THE GENUS OF SUBFIELDS OF $K(p^n)$

BY

JOSEPH B. DENNIN, JR.

1. Introduction

Let Γ be the group of linear fractional transformations

 $w \rightarrow (aw + b)/(cw + d)$

of the upper half plane into itself with integer coefficients and determinant 1. Γ is isomorphic to the 2 \times 2 modular group; i.e., the group of 2 \times 2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. Let $\Gamma(n)$, the principal congruence subgroup of level n, be the subgroup of Γ consisting of those elements for which $a \equiv d \equiv 1 \pmod{n}$ and $b \equiv c \equiv 0 \pmod{n}$. G is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. G has a fundamental domain in the upper half plane which can be compactified to a Riemann surface and then the genus of G can be defined to be the genus of the Riemann surface. H. Rademacher has conjectured that the number of congruence subgroups of genus 0 is finite. D. McQuillan [7] has shown that the conjecture is true if n is relatively prime to $2 \cdot 3 \cdot 5$ and J. Dennin [1, 2] has shown that the conjecture is true if $n = 2^m$, 3^m or 5^m . In this paper we show that the number of subgroups of prime power level of genus g is finite for any g. We may assume $g \neq 0$ since the case g = 0 is done.

2. Preliminary results and definitions

Consider $M_{\Gamma(n)}$, the Riemann surface associated with $\Gamma(n)$. The field of meromorphic functions on $M_{\Gamma(n)}$ is called the field of modular functions of level n and is denoted by K(n). If j is the absolute Weierstrass invariant, K(n) is a finite Galois extension of C(j) with $\Gamma/\Gamma(n)$ for Galois group. Let SL(2, n) be the special linear group of degree two with coefficients in Z/nZand let $LF(2, n) = SL(2, n)/\pm I$. Then $\Gamma/\Gamma(n)$ is isomorphic to LF(2, n). If $\Gamma(n) \subset G \subset \Gamma$ and H is the corresponding subgroup of LF(2, n), then by Galois theory H corresponds to a subfield F of K(n) and the genus of F equals the genus of G.

The following notation will be standard. A matrix

$$\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

will be written $\pm (a, b, c, d)$.

$$T = \pm (0, -1, 1, 0); \quad S = \pm (1, 1, 0, 1); \quad R = \pm (0, -1, 1, 1).$$

Received August 1, 1972.

T and S generate LF(2, n) and R = TS. F will be a subfield of K(n) containing C(j) and H the corresponding subgroup of LF(2, n). g(H) = the genus of H and h or |H| = the order of H. [A] or $[\pm (a, b, c, d)]$ will denote the group generated by A or $\pm (a, b, c, d)$ respectively.

We now concentrate on $LF(2, p^n)$, p > 2, whose order is $p^{3n-2}(p^2 - 1)/2$. The case p = 2 will be considered in the last section. McQuillan [7] obtained the following formula for the genus of H.

Let r, t and $s(p^r)$ be the number of distinct cyclic subgroups of H generated by a conjugate in $LF(2, p^n)$ of R, T and S^{p^r} respectively where $1 \le p^r < p^n$. Then

(2.1)
$$g(H) = 1 + p^{2n-2}(p^2 - 1)(p^n - 6)/24h - p^{n-1}(p - (-3/p))r/3h - p^{n-1}(p - (-1/p))t/4h - p^{2n-2}(p - 1)^2W/4h$$

where $W = \sum s(p^r)$. One immediate consequence of this is that if two groups are conjugate, they have the same genus.

We now collect some basic facts about subgroups of $LF(2, p^n)$ and conjugates of S^{p^r} , R and T which we will use later. First we have three propositions which are found in Gierster [4]. Let f_r^n be the natural homomorphism from $LF(2, p^n)$ to $LF(2, p^r)$, 0 < r < n, given by reducing an element mod p^r . The kernel of this homomorphism is denoted by K_r^n and has order $p^{3(n-r)}$.

PROPOSITION 2.1. If $H \cap K_{n-1}^n$ is the identity, $H \cap K_r^n$ is the identity for $r = 1, \dots, n-2$.

PROPOSITION 2.2. If $|H \cap K_{n-1}^n| = p$, then $H \cap K_1^n$ is cyclic and $|H \cap K_1^n| \le p^{n-1}$.

PROPOSITION 2.3. If $|H \cap K_{n-1}^n| = p^2$, then $H \cap K_1^n$ is generated by two transformations U_1 and U_2 of order p^{n-r} and p^{n-s} respectively and

$$|H \cap K_1^n| = p^{2n-r-s} \le p^{2n-2}$$

In Proposition 2.2, $H \cap K_1^n = [U]$ where

$$U = \pm (u + p^{r}\mu, p^{r}\nu, p^{r}\rho, u - p^{r}\mu)$$

with not all of μ , ν , $\rho \equiv 0 \pmod{p}$ and $u^2 + p^{2r}(\mu^2 + \nu\rho) \equiv 1 \pmod{p^n}$. Following Gierster, we make the selection of u unique by choosing $u \equiv 1 \pmod{p}$ and we write $U = \phi(\mu, \nu, \rho)_r$. The order of U is then p^{n-r} and

$$[U] = \{U^i = \phi(\mu\xi_i, \nu\xi_i, \rho\xi_i)\}$$

where u_i and ξ_i are given inductively by the formulas

(2.2)
$$u_i \equiv u_{i-1}u + \xi_{i-1}(u^2 - 1), \quad \xi_i \equiv \xi_{i-1}u + u_{i-1} \pmod{p^n}$$

where $u_1 = u$ and $\xi_1 = 1$ [2]. From Proposition 2.3, let

 $U_1 = \phi(\mu, \nu, \rho)_r$ and $U_2 = \phi(\mu', \nu', \rho')_s$.

Then
$$[U_1] \cap [U_2] = \{I\}$$
 and
 $H \cap K_1^n = \{U_1^i U_2^j\}$
 $= \{\pm (u_i u_j' + p^r \xi_i \mu u_j' + p^s \xi_j \mu' u_i + p^{r+s} \xi_i \xi_j (\mu \mu' + \nu \rho'), \rho^s \xi_j \nu' u_i + p^r \xi_i \nu u_j' + p^{r+s} \xi_i \xi_j (\mu \nu' - \mu' \nu), p^r \xi_i \rho u_j' + p^s \xi_j \rho' u_i + p^{r+s} \xi_i \xi_j (\rho \mu' - \rho' \mu), u_i u_j' - p^r \xi_i \mu u_j' - p^s \xi_j \mu' u_i + p^{r+s} \xi_i \xi_j (\mu \mu' + \nu' \rho))\}$

where $1 \leq \xi_i \leq p^{n-r}$ and $1 \leq \xi_j \leq p^{n-s}$. The power of p dividing ξ_i and ξ_j determines to which $K_i^n \quad U_1^i$ and U_2^j belong.

We use the groups K_r^n to define the concept of level for H. H is of level r if H contains K_r^n and does not contain K_{r-1}^n . Similarly we say a subfield F of $K(p^n)$ is of level r if F is a subfield of $K(p^r)$ and not a subfield of $K(p^{r-1})$. Note that F is of level r if and only if its Galois group is of level r. Similarly we will use the phrase "at the r-th level" to mean in $K_{n-r}^n - K_{n-(r-1)}^n$.

A conjugate of S^{p^r} has the form $\pm (1 - p^r ac, p^r a^2, -p^r c^2, 1 + p^r ac)$. The following proposition simplifies the task of counting groups conjugate to $[S^{p^r}]$ [1].

PROPOSITION 2.4. Any group A conjugate to $[S^{p^r}]$, where

$$\pm (1 - p^{r}ac, p^{r}a^{2}, -p^{r}c^{2}, 1 + p^{r}ac)$$

is an element of A and $(a, p^n) = 1$, contains one and only one element of the form $\pm (x, p^r, y, z)$ and it is conjugate to S^{p^r} .

So under the proper conditions, to calculate $s(p^r)$ for H, it is sufficient to count the number of elements of the form $\pm (1 - p^r c, p^r, -p^r c^2, 1 + p^r c)$ in H. Unless otherwise indicated, the phrase "a conjugate of S^{p^r} " will mean one in this form. If $U = \pm (1 - p^{r-1}c, p^{r-1}, -p^{r-1}c^2, 1 + p^{r-1}c)$ is a conjugate of $S^{p^{r-1}}$ and V is a conjugate of $S^{p^{r-1}}$ such that $U^p = V^p$, then

$$V = \pm (1 - p^{r-1}(c + xp^{n-r}), p^{r-1}, -p^{r-1}(c^2 + 2cxp^{n-r}), 1 + p^{r-1}(c + xp^{n-r}))$$

where $0 \leq x < p$.

