INTERPOLATION THEOREMS FOR THE CLASS N^+

BY

NIRO YANAGIHARA

1. Introduction

Let D be the unit disk $\{ |z| < 1 \}$. A function f(z), holomorphic in D, is said to belong to the class H^p , $0 , or <math>H^{\infty}$, if

(1.1)
$$||f||_{p} = \{\sup_{0 \le r < 1} \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta\}^{1/p} < \infty$$

or

(1.2)
$$\|f\|_{\infty} = \sup_{0 \le r < 1} \max_{|z|=r} |f(z)| < \infty,$$

A function f(z), holomorphic in D, is said to belong to the class N of functions of bounded characteristic if

(1.3)
$$T(r,f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta \leq M < \infty$$

for $0 \leq r < 1$, with a constant *M*. A function f(z) of the class *N* is said to belong to the class N^+ if

(1.4)
$$\lim_{r \to 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \, d\theta = \int_0^{2\pi} \log^+ |f(e^{i\theta})| \, d\theta.$$

Thus, for 0 ,

(1.5)
$$H^{\infty} \subset H^{q} \subset H^{p} \subset N^{+} \subset N,$$

and these inclusion relations are proper (see [9, p. 82], where N and N^+ are denoted as A and D, respectively).

Interpolation problems have been studied by several authors. For H^{∞} , by Carleson [1], Hayman [5], and Newman [8]; for H^{p} , $1 \leq p < \infty$, by Shapiro and Shields [10]; for H^{p} , 0 , by Kabaila [6]; for N, by Naftalevič [7]. (The present author wishes to express his gratitude to Professor Shields for having let him know of the interesting paper [7]. See Math. Reviews, vol. 22 (1961) #11141.)

Here we consider corresponding problems for the class N^+ .

2. The interpolation problems

Suppose a class X of holomorphic functions in D be given. Let $\{z_n\}$ be a point sequence in D. When a complex sequence $\{c_n\}$ is given, the problem is to seek a function $f(z) \in X$ such that

(2.1)
$$f(z_n) = c_n \text{ for each } n.$$

Received December 5, 1972.

Let Y be a collection of complex sequences. Suppose for any sequence $\{c_n\} \in Y$ there is a function $f(z) \in X$ which satisfies (2.1); then the sequence of points $\{z_n\}$ in D is said to be a *universal interpolation sequence for the pair* (X, Y). We write it simply as *u.i.s. for* (X, Y).

We use the following notations: For a sequence $Z = \{z_n\}$ in D, we put

(2.2)
$$l_{z}^{p} = \{\{c_{n}\}; \sum_{n=1}^{\infty} (1 - |z_{n}|^{2}) |c_{n}|^{p} < \infty\}, \quad 0 < p < \infty.$$

In the sequel we suppose that

(2.3)
$$z_n \neq 0$$
, $z_n \neq z_m$ if $n \neq m$, $|z_n| \to 1$ as $n \to \infty$,

(2.4)
$$\sum_{n=1}^{\infty} (1 - |z_n|) < \infty.$$

We denote by $B_n(z)$ the infinite product

$$(2.5) B_n(z) = \prod_{m \neq n} \{ (|z_m|/z_m)((z_m - z)/(1 - \bar{z}_m z)) \}.$$

Carleson [1] showed that, $\{z_n\}$ is a u.i.s. for (H^{∞}, l^{∞}) if and only if $(l^{\infty}$ denotes, as usual, the set of all bounded sequences)

(2.6)
$$|B_n(z_n)| = \prod_{m \neq n} |(z_m - z_n)/(1 - \bar{z}_m z_n)| \ge \delta > 0$$
 for all n .

Shapiro and Shields [10] showed that (2.6) is necessary and sufficient also for $\{z_n\}$ to be a u.i.s. for $(H^p, l_s^p), 1 \leq p < \infty$. Kabaila [6] obtained analogous results for 0 .

