, there is no c such that

$$
\mu \equiv c \mu^{\prime}, \quad \nu \equiv c \nu^{\prime} \quad \text { and } \quad \rho \equiv c \rho^{\prime} \quad(\bmod p)
$$

We know that

$$
\begin{equation*}
u^{2}-p^{2 r}\left(\mu^{2}+\nu \rho\right) \equiv 1 \quad \text { and } \quad u^{\prime 2}-p^{2 s}\left(\mu^{\prime 2}+\nu^{\prime} \rho^{\prime}\right) \equiv 1 \quad\left(\bmod p^{n}\right) \tag{3.8}
\end{equation*}
$$

with $u, u^{\prime} \equiv 1(\bmod p) . \quad$ Since U and U^{\prime} have property B,

$$
\begin{equation*}
u+p^{r}(\nu-\rho-\mu) \equiv 1 \quad \text { and } \quad u^{\prime}+p^{s}\left(\nu^{\prime}-\rho^{\prime}-\mu^{\prime}\right) \equiv 1 \quad\left(\bmod p^{n}\right) \tag{3.9}
\end{equation*}
$$

So by (3.8), $p^{2 r}$ divides $1-u$ and $p^{2 s}$ divides $1-u^{\prime}$. Together with (3.9), this implies p^{r} divides $\nu-\rho-\mu$ and p^{s} divides $\nu^{\prime}-\rho^{\prime}-\mu^{\prime}$. Hence

$$
\nu \equiv \rho+\mu(\bmod p) \quad \text { and } \quad \nu^{\prime} \equiv \rho^{\prime}+\mu^{\prime}(\bmod p)
$$

If U and U^{\prime} generate a group of order $p^{2 n-r-s}$, then

$$
\mu^{\prime \prime 2}+\nu^{\prime \prime} \rho^{\prime \prime} \equiv 0 \quad\left(\bmod p^{n-r-s}\right)
$$

where $\mu^{\prime \prime}=\left(\nu \rho^{\prime}-\nu^{\prime} \rho\right) / 2, \nu^{\prime \prime}=\mu \nu^{\prime}-\mu^{\prime} \nu$ and $\rho^{\prime \prime}=\rho \mu^{\prime}-\rho^{\prime} \mu$ [4]. So

$$
\mu^{\prime \prime 2}+\nu^{\prime \prime} \rho^{\prime \prime} \equiv 0 \quad(\bmod p)
$$

since $r+s<n$. Now $\mu^{\prime \prime} \equiv\left((\rho+\mu) \rho^{\prime}-\left(\rho^{\prime}+\mu^{\prime}\right) \rho\right) / 2 \equiv-\rho^{\prime \prime} / 2(\bmod p)$. Similarly $\nu^{\prime \prime} \equiv-\rho^{\prime \prime}(\bmod p)$. So $0 \equiv-3 \rho^{\prime \prime 2} / 4(\bmod p)$ which implies that $\rho^{\prime \prime} \equiv 0(\bmod p)$. So $\rho \mu^{\prime} \equiv \rho^{\prime} \mu(\bmod p)$. Suppose p divides ρ. Then p divides ρ^{\prime} or μ. If p divides μ, then $0 \equiv \mu+\rho \equiv \nu(\bmod p)$ so that p also divides ν. Hence p divides all of μ, ν and ρ, a contradiction. If p divides ρ^{\prime}, then $\rho \equiv c \rho^{\prime}(\bmod p)$ for any c. Pick c so that $\mu \equiv c \mu^{\prime}(\bmod p)$. Then

$$
\nu \equiv \mu+\rho \equiv c \mu^{\prime}+c \rho^{\prime} \equiv c\left(\mu^{\prime}+\rho^{\prime}\right) \equiv c \nu^{\prime} \quad(\bmod p)
$$

