
INTERPOLATION THEOREMS FOR THE CLASS

BY

1. Introduction
Let D be the unit disk z < 1}. A function/(z), holomorphie in D, is

sid to belong to the class H, 0 < p < , or H, if

(1.1) / 11, {sup 1
o,<x

or
(1.2)
respectively.

]1/ll sup0_< max,,,-_ If(z)

A function f(z), holomorphic in D, is said to belong to the class N of func-
tions of bounded characteristic if

(1.3) T(r,f) log+ If(re’) d -< M <

for 0

_
r < 1, with a constant M. A funetionf(z) of the class N is said to

belong to the class N+ if

fo
2"

(1.4) lim log+ f(re’*) da log+

Thus, for0 <p < q < ,
(1.5) HHHN+N,
nd these inclusion relations 8re proper (see [9, p. 82], where N nd N+

8re

denoted as A 8nd D, respectively).
Interpolstion problems hve been studied by several uthors. For H,

by Carleson [1], Hayman [5], and Newman [8]; for H, 1

_
p < oo, by Shapiro

and Shields [10]; for H, 0 < p < 1, by Kabaila [6]; for N, by Naftalevi [7].
(The present author wishes to express his gratitude to Professor Shields for
having let him know of the interesting paper [7]. See Math. Reviews, vol.
22 (1961) 11141.)
Here we consider corresponding problems for the class N+.

2. The interpolation problems
Suppose a class X of holomorphie functions in D be given. Let

point sequence in D. When a complex sequence {c} is given, the problem is
to seek a function f(z) X such that

(2.1) f(z) c for each n.
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Let Y be a collection of complex sequences. Suppose for any sequence
cnl Y there isa function J(z) X which satisfies (2.1); then the sequence of
points {zl in D is said to be a universal interpolation sequence for he pair
(X, Y). We write it simply as u.i.s, for (X, Y).
We use the following notations: For a sequence Z z} in D, we put

(2.2) l {{c.}; ’:_,(1 -Iz.l)lc, v< w}, 0 < p < o0.

In the sequel we suppose that

and

(2.4)

We denote by B,,(z) the infinite product

(2.5) B(z) II,, {( ]z,l/z,)((z, z)/(1 z.))}.

Carleson [1] showed that, {z} is a u.i.s, for (H, ) if and only if (l de-
notes, as usual, the set of all bounded sequences)

(2.6) S,(z)l II,,,l(z,, z)/(1 z)

_
} > 0 for all n.

Shapiro and Shields [10] showed that (2.6) is necessary and sufficient also
for {z.} to be a u.i.s, for (H, l), 1

_
p < . Kabaila [6] obtained analogous

results for 0 < p < 1.
Recently, Duen and Shapiro [4] showed that there is a u.i.s, for (H, )

which does not satisfy the condition (2.6), if 0 < p < .
Here we put

(2.7) I,+ {{c}; :=, (1 z ) log+lc < }.

Then:

THEOREM 1. In order that a sequence Z {z,,} be a u.i.s, for (N+,/+), it is

sucient that (2.6) hold, and is necessary that

(2.8) (1 z ) log (1/] B(z.) ) -’* 0 as n ---, .
Remark 1. As for (2.8), we remark that if we write

(2.7’) + {{c.};sup. ((1 z ) log+lc. < },

then Naftalevi5 [7, p. 27] proved that Z is a u.i.s, for (N, ,+) only if

(2.8’) sup ((1 z. [) log (1/I S,,(z,) )) < .
Remark 2. It is obvious that (2.6) implies (2.8), but the example

{z} {1 -n-}

shows that (2.8) does not imply (2.6).
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Further, we put

(2.7") l={{c,];c,,>O, (1-1zi)llogcl < }
and denote by Na the set of zero-free holomorphic functions such that

(2.9) feN$ means f(0) >0 and (z) logf(z) H,
where we take as b(0) real. Obviously, l l+ and N$ N+.
THEOR 2. A sequence Z {z} is a u.i.s, for (N, la, ), in the sense that

for any {c,} l there exists f N with log f(z.) log c., n 1, 2, ..., if
and only if (2.6) holds. (Note that log c. real.)

In [101 and [6], it is shown that if f(z H, 0 < p < , then{f(z)} lf,
i.e.

supposing {z,} satisfies (2.6). It would be natural to conjecture, as a cor-
responding statement, that {f(z,)} l, i.e.,

(1 {z,)log+f(z,)[ < for any f(z) eg+,
supposing that z,} satisfies (2.6).

This is not true (Theorem 3), but a somewhat weaker result holds even for
the class N (Theorem 4). That is:

THEOREM 3. We can find a sequence {z,} satisfying (2.6), for which there is
a function f(z) N+ with

(2.10) :_ (1 z. ) log+ l/(z) .
Taoag 4. Suppose z,} satisfies (2.6). If f(z) N, we have

(2,11) 7- (1 z I)(log+ I/(z) )’- <
for any , O < < 1.
On the other hand, we can find a sequence {z.} in D and a cplex sequence

c,} ch that z} satisfies (2.4) as well as (2.6), and c} satisfies, for any ,
0<<1,

(2.11’) :-x (1 [z. I)(log+ c )- < ,
while there is no function f(z) N with f(z,) c,, n 1, 2, ....

Remark. Naftalevi6 [7, p. 13 and p. 17] proved that, if {z.} satisfies (2.4),
there is a sequence {z.} with z [z. 1, such that

:_: (1 [z. 1) log+ if(z’.) l< for any f(z) N,
and

In(z’) > 0 forth n.