The following proposition simplifies the calculation of the number of conjugates of T and R in H.

PROPOSITION 2.5. Let H be a subgroup of $LF(2, p^n)$ and \tilde{H} be its image in LF(2, p). If \bar{T} (respectively \bar{R}) in \tilde{H} has k pre-images in H conjugate to T(R), then each conjugate of $\bar{T}(\bar{R})$ in \tilde{H} has 0 or k pre-images conjugate to T(R) in H.

Proof. Suppose \overline{T} in \overline{H} has $U_1TU_1^{-1} = T$, $U_2TU_2^{-1}$, \cdots , $U_kTU_k^{-1}$ as its pre-images in H conjugate to T. Suppose \overline{T}_1 is conjugate to \overline{T} in \overline{H} and that \overline{T}_1 has at least one pre-image conjugate to T so that we may assume T_1 is conjugate to T. Then there is a B in $LF(2, p^n)$ such that $BTB^{-1} = T_1$ in H

and so $\bar{B}\bar{T}\bar{B}^{-1} = \bar{T}_1$ in \bar{H} . Then, for $i = 1, \dots, k$, $(B(U_iT \ U_i^{-1})B^{-1})^- = \bar{T}_1$

so that \overline{T}_1 has at least k pre-images conjugate to T in H. Suppose

$$(UTU^{-1})^{-} = \overline{T}_1$$
 and $UTU^{-1} \neq B(U_i TU_i^{-1})B^{-1}$ for any $i = 1, \dots, k$.

Then $B^{-1}(UTU^{-1})B \neq U_i TU_i^{-1}$ for any *i* and yet $(B^{-1}(UTU^{-1})B)^- = \overline{T}$ in \overline{H} which is a contradiction. Therefore \overline{T}_1 has at most *k* pre-images in *H* conjugate to *T*. A similar argument works for *R* and \overline{R} .

By conjugating H, we may assume that T is an element of H. By Proposition 2.5, it is sufficient to count the number of elements in H conjugate to T which are in $(H \cap K_1^n) \cdot T$. By Gierster [4], for p > 2, T_1 in $LF(2, p^n)$ is conjugate to T if and only if the trace of T_1 is congruent to $0 \mod p^n$. Let $U = \phi(\mu, \nu, \rho)_r$. Then

$$U \cdot T = \pm (p^r \nu, -u - p^r \mu, u - p^r \mu, -p^r \rho)$$

which has trace 0 if and only if $p^r(\nu - \rho) \equiv 0 \pmod{p^n}$ if and only if $\nu \equiv \rho \pmod{p^{n-r}}$ where $1 \leq \nu, \rho \leq p^{n-r}$.

DEFINITION 2.1. $U = \phi(\mu, \nu, \rho)_r$ has property A if and only if $\nu \equiv \rho \pmod{p^{n-r}}$.

We will want to calculate the number of elements in H with property A.

Similarly, by conjugating H, we may assume that R is an element of H and again by Proposition 2.5, it is sufficient to count the number of elements in H conjugate to R which are in $(H \cap K_1^n) \cdot R$. By Gierster [4], for p > 3, R_1 in $LF(2, p^n)$ is conjugate to R if and only if the trace of R_1 is congruent to $\pm 1 \mod p^n$.

$$U \cdot R = \pm (p^r \nu, -u - p^r \mu + p^r \nu, u - p^r \mu, u - p^r \mu - p^r \rho)$$

which has trace congruent to $u + p^r(\nu - \mu - \rho) \mod p^n$.

DEFINITION 2.2. $U = \phi(\mu, \nu, \rho)_r$ has property B if and only if

$$u + p^r(\nu - \mu - \rho) \equiv 1 \pmod{p^n}.$$

It it sufficient to count the U with property B in H since the previous assumption that $u \equiv 1 \pmod{p}$ implies that p divides 1 - u. But if

$$u + p^r(\nu - \mu - \rho) \equiv -1 \pmod{p^n},$$

then p divides -(1 + u) so that p divides (1 - u) + (1 + u) = 2, a contradiction. Here we have used the + sign in front of the matrix; using the - sign would have given all the relevant matrices trace -1.

First we are going to show that it is enough to consider $LF(2, p^n)$ for a fixed p. In doing this and later in applying Proposition 1.5, it is necessary to

have a list of subgroups of LF(2, p). The possibilities are [3, 7]:

(1) a cyclic group C_m of order m where m = p, m divides (p - 1)/2 or (p + 1)/2;

(2) a dihedral group D_{2n} of order 2n where n divides p - 1 or p + 1;

(3) a metacyclic group M_{pu} of order pu where u divides (p-1)/2;

(4) a tetrahedral group 5 for each p, an octahedral group 0 if $p \equiv \pm 1 \pmod{8}$ or an icosahedral group \mathfrak{s} if $p \equiv \pm 1 \pmod{5}$.

PROPOSITION 2.6. Fix g > 0. There exists a p_0 such that if $p \ge p_0$, then K(p) has no subfields of genus g.

Proof. D. McQuillan has formulas for the genus of subgroups of LF(2, p), p > 5 [7]. Using them we see that

(1)
$$g(I) = 1 + (p-6)(p^2 - 1)/24,$$

(2) $g(3) \ge 1 + (p^3 - 6p^2 - p + 6)/288 - (p+1)/9 - (p+1)/16,$
(3) $g(0) \ge 1 + (p^3 - 6p^2 - p + 6)/576 - (p+1)/18 - 3(p+1)/32,$
(4) $g(C_p) = (p^2 - 12p + 35)/24,$
(5) $g(C_m) \ge 1 + (p + \epsilon)((p-6)(p - \epsilon)/12 - 7/6)/2m,$
(6) $g(D_{2n}) \ge 1 + (p + \epsilon)((p-6)(p - \epsilon)/48 - 1/6 - (p+1)/4)/n,$
(7) $g(M_{pu}) \ge 1 + (p - 11)/12 - 7/6,$
(8) $g(g) \ge 1 + (p^3 - 6p^2 - p + 6)/1440 - (p+1)/18 - (p+1)/16,$

where $\epsilon = \pm 1$. So $\lim_{p\to\infty} g(H) = \infty$ where *H* is a proper subgroup of *LF* (2, *p*). Further g(LF(2, p)) = 0. So for *p* sufficiently large, LF(2, p) contains no subgroups of genus *g* and hence K(p) has no subfields of genus *g*.

To show that the same result is true for $K(p^n)$, $n \ge 2$, we need the following fact.

LEMMA 2.7. If F is a subfield of L, then $g(F) \leq g(L)$.

Proof. By the relative genus formula,

 $2 g(L) - 2 = (2 g(F) - 2)[L:F] + d(D_{L/F})$

where $d(D_{L/F})$ is the degree of the discriminant of L over F. But $[L:F] \ge 1$ and $d(D_{L/F}) \ge 0$ so that $2 g(L) - 2 \ge 2 g(F) - 2$ which implies that $g(L) \ge g(F)$.

THEOREM 1. Fix g > 0. There exists a p_0 such that if $p \ge p_0$, then $K(p^n)$ has no subfields of genus g.

Proof. We proceed by induction on *n*. By Proposition 2.6, there is a p_0 such that if $p \ge p_0$, K(p) has no subfields of genus less than or equal to g except for C(j) which has genus 0. Suppose F is a subfield of $K(p^n)$ of genus g. Then by Lemma 2.7, $F_1 = F \cap K(p^{n-1})$ which is a subfield of F has genus $g_1 \le g$. By the induction hypothesis, $K(p^{n-1})$ has no subfield of genus less than or equal to g except C(j) so that $F_1 = C(j)$. Let $H = G(K(p^n)/F)$.

Then $H \pmod{p^{n-1}} = G(K(p^{n-1})/F_1) = LF(2, p^{n-1})$ since $F_1 = C(j)$. So H contains $K_{m-1}^m[7]$ implying that $F \subseteq K(p^{n-1})$. So by induction, F = C(j) and $g(F) = 0 \neq g$, a contradiction.