So we have $\mu \equiv c \mu^{\prime}, \nu \equiv c \nu^{\prime}$ and $\rho \equiv c \rho^{\prime}(\bmod p)$, a contradiction. Suppose p does not divide ρ. Then $\mu^{\prime} \equiv\left(\rho^{-1} \rho^{\prime}\right) \mu(\bmod p)$. Certainly $\rho^{\prime} \equiv\left(\rho^{-1} \rho^{\prime}\right) \rho$ $(\bmod p)$. Finally

$$
\nu^{\prime} \equiv \mu^{\prime}+\rho^{\prime} \equiv\left(\rho^{-1} \rho^{\prime}\right)(\mu+\rho) \equiv\left(\rho^{-1} \rho^{\prime}\right) \nu \quad(\bmod p)
$$

So again there is a c such that $\mu \equiv c \mu^{\prime}, \nu \equiv c \nu^{\prime}$ and $\rho \equiv c \rho^{\prime}(\bmod p)$, a contradiction.

Proposition 3.10. Suppose $p>3$ and $\left|H \cap K_{n-1}^{n}\right|=p^{2}$. The number of elements in $H \cap K_{1}^{n}$ with property B is less than $p^{2 n-3}$.

Proof. Suppose n is even. Since $\left|H \cap K_{r}^{n}\right| \leq 2 n-2 r$, then if $r=n / 2$, the number of elements in $H \cap K_{r}^{n}$ with property B is at most n. Suppose $r<n / 2$. The $p^{2 n-2(r+1)}\left(p^{2}-1\right)$ elements at the $(n-r)$-th level can be partitioned into $p^{2}-1$ sets of $p^{2 n-2(r+1)}$ elements each where U and U^{\prime} are in the same set if and only if $U^{p^{n-r-1}}=U^{p^{n-r-1}}$. By Lemma 3.9, if U has property B, then any other element V with property B has to be such that $\left[V^{p^{n-r-1}}\right]=\left[U^{p^{n-r-1}}\right]$ so that $[U] \cap[V] \neq\{I\}$. So, at the $(n-r)$-th level, there are at most $(p-1) p^{2 n-2(r+1)}$ elements with property B. Therefore the number of elements in $H \cap K_{1}^{n}$ with property B is bounded by
$p^{n}+(p-1) \sum_{i=0}^{n / 2-2} p^{2 n-(n-2 i)}=\left(p^{2 n-2}+p^{n+1}\right) /(p+1)<p^{2 n-8}$.
A similar argument in the case where n is odd yields the bound

$$
p^{n+1}+(p-1) \sum_{i=1}^{(n-3) / 2} p^{n+(2 i-1)}=\left(p^{2 n-2}+p^{n+2}\right) /(p+1)<p^{2 n-3}
$$

Proposition 3.11. Suppose $p>3$. There exists an n_{3} such that if $n \geq n_{3}$ and $\left|H \cap K_{n-1}^{n}\right|=p^{2}$, then $g(H)>g$.

Proof. If $H \cap K_{n-1}^{n}$ is a $G_{p^{2}}(I I I)$, then $W=0$. Otherwise by Propositions 3.4 and 3.6 , for $n \geq 9, W \leq p^{7 n / 9+4}$. By Proposition 2.5, to calculate t we need to know the number of elements in $H \cap K_{1}^{n}$ with property A and the number of elements of order 2 in $H \bmod p$. By Proposition 3.8, the number of elements in $H \cap K_{1}^{n}$ with property A is at most $(n+1) p^{n+3}$. By McQuillan [7], the number of elements of order 2 in $H \bmod p$ is bounded by $p+2$ if $p \geq 15$ or 15 if $p<15$. So $t \leq(p+2)(n+1) p^{n+3}$ or $15(n+1) p^{n+3}$. Similarly we calculate r. By Proposition 3.10, the number of elements in $H \cap K_{1}^{n}$ with property B is less than $p^{2 n-3}$. By McQuillan [7], the number of distinct groups in $H \bmod p$ generated by a conjugate of R is bounded by $2 p$. So $r \leq 2 p^{2 n-2}$. Finally $h \leq p^{2 n-1}\left(p^{2}-1\right)$. So

$$
g(H) \geq 1+\left\{p^{2 n-2}\left(p^{2}-1\right)\left(p^{n}-6\right)-8 p^{n-1}(p+1) 2 p^{2 n-2}\right.
$$

$$
\begin{aligned}
& -6 p^{n-1}(p+2)(n+1) p^{n+4} \\
& \left.\quad-6 p^{2 n-2}(p-1)^{2} p^{7 n / 9+4}\right\} / 24 p^{2 n-1}\left(p^{2}-1\right)
\end{aligned}
$$

