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1. Introduction

In 1962, L. Mt published a paper [5] containing a theorem which charac-
terized a certain set of logarithms in Mikusinski’s Operational Calculus.
This same theorem appears again in [6]. Unfortunately, the theorem is in-
correct as stated, given Mt’s definitions and assumptions. Part of the
problem lies in the fact that the proof utilizes assumptions which do not ap-
pear in the hypotheses of the theorem. The proof itself is essentially an
adaptation to the operational calculus setting of the proof of the Hille-Yosida
Theorem as it appears in the book of Hille and Phillips (see [4]).

This notwithstanding, it is clear that Mit4’s result is essentially correct.
With a little care, a true version of his theorem can be proved without too
much difficulty.
The results of this present article were obtained independently and without

knowledge of Mt’s prior work. Our methods are entirely different from
Mt’s. He works entirely within the field of Mikusinski operators with its
notion of convergence. The present article views Mikusinski operators as
linear transformations on a Banach space and applies the Hille-Yosida
Theorem directly. Our arguments are, on the whole, more economical and
reveal the connection between (Mikusinski) operators and the more tradi-
tional linear transformations on a Banach space.

Let Ll[0, T] denote the Banach algebra of integrable functions on [0, T].
Addition and scalar multiplication are defined as usual and multiplication is
defined by convolution, i.e. if f, g eLl[0, T],fg(x) ff(x )g(t) dr. The
norm of an element f e L[0, T] is f If(t) dt. In this article, we shall, as
above, denote convolution of functions by justaposition and in place of
L110, T] we shall usually write L.

In the first part of this paper we shall show that there is a natural identifica-
tion between a certain uubset of Mikusinski’s operators (on the finite interval
[0, T]) and a certain class of closed multipliers on L1. By a closed multiplier
on L we mean a closed linear map A D --, L, where D is an ideal in L and
A(fg) fA (g) for all g e D and f e L. An example of such a multiplier
would be the map A defined by A (f) f’, where D(A) {f f is absolutely
continuous and f(0) 0}.
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The remainder of the pper is devoted to showing how, by redefining the
notion of logarithm in Mikusinski’s operational clculus, one cn use the bove
identification together with some results of T. K. Boehme [1] on bounded
multipliers and the classical Hille-Yosida Theorem on the generation of
semigroups to produce necessary and sufficient conditions for the existence of
logarithms. We assume that the reader is fmilir with the ideas nd nota-
tion in Mikusinski’s paper and book. (See [7] and [8].) However, for the
sake of completeness we include some of the basics.

2. Mikusinski operators

Mikusinski’s operators (or convolution quotients) re pirs of functions
(p, q) p/q where p and q are locally integrable on [0, T) and q does not
vanish identically on any neighborhood of the origin. We shall denote the
set of all such functions q by X0. Equality of operators is defined by p/q
pl/ql if and only if pql pl q. The sum and product of operators is defined
by p/q + r/s (ps + qr)/qs and p/q.r/s pr/qs, respectively. By an
important theorem of Titchmarsh, q, s e X0 imply qs Xo. Hence, the opera-
tions are closed. It is easy to verify that they are well defined.

Following Mikusinski, we shall sometimes write {a(t)} for the function
a a(t), 0 _< < T. The symbol will be used exclusively to mean the
function whose value at each point of [0, T) is 1, i.e. {1}. l/1 will
denote the unit in the ring of operators. Thus, an operator p/q has an inverse
q/p if and only if p e X0. The symbol s will denote/-1 (the differential oper-
ator). A complex number a can be identified with the operator {a}/l and if
a is locally integrable on [0, T), a can be identified with l{ a(t)}/l so that the
ring of (Mikusinski) operators contains the set of complex numbers as well
as the locally summable functions.
A function of two wribles, x(X, $), continuous on the rectangle t < ), < ,

0 _< < T, is termed parametric, and we write x(k) {x(k, $)}. Parametric
functions are special cases of operator-valued functions, i.e. functions of a
rel variable whose wlues re Mikusinski operators. If x(, t) hs con-
tinuous partial derivative (0/0k)x(k, t) on the rectangle, then the parametric
function x(k) {x(k, t)} is said to have a continuous derivative x’(k)
{(0/0k)x(),, )}. An operator-valued function x(k), k _< k < ks, has a
continuous derivative x’() if nd only if there exists parametric function
a(k) having a continuous derivative a’(k) such that x(k) a(k)/b and
x’ (k) a’ (k)/b where b X0. (See Mikusinski [8, pp. 230-231].)