3.
$$LF(2, p^n), p > 3$$

By Theorem 1, we may assume that p is a fixed prime and we continue to assume that p > 2. Fix g > 0. We will show that

 $\{F \mid F \subseteq K(p^n) \text{ for some } n, g(F) = g\}$

is finite by showing that there is an r_0 such that for $r \ge r_0$ there are no fields of level r and genus g in $K(p^n)$, n > r. So we must show that any subfield of $K(p^n)$ of genus g is already a subfield of $K(p^{r_0})$. Therefore it is enough to assume that F is a subfield of $K(p^n)$ and is not a subfield of $K(p^{n-1})$ and show that g(F) > g. In terms of the associated subgroup H of $LF(2, p^n)$, this means there are three cases to consider:

(1) $H \cap K_{n-1}^n = \{I\},$ (2) $|H \cap K_{n-1}^n| = p,$ (3) $|H \cap K_{n-1}^n| = p^2$

since if $|H \cap K_{n-1}^n| = p^3$, then $K_{n-1}^n \subseteq H$ and so $F \subseteq K(p^{n-1})$. The first case is easy and is done in the following proposition.

PROPOSITION 3.1. There exists an n_1 such that if $n \ge n_1$ and $H \cap K_{n-1}^n = \{I\}$, then g(H) > g.

Proof. Suppose $H \cap K_{n-1}^n = \{I\}$. By Proposition 2.1, $H \cap K_1^n = \{I\}$. Then $t \leq 15$, $r \leq 10$ and $h \leq (p^2 - 1)/2 \leq p^2$. To see this, apply f_1^n , whose kernel is K_1^n , to H and then count the appropriate elements in the image of H in LF(2, p). Further W = 0 since any conjugate of a power of S raised to some power is in K_1^n . Therefore, by formula (2.1),

$$g(H) \ge 1 + \{p^{3n-2}(p^2 - 1) - (6p^{2n-2} + 80p^{n-1}(p + 1) + 90p^{n-1}(p + 1))\}/24p^2$$
$$= 1 + f(n)$$

where $\lim_{n\to\infty} f(n) = \infty$. So there is an n_1 such that for $n \ge n_1$, g(H) > g.

For the second case we use the bounds on r, t and W given in the following lemma.

LEMMA 3.2. Suppose $|H \cap K_{n-1}^n| = p$. Then $W \leq n, t \leq 15p^{n+1}$ and $r \leq 20p^n$.

Proof. Since $|H \cap K_{n-1}^n| = p$, by Proposition 2.2, $H \cap K_1^n$ is cyclic with $|H \cap K_1^n| \leq p^{n-1}$. If $W \neq 0$, conjugate H so that $S^{p^{n-1}}$ is in H. Then $W \leq n-1+s(1)$. Suppose U and V are conjugates of S such that $U^p = V^p$. Then

$$U = \pm (1 - c, 1, -c^2, 1 + c)$$

and

$$V = \pm (1 - (c + xp^{n-1}), 1, -(c^2 + 2cxp^{n-1}), 1 + (c + xp^{n-1}))$$

where $1 \le x < p$ and p divides c since $U^{p^{n-1}} = S^{p^{n-1}}$. Then

$$U^{-1}V = \pm (1 - xp^{n-1}, -xp^{n-1}, 0, 1 + xp^{n-1})$$

is in $H \cap K_{n-1}^{n}$. But $H \cap K_{n-1}^{n} = \{\pm (1, yp^{n-1}, 0, 1) \mid 0 \le y \le p^{n-1}\}$. So $s(1) \le 1$ and $W \le n$. To calculate t and r we use Proposition 2.5. From McQuillan [7], we see that in $LF(2, p) \ t \le 15(p+2)$ and $r \le 20p$. Since $|H \cap K_{1}^{n}| \le p^{n-1}$,

$$t \le 15(p+2)p^{n-1} \le 15p^{n+1}$$
 and $r \le 20p^n$.

PROPOSITION 3.3. There exists an n_2 such that if $n \ge n_2$ and $|H \cap K_{n-1}^n| = p$, then g(H) > g.

$$\begin{array}{l} \textit{Proof.} \quad \text{By Lemma 3.2, } W \leq n, \, t \leq 15p^{n+1} \text{ and } r \leq 20p^n. \quad \text{Since} \\ | \, LF(2, \, p) \, | \, = \, p \, (p^2 - 1)/2 \, \leq \, p^3 \quad \text{and} \quad | \, H \cap K_1^n \, | \, \leq \, p^{n-1}, \end{array}$$

 $h \leq p^{n+2}$. So by formula (2.1),

$$g(H) \ge 1 + \{p^{3n-2}(p^2 - 1) - (6(p^2 - 1)p^{2n-2} + 160p^{2n-1}(p + 1) + 90p^{2n}(p + 1) + 6np^{2n-2}(p - 1)^2)\}/24p^{n+2}$$

= 1 + f(n)

where $f(n) = p^{n-4}(ap^n - bn - c)$ with a > 0, b and c constants. But $\lim_{n\to\infty} f(n) = \infty$ so that there is an n_2 such that for $n \ge n_2$, g(H) > g.

In the case $|H \cap K_{n-1}^n| = p^2$, we will use the following notation from Gierster [4]. Let $U = \phi(\mu, \nu, \rho)$ and set $\pi = \mu^2 + \nu \rho$. Then K_{n-1}^n contains 3 different conjugacy classes of groups of order p:

(1) $(p+1)G_p(I)$ determined by $\pi \equiv 0 \pmod{p}$, e.g. $[\pm (1, p^{n-1}, 0, 1)]$, (2) $p(p+1)/2 G_p(II)$ determined by $(\pi/p) = 1$, e.g. $[\pm (1+p^{n-1}, 0, 0, 1-p^{n-1})]$,

(3) $p(p-1)/2 G_p(III)$ determined by $(\pi/p) = -1$, e.g. $[\pm (1, p^{n-1}\nu, p^{n-1}, 1)]$ where $(\nu/p) = -1$.

Similarly the subgroups of order p^2 in K_{n-1}^n divide into 3 conjugacy classes:

(1) $(p+1)G_{p^2}(I)$ containing $1G_p(I)$ and $pG_p(II)$,

(2) $p(p+1)/2 G_{p^2}$ (II) containing $2 G_p$ (I), $(p-1)/2 G_p$ (II) and $(p-1)/2 G_p$ (III),

(3) $p(p-1)/2 G_{p^2}$ (III) containing $(p+1)/2 G_p$ (II) and $(p+1)/2 G_p$ (III).

We now give a series of propositions which give bounds on W, t and r in the case $|H \cap K_{n-1}^{n}| = p^{2}$.

PROPOSITION 3.4. Suppose $H \cap K_{n-1}^n$ is conjugate to G_{p^2} (II). Then

$$W \leq 2(n+p-1).$$

Proof. By conjugating H, we can assume the G_{p^2} (II) is generated by $S^{p^{n-1}} = \pm (1, p^{n-1}, 0, 1)$ and $S_1 = \pm (1 - p^{n-1}, p^{n-1}, -p^{n-1}, 1 + p^{n-1})$ and so a typical element in G_{p^2} (II) is

$$\pm (1 - ip^{n-1}, p^{n-1}(i+j), -ip^{n-1}, 1 + ip^{n-1}).$$

Suppose $U = \pm (1 - p^r c, p^r, -p^r c^2, 1 + p^r c)$ and V are conjugates of S^{pr} , $r \ge 1$, $U^p = V^p$ and U is in H. Then

$$V = \pm (1 - p^{r}(c + xp^{n-r-1}), p^{r}, -p^{r}(c^{2} + 2cxp^{n-r-1}), 1 + p^{r}(c + xp^{n-r-1}))$$

with $(p, x) = 1$. If V is in H, then

$$U^{-1}V = \pm (1 - xp^{n-1}, 0, -2cxp^{n-1}, 1 + xp^{n-1})$$

is in $H \cap K_{n-1}^{n}$. But the only elements in $H \cap K_{n-1}^{n}$ with 0 in the upper right corner are

$$\pm (1 - ip^{n-1}, 0, -ip^{n-1}, 1 + ip^{n-1}).$$

So $2cx \equiv x \pmod{p}$ which implies that $1 \equiv 2c \pmod{p}$. But $U^{p^{n-r-1}} = S^{p^{n-1}}$ or S_1 so that $c \equiv 0$ or 1 (mod p) and hence $1 \not\equiv 2c \pmod{p}$. So each level from 1 to n - 1 has at most two groups conjugate to S^{p^r} and so

$$W \leq 2(n-1) + s(1).$$

But $s(1) \leq 2p$ since each of the two conjugates to S^p has at most p p-th roots conjugate to S and so $W \leq 2(n-1) + 2p$.