Recently, Duren and Shapiro [4] showed that there is a u.i.s. for (H^p, l^{∞}) which does not satisfy the condition (2.6), if 0 .

Here we put

(2.7)
$$l_{z}^{+} = \{\{c_{n}\}; \sum_{n=1}^{\infty} (1 - |z_{n}|^{2}) \log^{+} |c_{n}| < \infty\}.$$

Then:

THEOREM 1. In order that a sequence $Z = \{z_n\}$ be a u.i.s. for (N^+, l_s^+) , it is sufficient that (2.6) hold, and is necessary that

$$(2.8) \qquad (1-|z_n|^2)\log(1/|B_n(z_n)|) \to 0 \quad as \quad n \to \infty.$$

Remark 1. As for (2.8), we remark that if we write

(2.7')
$$\hat{l}_{z}^{+} = \{\{c_{n}\}; \sup_{n} ((1 - |z_{n}|^{2}) \log^{+} |c_{n}|) < \infty\},$$

then Naftalevič [7, p. 27] proved that Z is a u.i.s. for (N, l_z^+) only if

(2.8')
$$\sup ((1 - |z_n|^2) \log (1/|B_n(z_n)|)) < \infty.$$

Remark 2. It is obvious that (2.6) implies (2.8), but the example

$$\{z_n\} = \{1 - n^{-2}\}$$

shows that (2.8) does not imply (2.6).

Further, we put

 $(2.7'') l_x^{\#} = \{\{c_n\}; c_n > 0, \quad \sum (1 - |z_n|^2) | \log c_n | < \infty\}$ and denote by $N^{\#}$ the set of zero-free holomorphic functions such that $(2.9) f \in N^{\#} ext{ means } f(0) > 0 ext{ and } \phi(z) = \log f(z) \in H^1,$ where we take as $\phi(0) = ext{real.}$ Obviously, $l_x^{\#} \subset l_x^+$ and $N^{\#} \subset N^+$.

THEOREM 2. A sequence $Z = \{z_n\}$ is a u.i.s. for $(N^{\#}, l_{\pi}^{\#})$, in the sense that for any $\{c_n\} \in l_{\pi}^{\#}$ there exists $f \in N^{\#}$ with $\log f(z_n) = \log c_n$, $n = 1, 2, \dots$, if and only if (2.6) holds. (Note that $\log c_n = \text{real.}$)

In [10] and [6], it is shown that if $f(z) \in H^p$, $0 , then <math>\{f(z_n)\} \in l_s^p$, i.e.

$$\sum (1 - |z_n|^2) |f(z_n)|^p < \infty,$$

supposing $\{z_n\}$ satisfies (2.6). It would be natural to conjecture, as a corresponding statement, that $\{f(z_n)\} \in l_x^+$, i.e.,

$$\sum (1 - |z_n|^2) \log^+ |f(z_n)| < \infty \quad \text{for any} \quad f(z) \in N^+,$$

supposing that $\{z_n\}$ satisfies (2.6).

This is not true (Theorem 3), but a somewhat weaker result holds even for the class N (Theorem 4). That is:

THEOREM 3. We can find a sequence $\{z_n\}$ satisfying (2.6), for which there is a function $f(z) \in N^+$ with

(2.10)
$$\sum_{n=1}^{\infty} (1 - |z_n|^2) \log^+ |f(z_n)| = \infty.$$

THEOREM 4. Suppose $\{z_n\}$ satisfies (2.6). If $f(z) \in N$, we have

(2.11)
$$\sum_{n=1}^{\infty} (1 - |z_n|^2) (\log^+ |f(z_n)|)^{1-\delta} < \alpha$$

for any δ , $0 < \delta < 1$.

On the other hand, we can find a sequence $\{z_n\}$ in D and a complex sequence $\{c_n\}$ such that $\{z_n\}$ satisfies (2.4) as well as (2.6), and $\{c_n\}$ satisfies, for any δ , $0 < \delta < 1$,

(2.11')
$$\sum_{n=1}^{\infty} (1 - |z_n|^2) (\log^+ |c_n|)^{1-\delta} < \infty,$$

while there is no function $f(z) \in N$ with $f(z_n) = c_n, n = 1, 2, \cdots$.