For $n \geq 9, p^{3}(n+1)(p+2) \leq p^{7 n / 9+4}$. So

$$
g(H) \geq 1+a\left(d p^{n-1}-(b+1) p^{7 n / 9+4}-c\right)
$$

where $a=1 / 24\left(p^{3}-p\right), b=6(p-1)^{2}, c=6 p^{2}+6(p-1)^{2}$ and $d=p^{3}-17 p-16>0$ since $p \geq 5$. But

$$
\lim _{n \rightarrow \infty} 1+a\left(d p^{n-1}-(b+1) p^{7 n / 9+4}-c\right)=\infty
$$

and therefore there is an n_{8} such that if $n \geq n_{8}, g(H)>g$. For $p<15$, the only adjustment in the calculation is that the term $p^{8}(n+1)(p+2)$ becomes $15 p^{8}(n+1)$. But $15 p^{3}(n+1)$ is still less than $p^{7 n / 9+4}$ for $n \geq 9$.

Theorem 2. Suppose $p>3$. Then there exists an n_{4} such that if $n \geq n_{4}$ and H is of level n, then $g(H)>g$.

Proof. $n_{4}=\max \left\{n_{1}, n_{2}, n_{3}\right\}$ where n_{1}, n_{2}, n_{3} are as in Propositions 3.1, 3.3 and 3.11 respectively works.

$$
\text { 4. } L F\left(2,3^{n}\right) \text { and } L F\left(2,2^{n}\right)
$$

Finally we must consider the cases $p=2$ and 3 . We first consider $p=3$. The propositions leading to bounds for t and W are valid for $p=3$ so we only have to obtain bounds for r. For $p=3$, it is still true that if R_{1} is conjugate to R, then R_{1} has trace $= \pm 1$. Therefore an upper bound on the number of elements of trace ± 1 still yields an upper bound on the number of conjugates of R. So as before we wish to calculate the number of elements in $H \cap K_{1}^{n}$ with property B.

Lemma 4.1. Suppose the number of elements in $H \cap K_{n-1}^{n}$ with property B is bounded by 3. Then, if $n \geq 4$, there are less than $3^{2 n-4}$ elements with property B in $H \cap K_{1}^{n}$.

Proof. Suppose $U=\phi(\mu, \nu, \rho)_{r}$ has property B. Then $U \cdot V$ has property B where

$$
V=\phi\left(\mu^{\prime}, \nu^{\prime}, \rho^{\prime}\right)_{n-1}
$$

if and only if V has property B since

$$
\begin{aligned}
U \cdot V= \pm\left(u+3^{r} \mu+3^{n-1} \mu^{\prime} u,\right. & 3^{n-1} \nu^{\prime} u+3^{r} \nu \\
& \left.3^{r} \rho+3^{n-1} \rho^{\prime} u, u-3^{r} \mu-3^{n-1} \mu^{\prime} u\right)
\end{aligned}
$$

and

$$
u+3^{r}(\nu-\mu-\rho)+3^{n-1} u\left(\nu^{\prime}-\mu^{\prime}-\rho^{\prime}\right) \equiv 1 \quad\left(\bmod 3^{n}\right)
$$

if and only if 3 divides $\nu^{\prime}-\mu^{\prime}-\rho^{\prime}$ since $u+3^{r}(\nu-\mu-\rho) \equiv 1\left(\bmod 3^{n}\right)$. Suppose