LEMMA 3.5. Suppose $H \cap K_{n-1}^n$ is generated by

$$S^{p^{n-1}}$$
 and $\pm (1 + p^{n-1}, 0, 0, 1 - p^{n-1}).$

Consider all the conjugates of powers of S in H and let m be the smallest integer such that there is a c_0 with $p^{n-m}c_0^2 \neq 0 \pmod{p^n}$. Suppose $m < \frac{2}{3}n - \frac{1}{3}$ and let s = (m + 1)/2 and r be such that $m + 1 \leq r \leq \frac{2}{3}n - \frac{1}{3}$. Consider $\{U_i\}$, a set of conjugates of S^{p^r} , such that the p^s -th powers of any two are the smallest powers which are equal. Then at most two of the U_i are in H.

Proof. A typical element in $H \cap K_{n-1}^n$ is $\pm (1 + ip^{n-1}, jp^{n-1}, 0, 1 - ip^{n-1})$ where $0 \leq i, j \leq p - 1$. *m* is odd since $p^{m-1} \parallel c_0^2$. *U*, a conjugate of S^{p^r} in *H*, has *p* dividing *c* since $U^{p^{r-1}}$ has 0 in the lower left corner. Conjugate *H* so that S^{p^r} is in *H* for each *r* for which S^{p^r} has some conjugate in *H*. Then

$$S' = \pm (1 + p^{n-m}c_0, p^{n-m}, -p^{n-m}c_0^2, 1 - p^{n-m}c_0)^{p^{m-1}-1}$$

which equals $\pm (1 - p^{n-m}c_0, p^{n-1} - p^{n-m}, p^{n-m}c_0^2, 1 + p^{n-m}c_0)$ since p divides

 c_0 , is in H. Then

 $S' \cdot S^{p^{n-m}} = \pm (1 - p^{n-s}x^{-1}, p^{n-1}, p^{n-1}y, 1 + p^{n-s}x^{-1})$

where $(x^{-1}, p) = (y, p) = 1$ is in H and so

$$(S' \cdot S^{p^r})^x = U' = \pm (1 - p^{n-s}, p^{n-1}x, p^{n-1}xy, 1 + p^{n-s})$$

with (xy, p) = 1 is in H. Let

$$U = \pm (1 + p^{n-r}c, p^{n-r}, -p^{n-r}c^2, 1 - p^{n-r}c)$$

be in H and suppose

$$V = \pm (1 + p^{n-r}\gamma, p^{n-r}, -p^{n-r}\gamma^{2}, 1 - p^{n-r}\gamma)$$

with $m + 1 \le r \le \frac{2}{3}n - \frac{1}{3}$. Then $U^{p^s} = V^{p^s}$ if and only if $\gamma \equiv c \pmod{p^{r^{-s}}}$ and the p^s -th powers of U and V are the smallest which are equal if and only if $\gamma = c - tp^{r^{-s}}$ where (t, p) = 1. $\{U_t\}$ in the hypothesis is a subset of $\{U$ and V's in H obtained by different choices of $\gamma\}$. Then

$$U \cdot V^{k} = \pm (1 + p^{n-r}(c + k\gamma) + p^{2n-2r}k\gamma(c - \gamma),$$

$$p^{n-r}(k + 1) + p^{2n-2r}k(c - \gamma),$$

$$-p^{n-r}(c^{2} + k\gamma^{2}) - p^{2n-2r}ck\gamma(c - \gamma),$$

$$1 - p^{n-r}(c + k\gamma) - p^{2n-2r}kc(c - \gamma)).$$

Suppose $p^{l} || c$ and let a = r - (m - 1). Then $U^{p^{a}}$ has lower left corner equal to

$$-p^{n-r+r-(m-1)}c^2 \equiv -p^{n-(m-1)+2l}y \equiv 0 \pmod{p^n}$$

if and only if $2l \ge m-1$. But by choice of m, $-p^{n-(m-1)}c^2 \equiv 0 \pmod{p^n}$ so that $l \ge (m-1)/2 = s-1$. So p^{s-l} divides c. Let $k = p^{n-1} - 1$ so that

$$U \cdot V^{k} = \pm (1 + tp^{n-s}, p^{n-1}, 2p^{n-1}tc^{*}, 1 - tp^{n-s})$$

since p^{s-1} divides $c, r \leq \frac{2}{3}n - \frac{1}{3}$ and $s \leq r/2$. Now if V is in H, then

$$U' \cdot U \cdot V^{k} = \pm (1, p^{n-1}(1+x), p^{n-1}xy + 2c^{*}t, 1)$$

is in $H \cap K_{n-1}^n$ and so $xy + 2c^*t \equiv 0 \pmod{p}$. If p divides c^* , i.e. if p^* divides c, then $xy + 2c^*t \equiv xy \neq 0 \pmod{p}$ so that V is not in H. If p does not divide c^* , then $t \equiv -(xy)(2c^*)^{-1} \pmod{p}$ and so there is exactly one choice for γ for which V belongs to H. So at most two from the set $\{U_i\}$ are in H.

PROPOSITION 3.6. Suppose $H \cap K_{n-1}^n$ is a $G_{p^2}(I)$. Then $W \leq p^{7n/9+4}$ for $n \geq 9$.

Proof. Conjugate H so that $H \cap K_{n-1}^n$ is generated by

$$S^{p^{n-1}}$$
 and $\pm (1 + p^{n-1}, 0, 0, 1 - p^{n-1}).$

If H can be conjugated so that all the conjugates of S^{p^r} have 0 in the lower

left corner, then each conjugate of $S^{p^{n-r}}$ in H has p^r dividing c^2 and so

 $W \le 1 + 2 \sum_{i=1}^{n/2-1} p^i + p^{n/2} = 1 + 2p (p^{n/2-1} - 1)/(p - 1) + p^{n/2}$ if n is even and

$$W \le 1 + 2p(p^{(n-1)/2} - 1)/(p - 1)$$

if n is odd both of which are less than $p^{7n/9+4}$ for $n \ge 9$.

If H can not be so conjugated, let m be the smallest integer such that

$$p^{n-m}c_0^2 \not\equiv 0 \pmod{p^n}$$

for some c_0 and suppose $m \leq \frac{2}{3}n - \frac{1}{3}$. Now if U in H is conjugate to S^{p^r} and V in H is a conjugate of $S^{p^{r-1}}$ such that $V^p = U$, then there are p conjugates V_i of $S^{p^{r-1}}$ in H such that $V_i^p = U$ and these are given by

$$V_i = V \cdot \pm (1 - ip^{n-1}, 0, 0, 1 + ip^{n-1})$$

since p divides the c for V. At the (m-1)-st level, since p^{m-1} divides c^2 there are at most $p^{(m-1)/2}$ conjugates of $S^{p^{n-(m-1)}}$ in H so that at the *m*-th level there are at most p° conjugates of $S^{p^{n-(m+1)}}$ in H and at the (m + 1)-st level, there are at most $p^{\circ+1}$ conjugates of $S^{p^{n-(m+1)}}$ in H. These $p^{\circ+1}$ conjugates can be partitioned into p° sets of p elements each where if c determines one element in a set, then $c - kp^{r-\circ}$ where (k, p) = 1 determine the others. By Lemma 3.5, H contains at most two elements from each of these sets and so $s(p^{n-(m+1)}) \leq 2p^{\circ}$. Continuing this argument, one sees that

$$s(p^{n-(m+i)}) \le 2^i p^{\circ}$$
 for $m + i \le \frac{2}{3}n - \frac{1}{3}$.