Remark. Naftalevič [7, p. 13 and p. 17] proved that, if $\{z_n\}$ satisfies (2.4), there is a sequence $\{z'_n\}$ with $|z'_n| = |z_n|$, such that

$$\sum_{n=1}^{\infty} (1 - |z'_n|^2) \log^+ |f(z'_n)| < \infty \text{ for any } f(z) \in N,$$

and

 $|B_n(z'_n)| \ge \delta > 0$ for all n.

3. Proof of Theorem 1

(i) Suppose $\{z_n\}$ satisfies (2.6). For a sequence $\{c_n\} \in l_x^+$, let

(3.1) $c'_n = c_n \text{ if } |c_n| \ge 1; \quad c'_n = 1 \text{ if } |c_n| < 1.$

Then, by (3.1), (2.6) and (2.7), the function

(3.2)
$$g(z) = \sum_{n=1}^{\infty} (1 - |z_n|^2)^2 \log c'_n \frac{B_n(z)}{B_n(z_n)} \frac{1}{(1 - \bar{z}_n z)^2},$$

where we take $-\pi \leq \arg [c'_n] < \pi$, is holomorphic in *D*. If we put $f_1(z) = \exp [g(z)],$

$$f_{1}(z) \text{ is holomorphic in } D \text{ and } f_{1}(z_{n}) = c'_{n}, n = 1, 2, \cdots \text{. Further,}$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} |g(re^{i\theta})| d\theta$$

$$\leq \sum_{n=1}^{\infty} (1 - |z_{n}|^{2})^{2} (\log |c'_{n}| + |\arg [c'_{n}]|) (1/|B_{n}(z_{n})|)$$
(3.3)
$$\times \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{|1 - \bar{z}_{n}z|^{2}} d\theta$$

$$\leq \frac{1}{\delta} \sum_{n=1}^{\infty} (1 - |z_{n}|^{2}) (\log^{+} |c_{n}| + \pi)$$

$$< \infty;$$

$$l_{n} = (1 - |z_{n}|^{2}) (\log^{+} |c_{n}| + \pi)$$

hence $g(z) \in H^1$, therefore $f_1(z) \in N^+$. Put

(3.1') $c''_n = 1$ if $|c_n| \ge 1$; $c''_n = c_n$ if $|c_n| < 1$.

Then, by the theorem of Carleson [1], there is a bounded holomorphic function $f_2(z)$ with $f_2(z_n) = c''_n$. Thus if we put $f(z) = f_1(z)f_2(z)$ then $f(z) \in N^+$ and f(z) satisfies $f(z_n) = c'_n c''_n = c_n$.

(ii) We need some lemmas to obtain the second part of the theorem.

LEMMA 1. The class N^+ is an F-space in the sense of Banach [2, p. 51] with the distance function

(3.4)
$$\rho(f,g) = \frac{1}{2\pi} \int_0^{2\pi} \log \left(1 + |f(e^{i\theta}) - g(e^{i\theta})|\right) d\theta$$

for f, $g \in N^+$. That is:

(1°) $\rho(f, g) = \rho(f - g, 0).$

(2°) Let f_n be functions in N^+ such that $\rho(f, f_n) \to 0$ as $n \to \infty$. Then for any complex number α , $\rho(\alpha f, \alpha f_n) \to 0$ as $n \to \infty$.

(3°) Let α , α_n be complex numbers such that $\alpha_n \to \alpha$ as $n \to \infty$. Then for each function $f \in N^+$, $\rho(\alpha_n f, \alpha f) \to 0$ as $n \to \infty$.

(4°) N^+ is complete with respect to the metric (3.4).