3. Mikusinski operators and closed multipliers on L
Mikusinski operators give rise to closed multipliers in the following w-
Let A p/q, D(A) {f eL i]P/q eL1} and define A(f) fp/q for

feD(A).
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It is clear that A is unambiguously defined, linear on its domain and that
A (fg) fA (g) for all f L and g D(A). Finally, A is closed, for if {f,‘} is a
sequence in D(A ), f. --f and A (f,‘) g -. g, then pf,‘ g,‘ q so that pf gq,
i.e. f D(A) and A (f) g.
Denote by the function as defined above which assigns closed multipliers

to operators, define a Mikusinski operator p/q to be of finite type if and only if
there is an operator u/v with u, v L such that p/q u/v, and let M0 be the
class of closed multipliers A such that D(A) n Xo . We then have the
following theorem.

THEOREM 3.1. If iS restricted to the set of operators of finite type, then the
range of is Mo and is one-to-one.

Proof. If p/q is of finite type, then there exist u, v L such that p/q u/v.
But {vf if L} -- D(A) and by Titchmarsh’s theorem if v e X0 and f e X0,
then vf Xo. Thus, D(A) n Xo . This implies also that D(A) is dense,
since by a theorem due to C. Foias [3] if v e X0, then vf f L1} is dense in L.

Conversely, let A e M0 and let fo D(A) n Xo. Set A($o) p, fo q.
We claim that (p/q) A. To see this, let B {flPf/q LI} and take
eD(A). Then A(fo) foA() A(fo) so that A($o)/fo A(), i.e.

teB. ThusD(A) _B. IfB,p/q hL. SinceD(A) isdense, it
must contain an approximate identity {e,‘}. Since CA(f0) tp hq hfo,
A(fo)e,‘ hfo e,‘ or fo A(e,‘) hfo e,‘. However, since f0 Xo, the last
equation implies by Titchmarsh’s theorem that (e,‘) he,,. But te,‘ --+

and A (e,‘) --. h so that D(A) and A() h since A is closed. Therefore
B D(A) and A(fo)$/fo A(f) for every feD(A). Thus, (p/q) A.
It is a straight forward matter to prove that 2 is one-to-one.

THEOREM 3.2. Let (p/q) A. Then (p/q)- exists (as a Mikusinski
operator) if and only if A- exists. In either case ( (p/q)-) A-.

Proof. If (p/q)- exists, then p e X0, so that (p/q)- q/p. Letting
B fl(q/p) we have, if f eD(A), A(f) (p/q)f so that qA(f)/p , i.e.
A (f) D(B) and BA(f) f. Similarly, AS(f) f for all f D(B).

Conversely, assume A-1 exists. Since p/q A(fo)/fo for some
foe D(A) n Xo, it must be the case that A(fo) Xo. Otherwise, if A(fo)
vanishes on [0, a], say, we could find functions and such that b but
but A($0) A(fo). This would mean that A (f0 b) A (f0 ) which in
turn implies that fo f0 b. Hence, since fo e X0, and this is a con-
tradiction. Therefore, A(fo) Xo so that (p/q)- exists.

4. Logarithms
There are certain operators in the operational calculus which are of special

importance. They are the so-called logarithms. An operator o is a logarithm
if satisfies a differential equation of the form x’(h) x(),), x(0) $,
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where x(h) is an operator-valued function defined in some real interval. It
turns out that for the case treated here (i.e. when the interval is finite) there
are three types of logarithms depending on the domain of the function x(X).
As mentioned earlier, we propose to redefine the notion of logarithms. Our
definition will be somewhat narrower than Mikusinski’s but will still include
the most important logarithms. Moreover, it will be possible to obtain neces-
sary and sufficient conditions for the existence of logarithms (in this narrower
sense).
We begin by stating Mikusinski’s definition:

DEFINITION 4.1 (Mikusinski). The operator co is a right (left) logarithm
if and only if there exists an operator-valued function x(k) such that
X’(k) cox(X), x(0) , 0 _< k < (-- < k <_ 0) and x(k) cannot be
continued to the left (right). co is a bilateral logarithm if and only if
x’()‘) cox(X), x(0) }for - < X < . Allthree cases can occur.
(See [7, p. 235].)
We propose to replace the above by the following definition.