Let x be the greatest integer less than or equal to $\frac{2}{3}n - \frac{1}{3}$. Then for r > x,

$$s(p^{n-r}) \leq p \cdot s(p^{n-r+1}).$$

 \mathbf{So}

$$W \le 1 + 2 \sum_{i=1}^{s} p^{i} + p^{s} \sum_{i=1}^{x-m} 2^{i} + 2^{x-s} p^{s} \sum_{i=1}^{n-x} p^{i}$$

$$\le 1 + 2p (p^{s} - 1)/(p - 1) + p^{s} (2^{x-m+1} - 2)$$

$$+ 2^{x-s} p^{s+1} (p^{n-x} - 1)/(p - 1)$$

$$\le 1 + p^{n/3+1} + p^{n/3-2/3} \cdot 2^{2n/3-s+1} + 2^{2n/3-s} p^{s+1} p^{n/3+1}$$

since $1 \le s = (m+1)/2 \le n/3 - \frac{2}{3}$. But $2^{2n/3} = (2^6)^{n/9} < (3^4)^{n/9} \le p^{4n/9}$ so that

$$W \le 1 + p^{n/3+1} + p^{3n/9-2/3}p^{4n/9} + p^{4n/9+1}p^{3n/9+1} \le p^{7n/9+4}$$

LEMMA 3.7. Suppose $U = \phi(\mu, \nu, \rho)_r$ has property A, $U' = \phi(\mu', \nu', \rho')_r$ does not have property A and $[U] \cap [U'] = \{I\}$. Then if $U^{p^{n-r-1}}$ and $U'^{p^{n-r-1}}$ have property A, p does not divide $(\mu(\nu' + \rho') - 2\mu'\nu)$.

Proof. Since $U'^{p^{n-e^{-1}}}$ has property A, $\nu' \equiv \rho' \pmod{p}$. Recall we are assuming that not all of μ , ν and ρ (and μ' , ν' and ρ') are divisible by p. There

are four cases to consider. Suppose p does not divide ν . Then, by taking an appropriate power of U, we can assume that

$$\nu \equiv \rho \equiv 1 \pmod{p^{n-s}}.$$

(1) If p divides ν' , then p divides ρ' and so p does not divide μ' . So p does not divide $2\mu'\nu$ and divides $\mu(\nu' + \rho')$ so that p does not divide the sum. (2) If p does not divide ν' , then p does not divide ρ' and we may assume $\nu' \equiv \rho' \equiv 1 \pmod{p}$. Since $[U] \cap [U'] = \{I\}$, it is false that

$$\mu \equiv c\mu', \quad \nu \equiv c\nu', \quad \rho \equiv c\rho' \qquad (\text{mod } p)$$

for any c. So

$$\mu \not\equiv \mu' \pmod{p}$$
 and $\mu(\nu' + \rho') - 2\mu'\nu \equiv 2(\mu - \mu') \not\equiv 0 \pmod{p}$.

Suppose p divides ν and ρ . Then p does not divide μ . (3) If p divides ν' and ρ' , then p does not divide μ' . So for some $c \neq 0 \pmod{p}$

$$\mu \equiv c\mu', \quad \nu \equiv c\nu' \equiv 0, \quad \rho \equiv c\rho' \equiv 0 \pmod{p}$$

which is a contradiction. (4) If p does not divide ν' and ρ' , then

$$\mu(\nu' + \rho') - 2\mu'\nu \equiv 2\mu\nu' \not\equiv 0 \pmod{p}$$

since $\nu' \equiv \rho' \pmod{p}$.

PROPOSITION 3.8. Suppose $|H \cap K_{n-1}^n| = p^2$. The number of elements in $H \cap K_r^n$ with property A is bounded by $(n + 1)p^{n+3}$.

Proof. Let a denote the number of elements with property A in $H \cap K_1^n$. Suppose r is the smallest number such that $H \cap K_r^n$ contains an element with property A. Let $U_1 = \phi(\mu, \nu, \rho)_r$ and $U_2 = \phi(\mu', \nu', \rho')_s$ be generators of $H \cap K_1^n$ with $s \ge r$ and U_1 having property A. Then $[U_1] \cap [U_2] = \{I\}$ and $\{U_1^i U_2^i\}$ is as described in Section 2. Now $p^{n-r-x-1}(p-1)$ of the ξ_i and $p^{n-s-x-1}(p-1)$ of the ξ_i are divisible by precisely p^x since ξ_i and ξ_j determine which K_i^n , U_1^i and U_2^i belong to. Suppose U_2 also has property A. We want the number of elements in $\{U_1^i U_2^i\}$ such that

(3.1)
$$\begin{array}{c} p^{r}\xi_{i}\nu u_{j}' + p^{s}\xi_{j}\nu' u_{i} + p^{r+s}\xi_{i}\xi_{j}(\nu\mu' - \nu'\mu) \\ \equiv p^{s}\xi_{j}\nu' u_{i} + p^{r}\xi_{i}\nu u_{j}' + p^{r+s}\xi_{i}\xi_{j}(\mu\nu' - \mu'\nu) \pmod{p^{n}} \end{array}$$

which is true if and only if

(3.2)
$$2 \xi_i \xi_j (\nu \mu' - \mu \nu') \equiv 0 \pmod{p^{n-r-s}}.$$

We claim that $\nu\mu' \not\equiv \mu\nu' \pmod{p}$. Since U_1 and U_2 have property A, $\nu \equiv \rho$ and $\nu' \equiv \rho' \pmod{p}$. There are 3 cases to consider: (1) Suppose pdoes not divide ν , ρ , ν' and ρ' . Then, as in Lemma 3.7, we can assume $\nu \equiv \rho \equiv \nu' \equiv \rho' \equiv 1 \pmod{p}$. But then $\mu' \not\equiv \mu \pmod{p}$ since there is no csuch that

$$\nu \equiv c\nu', \quad \rho \equiv c\rho', \quad \mu \equiv c\mu' \pmod{p}$$

so $\nu\mu' \equiv \mu' \neq \mu \equiv \mu\nu' \pmod{p}$. (2) Suppose p divides all of ν , ρ , ν' and ρ' . Then $U_1^{\xi_i} = U_2^{\xi_j}$ for some ξ_i , ξ_j divisible by p^{n-r-1} and p^{n-s-1} respectively which is a contradiction to $[U_1] \cap [U_2] = \{I\}$. (3) Suppose $\nu \equiv \rho \equiv 1 \pmod{p}$ and p divides ν' and ρ' . Then p does not divide μ' and so $\mu'\nu \neq 0 \equiv \mu\nu' \pmod{p}$. Therefore the solutions (ξ_i, ξ_j) to (3.2) are the same as the solutions to

(3.3)
$$\xi_i \xi_j \equiv 0 \pmod{p^{n-r-s}}.$$

If p^{n-r} divides ξ_i , there is one choice for ξ_i and p^{n-s} choices for ξ_j since ξ_j can be chosen arbitrarily. If $p^{n-r-x} || \xi_i$ where $1 \le x \le s$, there exist $p^{x-1}(p-1)$ choices for ξ_i and p^{n-s} choices for ξ_j since ξ_j can be chosen arbitrarily. If $p^{n-r-x} || \xi_i$ where $s + 1 \le x \le n - r$, there exist $p^{x-1}(p-1)$ choices for ξ_i and p^{n-x} choices for ξ_j since p^{x-s} has to divide ξ_j . So

$$\begin{aligned} a &\leq p^{n-s} + p^{n-s} (\sum_{i=1}^{s} p^{i-1}(p-1)) + \sum_{i=s+1}^{n-r} p^{n-1}(p-1) \\ &= p^{n-s} + (p-1) (p^{n-s}(p^s-1)/(p-1) + (n-r-s-1)p^{n-1}) \\ &< p^{n+3} + np^{n-1} < (n+1)p^{n+3}. \end{aligned}$$

Now suppose U_2 does not have property A. We want the number of elements such that

(3.4)
$$p^{s}\xi_{j}\nu'u_{i} + p^{r+s}\xi_{i}\xi_{j}(\mu\nu' - \nu\mu') = p^{s}\xi_{j}\rho'u_{i} + p^{r+s}\xi_{i}\xi_{j}(\nu\mu' - \rho'\mu) \pmod{p^{n}}$$

which is true if and only if

(3.5)
$$p^{s}\xi_{j} u_{i}(\nu'-\rho') + p^{r+s}\xi_{i}\xi_{j}\zeta \equiv 0 \pmod{p^{n}}$$

where $\zeta = \mu(\nu' + \rho') - 2\mu'\nu$. However by Lemma 3.7, p does not divide ζ . Let $p^{x} \parallel (\nu' - \rho')$. Then $x \ge 1$ since $\nu' \equiv \rho' \pmod{p}$. Now $x \le n - s$ since $1 \le \nu', \rho' \le p^{n-s}$ and we may assume r + s < n since otherwise the number of elements in $\{U_1^i U_2^j\}$ is bounded by p^n and so $a \le p^n$. Equation (3.5) becomes

$$(3.6) p^{x+s}\xi_j u_i y + p^{r+s}\xi_i \xi_j \zeta \equiv 0 \pmod{p^n}$$

where $(y, p) = (\zeta, p) = 1$. Now if x < r, then p^{n-s-x} has to divide ξ_j and so a is bounded by $p^x \cdot p^{n-r} \le p^n$. So assume $r \le x \le n - s$ and let $p^l || \xi_j$ where $0 \le l \le n - s$. There are $p^{n-s-l-1}$ (p-1) choices for ξ_j . Suppose $0 \le l \le n - s - r$. Then equation (3.6) becomes