LEMMA 2. The class l_s^+ is an F-space in the sense of Banach with the distance function

(3.5)
$$\sigma(u, v) = \sum_{n=1}^{\infty} (1 - |z_n|^2) \log (1 + |c_n(u) - c_n(v)|)$$

430

for $u = \{c_n(u)\}, v = \{c_n(v)\} \in l_s^+$.

For the proofs, see [11, Theorem 1] and [12, Theorem 1].

LEMMA 3. We have, for $f(z) \in N^+$,

$$(3.6) \qquad (1-|z|^2)\log(1+|f(z)|) \leq 4\rho(f,0), |z|<1.$$

Proof. The function $\log (1 + |f(z)|)$ is subharmonic if f(z) is holomorphic. Hence for R, 0 < R < 1,

 $\log\left(1+\left|f(z)\right|\right)$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 + r^2 - 2Rr \cos(\theta - \phi)} \log(1 + |f(Re^{i\phi})|) d\phi$$

 $z = re^{i\theta}, r < R$. Thus

$$\log(1+|f(z)|) \leq \frac{R+r}{R-r} \frac{1}{2\pi} \int_0^{2\pi} \log(1+|f(Re^{i\phi})|) d\phi$$

Letting $R \to 1$ we have, using the property (1.4) of functions of N^+ ,

 $(1 - |z|) \log (1 + |f(z)|) \leq 2\rho(f, 0),$

and hence (3.6). Q.E.D.

Now we prove the second part of Theorem 1. Let K be the set of functions $f(z) \in N^+$ such that $f(z_n) = 0, n = 1, 2, \cdots$. K is easily seen to be a closed subspace of N^+ . Put

$$\bar{N}^+ = N^+/K, \quad \bar{f} = f + K \in \bar{N}^+ \text{ for } f \in N^+,$$

and

$$\bar{\rho}(\bar{f},\bar{o}) = \inf_{f \in \bar{f}} \rho(f,0), \qquad \bar{\rho}(\bar{f},\bar{g}) = \bar{\rho}((f-g),\bar{o}).$$

Then $\bar{\rho}$ is a distance function in \bar{N}^+ , and \bar{N}^+ becomes an *F*-space in the sense of Banach.

For each $u = \{c_n(u)\} = \{c_n\} \in l_s^+$ there corresponds a unique $f \in \overline{N}^+$ such that

$$f(z_n) = c_n, \quad n = 1, 2, \cdots$$
 for each $f \in \overline{f}$.

Write this correspondence as $\overline{T}: \overline{f} = \overline{T}u$. Obviously \overline{T} is linear. We will show that \overline{T} is a closed operator. Suppose $u_n \in l_s^+$, $\sigma(u_n, 0) \to 0$, and

$$\bar{\rho}(\bar{T}u_n,\bar{f}^*)\to 0$$

We have only to prove that $\bar{f}^* = \bar{0}$, i.e.,

$$f^*(z_k) = 0, \quad k = 1, 2, \cdots \text{ for } f^* \in \tilde{f}^*.$$

Put $\overline{T}u_n = \overline{f}_n$. Then, from $u_n = \{c_k(u_n)\} \to 0$, we have

$$f_n(z_k) = c_k(u_n) \rightarrow 0$$
 for each k, as $n \rightarrow \infty$.

Put $f^*(z_k) = c_k$ and $g_n(z) = f_n(z) - f^*(z)$; then

 $g_n(z_k) = c_k(u_n) - c_k, \quad k = 1, 2, \cdots$ for each $g_n \in \overline{g}_n$.

Since $\bar{\rho}(\bar{g}_n, \bar{0}) \to 0$, for any given $\epsilon > 0$ there is an n_0 such that, if $n \geq n_0$, we can find a $g_n \in \overline{g}_n$ with $\rho(g_n, 0) < \epsilon/4$. Then, by Lemma 3,

$$(1-|z_k|^2)\log\left(1+|c_k(u_n)-c_k|\right)<\epsilon \quad ext{for each} \quad k.$$

Letting $n \to \infty$ and $\epsilon \to 0$, we get $c_k = 0$, which proves that \overline{T} is closed.