DEFINITION 4.2. The operator co is a right logarithm if and only if there
exists an operator-valued function x(X) such that

(i) x’(X) x(X), x(0) , 0 _< X < ,
(ii) each x(X) is a bounded operator, i.e. the multiplier determined by

x()‘) is bounded,
(iii) limx0 x()‘)f f for each f e L (the convergence here is norm con-

vergence in L1).
Similar definitions hold for left and bilateral logarithms. If co is a logarithm
we shall write e for

For example, --s is a right logarithm. As a matter of fact e-* h*, ), _> 0
where hx denotes translation to the right by . -/s, where (/s)-1

1//(vt) }, is a right logarithm since it satisfies x ()‘) (/s)x()‘) for ), _> 0
with

x()‘) ti for k 0

()‘/2/(t))e(m for k > 0

Actually /s is a bilateral logarithm since it can be continued to the left.
(See [7, pp. 233-235] for further details.)
In what follows, we will consider only fight logarithms. However, similar

conclusions hold for left and bilateral logarithms.

THEOREM 4.1. If co is a right logarithm, then co has the semigroup property,

Proof. Fix )‘1 >_ 0 and put y()‘) x()‘)x()‘) x()‘ -t- )‘).
is differentiable and

Then y()‘)

y’()‘) X’()‘)X()‘l) X’()‘ + )‘1) oX()‘)X(M) coX(), -t- X1) coy()‘).
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Moreover, y(0) 0. However, there is only one function satisfying the
conditions on y() and this function is y() 0. (See [7, p. 232].) This
proves the assertion.

THEOREM 4.2. Let o be a logarithm of finite type. Then the multiplier de-
termined by is the infinitesimal generator of the semigroup x(h).

Proof. Let A be the infinitesimal generator of x().
A(f) limx0 (x()f f)/, in L norm. However,

By definition

limx.o (x(X)f f)/, x’(O)f x(O)f

in the operational sense and hence, these limits are the same.
A (f) f for all f e D(A).

Therefore

THEOREM 4.3. Let be an operator of finite type. Then in order that o be a
logarithm, it is necessary and suicient that there exist numbers a and M such that

(i) For each > a, there is a function x of bounded variation on [0, T] with
the property that o)-1 s,x.

(ii) Vat (s-lvn) -t- s-lvn(0) -< i(h a)-, n 1, 2, 3, ....
We assume here that each is normalized so that vx(t) vx(t-) for > 0 and
(0) (0+). Also ’* denotes n-fold convolution.

Proof. If o is a logarithm, then by the Hille-Phillips-Yosida theorem there
are real numbers a and M such that ( )-1 exists for ), > a as a bounded
multiplier. By a theorem of T. K. Boehme [1, p. 226], if T is a bounded
multiplier on L1, then T has the form T(g) sg for all g e L where is a
function of bounded variation on [0, T] and s is the differential operator. If

is normalized, then T Var () -t- (0) I. Hence for > a we have
(h )-1 svx. Moreover,

1] (,-- )-111 <- M(h-- a)- for n 1, 2, 3, ...,
i.e. Var (s-lv) -[- s-lv(0) -< i(), a)-.

Conversely, if 0 is an operator of finite type such that conditions (i) and (ii)
hold, then the multiplier determined by 0 generates a strongly continuous
semigroup of bounded linear operators, i.e. 0 is a logarithm.
We conclude with two applications of this theorem.

Example 4.1. Let 0 --s. Then

r -Xrdr(kq- s) s
(n-- 1)re

and it is easily seen that

r e-Xdr <Var
(n- 1)t

so that -s is a right logarithm.
logarithm.

We note, however, that s is not a right
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Example 4.2. Let /- {ea} -{eat} -1, where a is real. It is not
hard to verify that /(X + ) {e-x}, so that

+ (n- 1)!
)- e-x)" * dr.

Var e-)*dr < 1/(X-a) fork > a,n 1,2,3,.-.
(n- 1)!

Hence, e"}-1 is a right logarithm for each real a.
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