(3.7)
$$p^{x-r}y' + \zeta''\xi_i \equiv 0 \pmod{p^{n-r-s-l}}$$

where $(y', p) = (\xi'', p) = 1$. So, mod $p^{n-r-s-l}$, there is a unique solution for ξ_i and so there are $p^{n-r-(n-r-s-l)} = p^{s+l}$ choices for ξ_i which gives

$$p^{n-s-l-1}p^{s+l}(p-1) = p^{n-1}(p-1)$$

elements with property A. Suppose $n - s - r \le l \le n - s - 1$. Then there are $p^{n-s-l-1}(p-1)$ choices for ξ_i and p^{n-r} choices for ξ_i since ξ_i can be chosen arbitrarily. For l = n - s, there is one choice for ξ_i and p^{n-r} choices for ξ_i . So

$$a \leq p^{n-r} + p^{n-r} \sum_{l=n-s-r}^{n-s-1} p^{n-s-l-1}(p-1) + (n-s-r)p^{n-1}(p-1)$$

$$\leq p^{n-r} + p^{n-r}(p^r-1)(p-1) + (n-s-r)p^{n-1}(p-1)$$

$$< (n-s-r+2)p^{n+1} < (n+1)p^{n+3}.$$

LEMMA 3.9. Let p > 3. Suppose $U = \phi(\mu, \nu, \rho)_r$ and $U' = \phi(\mu', \nu', \rho')_s$ with $r \leq s < n/2$ and $[U] \cap [U'] = \{I\}$. Then if U and U' both have property B, U and U' can not generate a group of order p^{2n-r-s} .

Proof. Since $[U] \cap [U'] = \{I\}$, there is no c such that

$$\mu \equiv c\mu', \quad \nu \equiv c\nu' \quad \text{and} \quad \rho \equiv c\rho' \qquad \pmod{p}.$$

We know that

(3.8)
$$u^2 - p^{2r}(\mu^2 + \nu\rho) \equiv 1$$
 and $u'^2 - p^{2s}(\mu'^2 + \nu'\rho') \equiv 1 \pmod{p^n}$
with $u, u' \equiv 1 \pmod{p}$. Since U and U' have property B,

(3.9)
$$u + p^r(\nu - \rho - \mu) \equiv 1$$
 and $u' + p^s(\nu' - \rho' - \mu') \equiv 1 \pmod{p^n}$.
So by (3.8) p^{2r} divides $1 - \mu$ and p^{2s} divides $1 - \mu'$. Together with (3.9)

So by (3.8), $p^{u'}$ divides 1 - u and p^{u} divides 1 - u'. Together with (3.9), this implies p' divides $\nu - \rho - \mu$ and p' divides $\nu' - \rho' - \mu'$. Hence

$$\nu \equiv \rho + \mu \pmod{p}$$
 and $\nu' \equiv \rho' + \mu' \pmod{p}$.

If U and U' generate a group of order p^{2n-r-s} , then

$$\mu''^{2} + \nu''\rho'' \equiv 0 \pmod{p^{n-r-s}}$$

where $\mu'' = (\nu\rho' - \nu'\rho)/2$, $\nu'' = \mu\nu' - \mu'\nu$ and $\rho'' = \rho\mu' - \rho'\mu$ [4]. So
 $\mu''^{2} + \nu''\rho'' \equiv 0 \pmod{p}$

since r + s < n. Now $\mu'' \equiv ((\rho + \mu)\rho' - (\rho' + \mu')\rho)/2 \equiv -\rho''/2 \pmod{p}$. Similarly $\nu'' \equiv -\rho'' \pmod{p}$. So $0 \equiv -3{\rho''}^2/4 \pmod{p}$ which implies that $\rho'' \equiv 0 \pmod{p}$. So $\rho\mu' \equiv \rho'\mu \pmod{p}$. Suppose p divides ρ . Then p divides ρ' or μ . If p divides μ , then $0 \equiv \mu + \rho \equiv \nu \pmod{p}$ so that p also divides ν . Hence p divides all of μ , ν and ρ , a contradiction. If p divides ρ' , then $\rho \equiv c\rho' \pmod{p}$ for any c. Pick c so that $\mu \equiv c\mu' \pmod{p}$. Then

$$\nu \equiv \mu + \rho \equiv c\mu' + c\rho' \equiv c(\mu' + \rho') \equiv c\nu' \pmod{p}.$$

So we have $\mu \equiv c\mu'$, $\nu \equiv c\nu'$ and $\rho \equiv c\rho' \pmod{p}$, a contradiction. Suppose p does not divide ρ . Then $\mu' \equiv (\rho^{-1}\rho')\mu \pmod{p}$. Certainly $\rho' \equiv (\rho^{-1}\rho')\rho \pmod{p}$. (mod p). Finally

$$\nu' \equiv \mu' + \rho' \equiv (\rho^{-1}\rho')(\mu + \rho) \equiv (\rho^{-1}\rho')\nu \pmod{p}.$$

So again there is a c such that $\mu \equiv c\mu'$, $\nu \equiv c\nu'$ and $\rho \equiv c\rho' \pmod{p}$, a contradiction.

PROPOSITION 3.10. Suppose p > 3 and $|H \cap K_{n-1}^n| = p^2$. The number of elements in $H \cap K_1^n$ with property B is less than p^{2n-3} .

Proof. Suppose n is even. Since $|H \cap K_r^n| \leq 2n - 2r$, then if r = n/2, the number of elements in $H \cap K_r^n$ with property B is at most n. Suppose r < n/2. The $p^{2n-2(r+1)}(p^2 - 1)$ elements at the (n - r)-th level can be partitioned into $p^2 - 1$ sets of $p^{2n-2(r+1)}$ elements each where U and U' are in the same set if and only if $U^{p^{n-r-1}} = U'^{p^{n-r-1}}$. By Lemma 3.9, if U has property B, then any other element V with property B has to be such that $[V^{p^{n-r-1}}] = [U^{p^{n-r-1}}]$ so that $[U] \cap [V] \neq \{I\}$. So, at the (n - r)-th level, there are at most $(p - 1) p^{2n-2(r+1)}$ elements with property B. Therefore the number of elements in $H \cap K_1^n$ with property B is bounded by

$$p^{n} + (p - 1) \sum_{i=0}^{n/2-2} p^{2n-(n-2i)} = (p^{2n-2} + p^{n+1})/(p + 1) < p^{2n-3}$$

A similar argument in the case where n is odd yields the bound

$$p^{n+1} + (p-1) \sum_{i=1}^{(n-3)/2} p^{n+(2i-1)} = (p^{2n-2} + p^{n+2})/(p+1) < p^{2n-3}.$$

PROPOSITION 3.11. Suppose p > 3. There exists an n_8 such that if $n \ge n_8$ and $|H \cap K_{n-1}^n| = p^2$, then g(H) > g.