By the closed graph theorem [2, p. 57], we know that \overline{T} is continuous. Let $u_n = \{c_k(u_n)\}_{k=1}^{\infty}$ be the sequence such that

 $c_k(u_n) = 0$ if $k \neq n$; $c_n(u_n) = 1$.

Obviously $\sigma(u_n, 0) \to 0$, hence $\bar{\rho}(\bar{f}_n, \bar{0}) \to 0$, where $\bar{f}_n = \bar{T}u_n$. There are $f_n \in \tilde{f}_n$ such that $\rho(f_n, 0) \to 0$, Put $F_n(z) = f_n(z)/B_n(z)$; then $F_n(z) \in N^+$ and $|F_n(e^{i\theta})| = |f_n(e^{i\theta})|$, almost every θ .

Thus, since $f_n(z_n) = 1$ and $\rho(F_n, 0) = \rho(f_n, 0)$,

$$(1 - |z_n|^2) \log (1/|B_n(z_n)|) \leq (1 - |z_n|^2) \log (1 + |f_n(z_n)/B_n(z_n)|)$$

= $(1 - |z_n|^2) \log (1 + |F_n(z_n)|)$
 $\leq 4\rho(F_n, 0)$
= $4\rho(f_n, 0) \rightarrow 0$,

which proves (2.8).

4. Proof of Theorems 2

Sufficiency. Take a sequence $\{c_n\} \in l_s^{\#}$. Then $\{b_n\}, b_n = \log c_n$ (arg $[c_n] =$ 0), belongs to l_z^1 , and by the theorem of Shapiro and Shields [10], there is a function $g(z) \in H^1$ with g(0) = 0 and $g(z_n) = b_n$, $n = 1, 2, \dots$ Hence we put $f(z) = \exp[g(z)]$, we have that $f(z) \in N^{\#}$ and $f(z_n) = c_n, n = 1, 2, \cdots$.

Necessity. $l_{*}^{\#}$ can be considered as a real Banach space with addition and scalar multiplication defined as follows:

- (4.1₁) $\{c_n\} + \{b_n\}$ is defined to be the sequence $\{c_n, b_n\}$.
- For a real number λ , $\lambda\{c_n\}$ is defined to be the sequence $\{(c_n)^{\lambda}\}$. $\|\{c_n\}\| = \sum_{n=1}^{\infty} (1 |z_n|^2) |\log c_n|.$ (4.1_2)
- (4.2)

 $N^{\#}$ can also be considered as a real Banach space with addition and scalar multiplication defined as follows:

(4.31) f + g is defined to be the function whose value at z equals f(z)g(z), i.e., (f + g)(z) = f(z)g(z),

(4.3₂) For a real number λ , λf is defined to be the function whose value at $z \text{ equals } (f(z))^{\lambda}, \text{ i.e., } (\lambda f)(z) = (f(z))^{\lambda}, (\lambda f)(0) > 0,$

(4.4) $||f|| = \sup_{0 \le r \le 1} (1/2\pi) \int_0^{2\pi} |\log f(\operatorname{re}^{i\theta})| d\theta = (1/2\pi) \int_0^{2\pi} |\log f(e^{i\theta})| d\theta$ where the logarithm is determined by $\arg[f(0)] = 0$.