$$
U^{x}=\phi(\xi \mu, \xi \nu, \xi \rho)
$$

is in K_{n-1}^{n}. Then U^{x} has property B since

$$
u_{x}+3^{r} \xi(\nu-\mu-\rho) \equiv 1+3^{r} \cdot 3^{n-r-1} \cdot 3 y \equiv 1 \quad\left(\bmod 3^{n}\right)
$$

since 3^{n-r-1} divides ξ, 3 divides $\nu-\mu-\rho$ and $u_{x}=1$.
$\left|H \cap K_{1}^{n}\right| \leq 3^{2 n-2}$ and $H \cap K_{1}^{n}$ can be partitioned into one set of at most 9 elements consisting of $H \cap K_{n-1}^{n}$ and 8 sets of at most ($3^{2 n-2}-9$)/8 elements each as follows: Suppose U and U_{1}, not in K_{n-1}^{n}, are such that U^{36} and $U_{1}^{3 \omega_{1}}$ are in K_{n-1}^{n}. Then U and U_{1} are in the same set in the partition if and only if $U^{3 \omega}=U_{1}^{3 \omega_{1}}$. By the second observation, only 2 of these sets contain elements with property B. Consider one of these sets and call it $M . \quad M$ can be
partitioned into $\left(3^{2 n-2}-9\right) / 8 \cdot 9$ sets of at most 9 elements each where the other elements in the set containing an element U are $U \cdot V$ where V is in $H \cap K_{n-1}^{n}$. By the first observation, at most 3 of these elements can have property B. So the total number of elements in $H \cap K_{1}^{n}$ with property B is bounded by

$$
2 \cdot 3 \cdot\left(3^{2 n-2}-9\right) / 8 \cdot 9+9<3^{2 n-4}
$$

for $n \geq 4$.
Lemma 4.2. Suppose $U=\phi(\mu, \nu, \rho)_{1}$ has property $\mathrm{B}, 9 \| 1-u$ and $n \geq 4$. Then $U^{\prime}=\phi(\xi \mu, \xi \nu, \xi \rho)_{r}$ with 3 not dividing ξ has property B only if $\xi \equiv 1(\bmod 9)$.

Proof. Suppose $u^{\prime}+3 \xi(\nu-\rho-\mu) \equiv 1\left(\bmod 3^{n}\right)$. Then

$$
1-u^{\prime} \equiv \xi 3(\nu-\rho-\mu) \equiv \xi(1-u) \quad\left(\bmod 3^{n}\right)
$$

Also $\left(u^{\prime}-1\right) \equiv 9 \xi^{2}\left(\mu^{2}+\nu \rho\right) /\left(u^{\prime}+1\right)\left(\bmod 3^{n}\right)$. So

$$
\left(u^{\prime}+1\right)(1-u) \xi \equiv \xi^{2}\left(-9\left(\mu^{2}+\nu \rho\right)\right) \quad\left(\bmod 3^{n}\right)
$$

Therefore

$$
\begin{equation*}
\left(u^{\prime}+1\right)(1-u) \xi \equiv(1-u)(1+u) \xi^{2} \quad\left(\bmod 3^{n}\right) \tag{4.1}
\end{equation*}
$$

Since 3 does not divide ξ and $9 \|(1-u)$, congruence (4.1) becomes

$$
\left(u^{\prime}+1\right) \equiv \xi(u+1) \quad\left(\bmod 3^{n-2}\right)
$$

But since both u and u^{\prime} are congruent to $1 \bmod 9, u^{\prime}+1 \equiv u+1(\bmod 9)$ and since $n-2 \geq 2$, this gives $1 \equiv \xi(\bmod 9)$.