Proof. If $H \cap K_{n-1}^n$ is a G_{p^2} (III), then W = 0. Otherwise by Propositions 3.4 and 3.6, for $n \ge 9$, $W \le p^{7n/9+4}$. By Proposition 2.5, to calculate t we need to know the number of elements in $H \cap K_1^n$ with property A and the number of elements of order 2 in $H \mod p$. By Proposition 3.8, the number of elements in $H \cap K_1^n$ with property A is at most $(n + 1)p^{n+3}$. By Mc-Quillan [7], the number of elements of order 2 in $H \mod p$ is bounded by p + 2 if $p \ge 15$ or 15 if p < 15. So $t \le (p + 2)(n + 1)p^{n+3}$ or $15(n + 1)p^{n+3}$. Similarly we calculate r. By Proposition 3.10, the number of elements in $H \cap K_1^n$ with property B is less than p^{2n-3} . By McQuillan [7], the number of distinct groups in $H \mod p$ generated by a conjugate of R is bounded by 2p. So $r \le 2p^{2n-2}$. Finally $h \le p^{2n-1}(p^2 - 1)$. So

$$g(H) \ge 1 + \{p^{2n-2}(p^2-1)(p^n-6) - 8p^{n-1}(p+1)2p^{2n-2} - 6p^{n-1}(p+2)(n+1)p^{n+4} - 6p^{2n-2}(p-1)^2p^{7n/9+4}\}/24p^{2n-1}(p^2-1).$$

For $n \ge 9$, $p^{3}(n+1)(p+2) \le p^{7n/9+4}$. So

$$g(H) \ge 1 + a(dp^{n-1} - (b+1)p^{7n/9+4} - c)$$

where $a = 1/24(p^3 - p)$, $b = 6(p - 1)^2$, $c = 6p^2 + 6(p - 1)^2$ and $d = p^3 - 17p - 16 > 0$ since $p \ge 5$. But

$$\lim_{n\to\infty} 1 + a(dp^{n-1} - (b+1)p^{7n/9+4} - c) = \infty$$

and therefore there is an n_{δ} such that if $n \geq n_{\delta}$, g(H) > g. For p < 15, the only adjustment in the calculation is that the term $p^{3}(n+1)(p+2)$ becomes $15p^{3}(n+1)$. But $15p^{3}(n+1)$ is still less than $p^{\frac{7}{n}} p^{\frac{1}{9}+4}$ for $n \ge 9$.

THEOREM 2. Suppose p > 3. Then there exists an n_4 such that if $n \ge n_4$ and H is of level n, then g(H) > g.

Proof. $n_4 = \max \{n_1, n_2, n_3\}$ where n_1, n_2, n_3 are as in Propositions 3.1, 3.3 and 3.11 respectively works.

4.
$$LF(2, 3^n)$$
 and $LF(2, 2^n)$

Finally we must consider the cases p = 2 and 3. We first consider p = 3. The propositions leading to bounds for t and W are valid for p = 3 so we only have to obtain bounds for r. For p = 3, it is still true that if R_1 is conjugate to R, then R_1 has trace = ± 1 . Therefore an upper bound on the number of elements of trace ± 1 still yields an upper bound on the number of conjugates of R. So as before we wish to calculate the number of elements in $H \cap K_1^n$ with property B.

Suppose the number of elements in $H \cap K_{n-1}^n$ with property B is LEMMA 4.1. Then, if $n \ge 4$, there are less than 3^{2n-4} elements with property B bounded by 3. in $H \cap K_1^n$.

Proof. Suppose $U = \phi(\mu, \nu, \rho)_r$ has property B. Then $U \cdot V$ has property **B** where

$$V = \phi(\mu', \nu', \rho')_{n-1}$$

if and only if V has property B since

$$U \cdot V = \pm (u + 3^{r}\mu + 3^{n-1}\mu'u, 3^{n-1}\nu'u + 3^{r}\nu, 3^{r}\rho + 3^{n-1}\rho'u, u - 3^{r}\mu - 3^{n-1}\mu'u)$$

and

$$u + 3^{r}(\nu - \mu - \rho) + 3^{n-1}u(\nu' - \mu' - \rho') \equiv 1 \pmod{3^{n}}$$

if and only if 3 divides $\nu' - \mu' - \rho'$ since $u + 3^r(\nu - \mu - \rho) \equiv 1 \pmod{3^n}$. Suppose

$$U^x = \phi(\xi\mu,\,\xi\nu,\,\xi\rho)$$

is in K_{n-1}^{n} . Then U^{x} has property B since

$$u_x + 3^r \xi(\nu - \mu - \rho) \equiv 1 + 3^r \cdot 3^{n-r-1} \cdot 3y \equiv 1 \pmod{3^n}$$

since 3^{n-r-1} divides ξ , 3 divides $\nu - \mu - \rho$ and $u_x = 1$. $|H \cap K_1^n| \leq 3^{2n-2}$ and $H \cap K_1^n$ can be partitioned into one set of at most 9 elements consisting of $H \cap K_{n-1}^n$ and 8 sets of at most $(3^{2n-2} - 9)/8$ elements each as follows: Suppose U and U₁, not in K_{n-1}^{n} , are such that $U^{3^{w}}$ and $U_1^{3^{w_1}}$ are in K_{n-1}^n . Then \widehat{U} and U_1 are in the same set in the partition if and only if $U^{3^w} = U_1^{3^{w_1}}$. By the second observation, only 2 of these sets contain elements with property B. Consider one of these sets and call it M. M can be

partitioned into $(3^{2n-2} - 9)/8 \cdot 9$ sets of at most 9 elements each where the other elements in the set containing an element U are $U \cdot V$ where V is in $H \cap K_{n-1}^n$. By the first observation, at most 3 of these elements can have property B. So the total number of elements in $H \cap K_1^n$ with property B is bounded by

$$2 \cdot 3 \cdot (3^{2n-2} - 9)/8 \cdot 9 + 9 < 3^{2n-4}$$

for $n \geq 4$.

LEMMA 4.2. Suppose $U = \phi(\mu, \nu, \rho)_1$ has property B, $9 \parallel 1 - u$ and $n \ge 4$. Then $U' = \phi(\xi\mu, \xi\nu, \xi\rho)_r$ with 3 not dividing ξ has property B only if $\xi \equiv 1 \pmod{9}$.

Proof. Suppose
$$u' + 3\xi(\nu - \rho - \mu) \equiv 1 \pmod{3^n}$$
. Then

$$1 - u' \equiv \xi 3 (\nu - \rho - \mu) \equiv \xi (1 - u) \pmod{3^n}$$

Also $(u'-1) \equiv 9\xi^2(\mu^2 + \nu\rho)/(u'+1) \pmod{3^n}$. So

$$(u'+1)(1-u)\xi \equiv \xi^2(-9(\mu^2+\nu\rho)) \pmod{3^n}.$$

Therefore

(4.1)
$$(u'+1)(1-u)\xi \equiv (1-u)(1+u)\xi^2 \pmod{3^n}.$$

Since 3 does not divide ξ and 9 \parallel (1 - u), congruence (4.1) becomes

 $(u'+1) \equiv \xi(u+1) \pmod{3^{n-2}}.$

But since both u and u' are congruent to $1 \mod 9$, $u' + 1 \equiv u + 1 \pmod{9}$ and since $n - 2 \ge 2$, this gives $1 \equiv \xi \pmod{9}$.

Now K_{n-1}^n has 9 elements with property B and the elements with property B in $H \cap K_{n-1}^n$ form a subgroup of $H \cap K_{n-1}^n$ so that if $H \cap K_{n-1}^n$ has more than 3 elements with property B, then

$$H \cap K_{n-1}^{n} = \{ \pm (1 + 3^{n-1}\mu, 3^{n-1}\nu, 3^{n-1}\rho, 1 - 3^{n-1}\mu) \}$$

with $(\nu - \mu - \rho) \equiv 0 \pmod{3^n}$ which contains only $1G_p(I)$, namely

$$[\pm (1 - 3^{n-1}, 3^{n-1}, -3^{n-1}, 1 + 3^{n-1})]$$

Suppose $U = \phi(\mu, \nu, \rho)_1$ is in $H \cap K_1^n$. Then $U^x = \phi(\xi\mu, \xi\nu, \xi\rho)$ is in $H \cap K_{n-1}^n$ for some x and if 3 divides $\mu^2 + \nu\rho$, then U^x is in the $G_p(I)$ since $(\mu^2 + \nu\rho) \equiv 0 \pmod{3}$ implies that U^x generates a $G_p(I)$ [4].

LEMMA 4.3. Suppose $H \cap K_{n-1}^n$ contains 9 elements with property B. Then $H \cap K_1^n$ has at most $3^{2n-3} + 3^{2n-4}$ elements with property B.