Now, let P be the set of functions $f(z) \in N^{\#}$ such that $\log f(z_n) = 0, n = 1, 2,$ P is obviously a closed subspace of $N^{\#}$. Let $\bar{N}^{\#} = N^{\#}/P$, $\bar{f} = f + P$. Then $\bar{N}^{\#}$ is a real Banach space with the norm $\|\bar{f}\| = \inf_{f \in I} \|f\|$. For each

432

 $u = \{c_n(u)\} = \{c_n\} \in l_z^{\#}$ there corresponds a unique $f \in \overline{N}^{\#}$ such that

$$\log f(z_n) = \log c_n(u), \quad n = 1, 2, \cdots, \text{ for each } f \in \overline{f}.$$

Write this correspondence as \tilde{S} , i.e., $\tilde{f} = \tilde{S}[u]$. Obviously \tilde{S} is linear. \tilde{S} is shown to be a closed operator, as in (ii) of the proof of Theorem 1. Thus \tilde{S} is continuous by the closed graph theorem. Hence we have

$$(4.5) ||f|| \leq M' ||u||$$

with a constant M', for an $f \in \overline{f} = \overline{S}[u]$. Obviously

(4.6)
$$(1 - |z|^2) \log f(z) | \leq M'' ||f||$$

with a constant M''.

Let $u_n = \{c_k(u_n)\}_{k=1}^{\infty}$ be a positive sequence such that

$$c_k(u_n) = 1$$
 if $k \neq n$; $c_n(u_n) = e$.

Then $||u_n|| = (1 - |z_n|^2).$

Let
$$f_n$$
 be a function of $S[u_n]$ satisfying (4.5). Put arg $[B_n(0)] = \alpha_n$ and

$$F_n(z) = \exp\left[(\log f_n(z))/(e^{-i\alpha_n}B_n(z))\right].$$

Then $F_n(z) \in N^{\#}$ and $|\log F_n(e^{i\theta})| = |\log f_n(e^{i\theta})|$, a.e. Thus

 $(1 - |z_n|^2) |\log F_n(z_n)| \le M'' ||F_n|| = M'' ||f_n|| \le M'M''(1 - |z_n|^2).$ On the other hand

$$|\log F_n(z_n)| = |\log f_n(z_n)| / |B_n(z_n)| = 1/|B_n(z_n)|.$$

Hence $|B_n(z_n)| \ge 1/M'M''$, which proves (2.6).

5. Proof of Theorems 3 and 4.

We say that
$$\{z_n\}$$
 is an exponential sequence if

(5.1)
$$\lim_{n\to\infty} \sup \left((1 - |z_{n+1}|)/(1 - |z_n|) \right) < 1.$$

Such a sequence is easily seen to satisfy (2.6). Further, if $\{z_n\}$ lies on a radius, (5.1) is equivalent to (2.6) [3, p. 155, Theorem 9.2].

Proof of Theorem 3. Take a number b, 0 < b < 1. Let $\{z_n\}$ be defined by (5.2) $z_n = 1 - b^n, \quad n = 1, 2, \cdots$.

(5.3)
$$f(z) = \exp\left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} h(t) dt\right]$$

where

(5.4)
$$h(t) = (1/|t|)(\log(1/|t|))^{-2}, \quad \text{if } |t| \le \pi/4, \\ = 0, \qquad \qquad \text{if } |t| > \pi/4.$$

Then $f(z) \in N^+$, and, if $z = re^{i\theta}$,

$$\log^+ |f(z)| = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1-r^2}{1+r^2 \, 2r \cos \left(\theta - t\right)} \, h(t) \, dt.$$

Thus, writing $1 - r_n = \delta_n$, $r_n = |z_n| = z_n$,

$$\log^{+} |f(z_{n})| \geq \frac{1}{2\pi} \int_{-\delta_{n}}^{\delta_{n}} \frac{1 = r_{n}^{2}}{(1 - r_{n})^{2} + 4r_{n} \sin^{2}(t/2)} h(t) dt$$
$$\geq \frac{1}{2\pi} \frac{1 + r_{n}}{2(1 - r_{n})} \int_{-\delta_{n}}^{\delta_{n}} h(t) dt$$
$$\geq \frac{1}{2\pi} \frac{1}{1 - r_{n}} \int_{0}^{\delta_{n}} h(t) dt$$
$$= \frac{1}{2\pi} (1 - r_{n})^{-1} (\log(1/\delta_{n}))^{-1}.$$