Now K_{n-1}^{n} has 9 elements with property B and the elements with property B in $H \cap K_{n-1}^{n}$ form a subgroup of $H \cap K_{n-1}^{n}$ so that if $H \cap K_{n-1}^{n}$ has more than 3 elements with property B , then

$$
H \cap K_{n-1}^{n}=\left\{ \pm\left(1+3^{n-1} \mu, 3^{n-1} \nu, 3^{n-1} \rho, 1-3^{n-1} \mu\right)\right\}
$$

with $(\nu-\mu-\rho) \equiv 0\left(\bmod 3^{n}\right)$ which contains only $1 G_{p}(I)$, namely

$$
\left[\pm\left(1-3^{n-1}, 3^{n-1},-3^{n-1}, 1+3^{n-1}\right)\right]
$$

Suppose $U=\phi(\mu, \nu, \rho)_{1}$ is in $H \cap K_{1}^{n}$. Then $U^{x}=\phi(\xi \mu, \xi \nu, \xi \rho)$ is in $H \cap K_{n-1}^{n}$ for some x and if 3 divides $\mu^{2}+\nu \rho$, then U^{x} is in the $G_{p}(I)$ since $\left(\mu^{2}+\nu \rho\right) \equiv$ $0(\bmod 3)$ implies that U^{x} generates a $G_{p}(I)$ [4].

Lemma 4.3. Suppose $H \cap K_{n-1}^{n}$ contains 9 elements with property B. Then $H \cap K_{1}^{n}$ has at most $3^{2 n-3}+3^{2 n-4}$ elements with property B .

Proof. If $\left|H \cap K_{1}^{n}\right| \leq 3^{2 n-3}$, we are done so that we may assume

$$
\left|H \cap K_{1}^{n}\right|=3^{2 n-2}
$$

Consider

$$
M=\left\{U \mid U \text { is in } K_{1}^{n}-K_{2}^{n} \text { and } U^{3^{n-2}} \text { is not in the } G_{p}(I)\right\}
$$

$|M|=3^{2 n-2}-3^{2 n-3}$ and each element in M has order 3^{n-1}. So there are

$$
3^{2 n-3}(2) / 3^{n-2}(2)=3^{n-1}
$$

distinct cyclic groups of order 3^{n-1} whose generators are in M. Let

$$
\left[U=\phi(\mu, \nu, \rho)_{1}\right]
$$

be such a cyclic group and, if possible, select U with property B. Then by the assumptions on $M, 3$ does not divide $\mu^{2}+\nu \rho$ so that $9 \| \nu-\rho-\mu$. Then, by Lemma 4.2, the other elements in $M \cap[U]$ with property \mathbf{B} have $\xi \equiv 1(\bmod 9)$ where $1 \leq \xi \leq 3^{n-1}$. So the number of such elements is at most 3^{n-3}. So the number of elements in $H \cap K_{1}^{n}$ with property B is bounded by

$$
3^{n-3}\left(3^{n-1}\right)+3^{2 n-4}+2 \cdot 3^{2 n-4}=3^{2 n-4}+3^{2 n-3}
$$

Lemma 4.4. Suppose $H(\bmod 3)=\mathfrak{J}$, the tetrahedral group, and that H contains R. Then $r \leq 4 \cdot 3^{2 n-4}$.

Proof. The elements generating groups conjugate to $[R]$ in $L F(2,3)=J$ are R,
$R_{1}= \pm(0,1,-1,1), \quad R_{2}= \pm(-1,1,0,-1), \quad R_{3}= \pm(-1,0,1,-1)$.
Consider a fixed R_{i}. There is an A in $L F(2,3)$ such that $A R A^{-1}=R_{i}$ and since $H \bmod p=L F(2,3)$, there is an A_{1} in H such that $\bar{A}_{1}=A$. Then $\left(A_{1} R A_{1}^{-1}\right)^{-}=R_{i}$ and $A_{1} R A_{1}^{-1}$ is conjugate to R in H. So each conjugate of R in $L F(2,3)$ has a pre-image in H which is conjugate to R. If $H \cap K_{n-1}^{n}$ contains at most 3 elements with property B, then we are done by Lemma 4.1 and Proposition 2.4. Suppose $H \cap K_{n-1}^{n}$ has 9 elements with property B. Consider R^{\prime} in H such that R^{\prime} is conjugate to R and $\bar{R}^{\prime}=R_{1}$. Then