Proof. If $|H \cap K_1^n| \leq 3^{2n-3}$, we are done so that we may assume

$$|H \cap K_1^n| = 3^{2n-2}.$$

Consider

$$M = \{ U \mid U \text{ is in } K_1^n - K_2^n \text{ and } U^{3^{n-2}} \text{ is not in the } G_p(I) \}.$$

 $|M| = 3^{2n-2} - 3^{2n-3}$ and each element in M has order 3^{n-1} . So there are

$$3^{2n-3}(2)/3^{n-2}(2) = 3^{n-3}$$

distinct cyclic groups of order 3^{n-1} whose generators are in M. Let

$$[U = \phi(\mu, \nu, \rho)_1]$$

be such a cyclic group and, if possible, select U with property B. Then by the assumptions on M, 3 does not divide $\mu^2 + \nu\rho$ so that $9 \parallel \nu - \rho - \mu$. Then, by Lemma 4.2, the other elements in $M \cap [U]$ with property B have $\xi \equiv 1 \pmod{9}$ where $1 \leq \xi \leq 3^{n-1}$. So the number of such elements is at most 3^{n-3} . So the number of elements in $H \cap K_1^n$ with property B is bounded by

$$3^{n-3}(3^{n-1}) + 3^{2n-4} + 2 \cdot 3^{2n-4} = 3^{2n-4} + 3^{2n-3}.$$

LEMMA 4.4. Suppose $H \pmod{3} = 5$, the tetrahedral group, and that H contains R. Then $r \leq 4 \cdot 3^{2n-4}$.

Proof. The elements generating groups conjugate to [R] in LF(2, 3) = 3 are R,

$$R_1 = \pm (0, 1, -1, 1), \quad R_2 = \pm (-1, 1, 0, -1), \quad R_8 = \pm (-1, 0, 1, -1).$$

Consider a fixed R_i . There is an A in LF(2, 3) such that $ARA^{-1} = R_i$ and since $H \mod p = LF(2, 3)$, there is an A_1 in H such that $\bar{A}_1 = A$. Then $(A_1RA_1^{-1})^- = R_i$ and $A_1RA_1^{-1}$ is conjugate to R in H. So each conjugate of R in LF(2, 3) has a pre-image in H which is conjugate to R. If $H \cap K_{n-1}^n$ contains at most 3 elements with property B, then we are done by Lemma 4.1 and Proposition 2.4. Suppose $H \cap K_{n-1}^n$ has 9 elements with property B. Consider R' in H such that R' is conjugate to R and $\bar{R}' = R_1$. Then

$$R' = U \cdot \pm (0, 1, -1, 1)$$

= $\pm (-3^{r}\nu, u + 3^{r}\mu + 3^{r}\nu, -u + 3^{r}\mu, u + 3^{r}\rho - 3^{r}\mu)$

where $U = \phi(\mu, \nu, \rho)_r$ is some fixed element of K_1^n such that

$$u + 3^r(\rho - \mu - \nu) \equiv 1 \pmod{3^n}.$$

Consider $U' \cdot R'$ where $U' = \phi(\mu', \nu', \rho')_s$. This will be conjugate to R' if and only if

$$1 \equiv -u'3^{r}\nu - 3^{r+s}\mu'\nu - 3^{s}\nu'u + 3^{r+s}\mu\nu' + 3^{s}\rho'u + 3^{r+s}\mu\rho' + 3^{r+s}\nu\rho'$$

$$(4.2) + u'u + u'3^{r}\rho - u'3^{r}\mu - 3^{r+s}\mu'\rho - 3^{s}\mu'u + 3^{r+s}\mu'\mu$$

$$\equiv u' + 3^{s}u(\rho' - \nu' - \mu') + 3^{r+s}(\mu\nu' - \mu'\nu - \mu'\rho + \mu\rho' + \nu\rho' + \mu'\mu)$$

$$(\text{mod } 3^{n})$$

since $u + 3^r (\rho - \mu - \nu) \equiv 1 \pmod{3^n}$. If U' satisfies congruence (4.2), we say U' has property C. Suppose $V = \phi(x, y, z)$ is in K_{n-1}^n . Then $V \cdot U'$ has

property C if and only if V does since

$$u' + u3^{s}(\rho' - \nu' - \mu' + 3^{n-s-1}u'(z - x - y))$$

 $+ 3^{r+s}(\mu\nu' - \mu'\nu - \mu'\rho + \mu\rho' + \nu\rho' + \mu'\mu)$
 $+ 3^{n-s-1}u'(\mu y - \nu x - x\rho + \mu z + \nu z + x\mu)$
 $\equiv 1 \pmod{3^{n}}$

if and only if 3 divides (z - x - y) if and only if V has property C. Also if U' has property C and $U'^{z} = \phi(\mu'\xi, \nu'\xi, \rho'\xi)$ is in K_{n-1}^{n} , then U'^{z} has property C. Since all the elements in $H \cap K_{n-1}^{n}$ have property B, at most 3 elements in $H \cap K_{n-1}^{n}$ have property C. Arguing as in Lemma 4.1, we see that R_{1} has at most 3^{2n-4} pre-images in H conjugate to R and so by Proposition 2.5, each of R, R_{1}, R_{2} and R_{3} has at most 3^{2n-4} such pre-images. Hence $r \leq 4 \cdot 3^{2n-4}$.

THEOREM 3. There exists an n_5 such that if $n \ge n_5$ and H is of level n in $LF(2, 3^m), m \ge n$, then g(H) > g.

Proof. From Lemma 3.2 and Propositions 3.4 and 3.6, $W < 3^{7n/9+4}$ for $n \ge 9$; from Proposition 3.8, the number of elements with property A is at most $(n + 1)3^{n+3}$. Now if $H \mod 3 = 3$, then $r \le 4 \cdot 3^{2n-4}$ and $t \le 3 \cdot (n + 1)3^{n+3}$. So

$$g(H) \ge 1 + 3^{2n-2} \{3^{n+2} + 6 - (3^n + 54 + 32 \cdot 3^{n-2} + 24 \cdot (n+1) \cdot 3^{n+2} + 24 \cdot 3^{n/9+4}\}/12 \cdot 3^{2n-1}$$

= 1 + a \{3^{n-2} (81 - 9 - 32) - b (n + 1) - c \cdot 3^{n/9+4} - d\}
= 1 + f(n)

where a, b, c and d are constants. But $\lim_{n\to\infty} f(n) = \infty$. If $H \mod 3 \neq 3$, then $r \leq 3^{2n-3} + 3^{2n-4}$ and $t \leq (n+1)^2 3^{n+3}$ so that

$$g(H) \ge 1 + 3^{2n-2} \{3^{n+2} - 6 - (3^n + 54 + 8 \cdot 3^{n-1} + 8 \cdot 3^{n-2} + 24(n+1)^2 3^5 + 24 \cdot 3^{7n/9+4}\}/12 \cdot 3^{2n-1}$$

= 1 + a \{3^{n-2}(81 - 9 - 24 - 8) - b(n+1)^2 - c \cdot 3^{7n/9+4} - d\}
= 1 + f_1(n)

where a, b, c and d are constants. But $\lim_{n\to\infty} f_1(n) = \infty$. So in either case, there is an n_5 such that for $n \ge n_5$ and H of level n, g(H) > g.

For the case p = 2, refer to the lower bounds for g(H) given in Propositions 4.1, 4.4, 4.5 and 4.6 in [2]. Observe that in each case, the lower bound on $g(H) \to \infty$ as $n \to \infty$. Hence we have the following theorem which completes our proof that the number of fields of a fixed genus in $K(p^n)$, all p and n, is finite.

THEOREM 4. There exists an n_6 such that if $n \ge n_6$ and H is of level n in $LF(2, 2^m), m \ge n$, then g(H) > g.

BIBLIOGRAPHY

- 1. J. DENNIN, Fields of modular functions of genus 0, Illinois J. Math., vol. 15 (1971), pp. 442-455.
- 2. , Subfields of K(2ⁿ) of genus 0, Illinois J. Math., vol 16 (1972), pp. 502-518.
- J. GIERSTER, Die Untergruppen der Galois' schen Gruppe der Modular-Gleichungen für den Fall eines primzahlen Transformation-grades, Math. Ann., vol. 18 (1881), pp. 319–365.
- , Über die Galois' sche Gruppe der Modulargleichungen wenn der Transformationsgrad die Potenz einer Primzahl > 2 ist, Math. Ann., vol. 26 (1886), pp. 309-368.
- 5. R. C. GUNNING, Lectures on modular forms, Princeton, 1962.
- D. L. McQUILLAN, Some results on the linear fractional group, Illinois J. Math., vol. 10 (1966), pp. 24-38.
- 7. ——, On the genus of fields of elliptic modular functions, Illinois J. Math., vol. 10 (1966), pp. 479–487.

UNIVERSITY OF CONNECTICUT STORRS, CONNECTICUT