Since $\delta_n = b^n$, we have

$$\sum_{n=1}^{\infty} (1 - |z_n|^2) \log^+ |f(z_n)| \ge \frac{1}{2\pi} \frac{1}{\log (1/b)} \sum_{n=1}^{\infty} \frac{1}{n} = \infty \quad \text{Q.E.D.}$$

Proof of Theorem 4. Let $f(z) \in N$ and B(z) be the Blaschke product with respect to zero points of f(z). If we write g(z) = f(z)/B(z), $\log |g(z)|$ is easily seen to be represented by a Poisson-Stieltjes integral, hence $\log g(z)$ belongs to H^p for any p, 0 [3, p. 35, Corollary]. Hence by [6, Theorem 2],

$$\sum_{n=1}^{\infty} (1 - |z_n|^2) |\log g(z_n)|^p < \infty, \quad 0 < p < 1;$$

therefore for any δ , $0 < \delta < 1$,

$$\sum_{n=1}^{\infty} (1 - |z_n|^2) (\log^+ |f(z_n)|)^{1-\delta} \leq \sum_{n=1}^{\infty} (1 - |z_n|^2) |\log g(z_n)|^{1-\delta} < \infty,$$

which proves the first part of the Theorem 4.

For the second part, let b be a number, 0 < b < 1, and put $z_n = 1 - b^n$; $c_n = \exp[n/b^n]$. Then $\{z_n\}$ satisfies (2.4) as well as (2.6), $\{c_n\}$ satisfies (2.11') for any δ , $0 < \delta < 1$, and

(5.5)
$$(1 - |z_n|) \log^+ |c_n| \uparrow \infty.$$

Since for any $f(z) \in N$ there must hold $\log^+ |f(z)| = O(1/(1 - |z|))$ [9, p. 106, where N is denoted as A], (5.5) shows that there is no $f(z) \in N$ with $f(z_n) = c_n$. Q.E.D.

The author wishes to express his hearty gratitude to the referee for cordial and valuable suggestions.

References

1. L. CARLESON, An interpolation problem for bounded analytic functions, Amer. J. Math., vol. 80 (1958), pp. 921–930.

- 2. N. DUNFORD AND J. T. SCHWARTZ, Linear operators, part I, Interscience, New York, 1964.
- 3. P. L. DUREN, Theory of H^p spaces, Academic Press, New York, 1970.
- P. L. DUREN AND H. S. SHAPIRO, Interpolation in H^p spaces, Proc. Amer. Math. Soc., vol. 31 (1972) 162-164.
- 5. W. K. HAYMAN, Interpolation by bounded functions, Ann. Inst. Fourier, vol. 8 (1958), pp. 277-290.
- V. KABAILA, Interpolation sequences for the H^p classes in the case p < 1, Litov. Mat. Sb., vol. 3 (1963) no. 1, pp. 141–147 (in Russian).
- 7. NAFTALEVIČ, On interpolation by functions of bounded characteristic, Učeniye Zapiski, Vilinius, Gos. Univ., vol. 5 (1956), pp. 5-27 (in Russian).
- D. J. NEWMAN, Interpolation in H^p, Trans. Amer. Math. Soc., vol. 92 (1959), pp. 501-507.
- 9. I. I. PRIWALOW, Randeigenschaften analytischer Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.
- H. S. SHAPIRO AND A. L. SHIELDS, On some interpolation problems for analytic functions, Amer. J. Math., vol. 83 (1961), pp. 513-532.
- N. YANAGIHARA, Multipliers and linear functionals for the class N⁺, Trans. Amer. Math. Soc., vol. 180 (1973), pp. 449-461.
- ——, Bounded subsets of some spaces of holomorphic functions, Sci. Papers College Gen. Educ. Univ. Tokyo, vol. 23 (1973), pp. 19-28.

CHIBA UNIVERSITY

CHIBA CITY, CHIBA-KEN, JAPAN.