$$
\begin{aligned}
& R^{\prime}=U \cdot \pm(0,1,-1,1) \\
&= \pm\left(-3^{r} \nu, u+3^{r} \mu+3^{r} \nu,-u+3^{r} \mu, u+3^{r} \rho-3^{r} \mu\right)
\end{aligned}
$$

where $U=\phi(\mu, \nu, \rho)_{r}$ is some fixed element of K_{1}^{n} such that

$$
u+3^{r}(\rho-\mu-\nu) \equiv 1 \quad\left(\bmod 3^{n}\right)
$$

Consider $U^{\prime} \cdot R^{\prime}$ where $U^{\prime}=\phi\left(\mu^{\prime}, \nu^{\prime}, \rho^{\prime}\right)_{8}$. This will be conjugate to R^{\prime} if and only if

$$
\begin{align*}
1 \equiv & -u^{\prime} 3^{r} \nu-3^{r+s} \mu^{\prime} \nu-3^{s} \nu^{\prime} u+3^{r+s} \mu \nu^{\prime}+3^{s} \rho^{\prime} u+3^{r+s} \mu \rho^{\prime}+3^{r+s} \nu \rho^{\prime} \\
& +u^{\prime} u+u^{\prime} 3^{r} \rho-u^{\prime} 3^{r} \mu-3^{r+s} \mu^{\prime} \rho-3^{s} \mu^{\prime} u+3^{r+s} \mu^{\prime} \mu \tag{4.2}\\
\equiv & u^{\prime}+3^{s} u\left(\rho^{\prime}-\nu^{\prime}-\mu^{\prime}\right)+3^{r+s}\left(\mu \nu^{\prime}-\mu^{\prime} \nu-\mu^{\prime} \rho+\mu \rho^{\prime}+\nu \rho^{\prime}+\mu^{\prime} \mu\right) \tag{n}
\end{align*}
$$

since $u+3^{r}(\rho-\mu-\nu) \equiv 1\left(\bmod 3^{n}\right)$. If U^{\prime} satisfies congruence (4.2), we say U^{\prime} has property C. Suppose $V=\phi(x, y, z)$ is in K_{n-1}^{n}. Then $V \cdot U^{\prime}$ has
property C if and only if V does since

$$
\begin{aligned}
u^{\prime}+u 3^{s}\left(\rho^{\prime}-\nu^{\prime}-\mu^{\prime}+3^{n-s-1}\right. & \left.u^{\prime}(z-x-y)\right) \\
& +3^{r+s}\left(\mu \nu^{\prime}-\mu^{\prime} \nu-\mu^{\prime} \rho+\mu \rho^{\prime}+\nu \rho^{\prime}+\mu^{\prime} \mu\right) \\
& +3^{n-s-1} u^{\prime}(\mu y-\nu x-x \rho+\mu z+\nu z+x \mu) \\
& \equiv 1\left(\bmod 3^{n}\right)
\end{aligned}
$$

if and only if 3 divides $(z-x-y$) if and only if V has property C. Also if U^{\prime} has property C and $U^{\prime x}=\phi\left(\mu^{\prime} \xi, \nu^{\prime} \xi, \rho^{\prime} \xi\right)$ is in K_{n-1}^{n}, then $U^{\prime x}$ has property C. Since all the elements in $H \cap K_{n-1}^{n}$ have property B, at most 3 elements in $H \cap K_{n-1}^{n}$ have property C. Arguing as in Lemma 4.1, we see that R_{1} has at most $3^{2 n-4}$ pre-images in H conjugate to R and so by Proposition 2.5, each of R, R_{1}, R_{2} and R_{3} has at most $3^{2 n-4}$ such pre-images. Hence $r \leq 4 \cdot 3^{2 n-4}$.

Theorem 3. There exists an n_{5} such that if $n \geq n_{5}$ and H is of level n in $L F\left(2,3^{m}\right), m \geq n$, then $g(H)>g$.

Proof. From Lemma 3.2 and Propositions 3.4 and 3.6, $W<3^{7 n / 9+4}$ for $n \geq 9$; from Proposition 3.8, the number of elements with property A is at most $(n+1) 3^{n+3}$. Now if $H \bmod 3=5$, then $r \leq 4 \cdot 3^{2 n-4}$ and $t \leq 3 \cdot(n+1) 3^{n+3}$. So

$$
\begin{aligned}
g(H) \geq 1 & +3^{2 n-2}\left\{3^{n+2}+6-\left(3^{n}+54+32 \cdot 3^{n-2}+24 \cdot(n+1) \cdot 3^{5}\right.\right. \\
& \left.+24 \cdot 3^{7 n / 9+4}\right\} / 12 \cdot 3^{2 n-1} \\
= & 1+a\left\{3^{n-2}(81-9-32)-b(n+1)-c \cdot 3^{7 n / 9+4}-d\right\} \\
= & 1+f(n)
\end{aligned}
$$

where a, b, c and d are constants. But $\lim _{n \rightarrow \infty} f(n)=\infty$. If $H \bmod 3 \neq \mathfrak{J}$, then $r \leq 3^{2 n-3}+3^{2 n-4}$ and $t \leq(n+1)^{2} 3^{n+3}$ so that

$$
\begin{aligned}
& g(H) \geq 1+3^{2 n-2}\left\{3^{n+2}-6-\left(3^{n}+54+8 \cdot 3^{n-1}+8 \cdot 3^{n-2}\right.\right. \\
&\left.+24(n+1)^{2} 3^{5}+24 \cdot 3^{7 n / 9+4}\right\} / 12 \cdot 3^{2 n-1} \\
&=1+a\left\{3^{n-2}(81-9-24-8)-b(n+1)^{2}-c \cdot 3^{7 n / 9+4}-d\right\} \\
&=1+f_{1}(n)
\end{aligned}
$$

where a, b, c and d are constants. But $\lim _{n \rightarrow \infty} f_{1}(n)=\infty$. So in either case, there is an n_{5} such that for $n \geq n_{5}$ and H of level $n, g(H)>g$.

For the case $p=2$, refer to the lower bounds for $g(H)$ given in Propositions 4.1, 4.4, 4.5 and 4.6 in [2]. Observe that in each case, the lower bound on $g(H) \rightarrow \infty$ as $n \rightarrow \infty$. Hence we have the following theorem which completes our proof that the number of fields of a fixed genus in $K\left(p^{n}\right)$, all p and n, is finite.

Theorem 4. There exists an n_{6} such that if $n \geq n_{6}$ and H is of level n in $L F\left(2,2^{m}\right), m \geq n$, then $g(H)>g$.

Bibliography

1. J. Dennin, Fields of modular functions of genus 0, Illinois J. Math., vol. 15 (1971), pp. 442-455.
2. ———, Subfields of $K\left(2^{n}\right)$ of genus 0, Illinois J. Math., vol 16 (1972), pp. 502-518.
3. J. Gierster, Die Untergruppen der Galois' schen Gruppe der Modular-Gleichungen für den Fall eines primzahlen Transformation-grades, Math. Ann., vol. 18 (1881), pp. 319-365.
4. - Über die Galois' sche Gruppe der Modulargleichungen wenn der Transformationsgrad die Potenz einer Primzahl >2 ist, Math. Ann., vol. 26 (1886), pp. 309-368.
5. R. C. Gunning, Lectures on modular forms, Princeton, 1962.
6. D. L. McQuillan, Some results on the linear fractional group, Illinois J. Math., vol. 10 (1966), pp. 24-38.
7. -, On the genus of fields of elliptic modular functions, Illinois J. Math., vol. 10 (1966), pp. 479-487.

University of Connecticut
Storrs, Connecticut