3. Proof of heorem l

(i) Suppose {z} satisfies (2.6). For a sequence c} l, let

(3,1) c c .if Icl 1; c 1 if Icl < 1,
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Then, by (3.1), (2.6) and (2.7), the function

B,,(z) 1(3.2) g(z) ,= (1 z i) log c B,,(z,,) (1

where we take -v

_
arg [c] < v, is holomorphie in D. If we put

f(z) exp [g(z)],

f(z) is holomorphic in D and f(z) c, n I, 2, ....
2--- g(re’O) dO

Further,_
(1 z )(loglc’ - arg [c]l )(1/[B(z)I)

1 ,/o’" 1(3.3) X I1 ,z I"_
.- (1 z,, )(log+ c,, + ’)

,’-1

hence g(z) H1, therefore fl(Z) N+.
Put

(3.1’) c. 1 if Ic.I- 1; c --c. if lv l <1.

Then, by the theorem of Carleson [1], there is a bounded holomorphic func-
tion f2(Z) with f(z.) c. Thus if we putf(z) f(z)f2(z) then f(z) N+

andf(z) satisfies $(z.) c c. c..
(ii) We need some lemmas to obtain the second part of the theorem.

LEx 1. The class N+ is an F-space in the sense of Banach [2, p. 51] with
the distance function

(3.4) o(f, g) log (1 q- f(e’) g(e) ) dO

for f, g N+. That is"
(1 ) p(J’,g) p(f-- g,O).
(2) Let f, be functions in N+ such that p(f, f.) ---, 0 as n . Then for

any complex number a, p(
(3) Let a, a, be complex numbers such that a. a as n oo. Then for

each function f E N+, p(
(4) N+ is complete with respect to the metric (3.4).

LMMX 2. The class +, is an F-space in the sense of Banach with the distance

function
(3.5) a(u, v) -".,_ (1 z, ) log (1 q- c,,(u) c,,(v) )
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Ior u {c.(u)}, {c,(,)} l,+.
For the proofs, see [11, Theorem 1] and [12, Theorem 1].

LElVIM. 3. We have, for f(z) N+,
(3.6) (1 zi)log(l+ If(z)]) 4p(f,O), z < 1.

Proof. The function log (1 W f(z)) is subharmonic if f(z) is holo-
morphic. Hence for R, 0 < R < 1,

og (1 + ](z) )

1 R r log (1 + f(Re’* ]) dR + r- 2Rr cos (

z reo,r < R. Thus

-R- r2v
log(l+

Letting R 1 we have, usg the property (1.4) of functions of N+,
(1 z I) Iog (1 + /(z 2(L o),

and hence (3.6). Q.E.D.
N we pre the second part of Theorem 1. Let K be the set of functions

f(z) N+ such that f(z) 0, n 1, 2, .... K is easily seen to be a closed
subspace of N+. Put

+ N+/K, ] f + K + for fN+,
and

(?, ) 5(L 0), (], a) a((/- )-, ).

Then # is a distance function in +, and + becomes an F-space in the sense
of Banach.
For each u c. (u) c} l there corresponds a unique ] + such

that
f(z.) c., n 1,2, for each f6].

Write ts correspondence as " ] u. Obviously is linear. We ll
show that is a closed operator. Suppose u l, a(u,, 0) 0, and

a(u,,]*) o.
We have only to prove that ]* , i.e.,

f*(z) 0, k 1,2,... for f*
Put u ]. Then, from u {c(u)} 0, we have

f.(z) c(u.)0 for each k, as n

Put f*(z) c and g,(z) (z) f(z); then

g,(z) .= c(u) -c, k 1, 2,... for each g a.
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Since (, ) --, 0, for any given > 0 there is an such that, if

_
0, we

can find a g with (g, 0) < /4. Then, by Lemma 3,

(1 ii)log(1-t- c() cl) < for each .
Letting --, and --, 0, we get c 0, which proves that T is closed.
By the closed graph theorem [2, p. 57], we know that T is continuous.
Let c() -- be the sequence such that

ck(u,,) 0 if k n; c,,(u,,) 1.

Obviously a(u, 0) --. 0, hence p(], ij) --. 0, where ] u. There are
$ ] such that p(f, 0) --* 0, Put F(z) f(z)/B(z); then F(z) N+

and F,(e’) f(e’o) I, almost every 0.
Thus, sincef(z) 1 and p(F,, O) p(f,, 0),

(1 z s) log (1/i S,(z,,) ) - (1 z,, s) log (1 - f(z,,)/B,(z,,)

+

which proves (2.8).

0)

4p(f,,, O) --. O,

4. Proof of Theorems 2
Sufficiency. Take a sequence {c} l. Then Ibm}, b - log c (arg [c]

0), belongs to l,, and by the theorem of Shapiro and Shields [10], there is a
function g(z) H with g(0) 0 and g(z,,) bn, n 1, 2, .... Hence we
put f(z) exp [g(z)], we have that f(z) N and f(z,,) c,, n 1, 2, ....

Necessity. l, can be considered as a real Banach space with addition and
scalar multiplication defined as follows’

(4.11) {c} -b {b} is defined to be the sequence {c b}.
(4.1) For a real number , Mc,} is defined to be the sequence {(cn)}.
(4.2) il ll-- (1 *) I og I.

N can also be considered as a real Banach space with addition and scalar
multiplication defined as follows"

(4.31) f -t- g is defined to be the function whose value at z equalsf(z)g(z),
i.e., (f -b g)(z) f(z)g(z),

(4.3:) For a real number X, f is defined to be the function whose value at
z equals (f(z))*, i.e., (f)(z) (f(z)), (Xf)(0) > 0,

(4.4) llfl] sup0r_l (1/2r)follogf(re’)ldO (1/2r)f’llogf(e’)ldO
where the logarithm is determined by arg [f(0) 0.

Now, let P be the set of functionsf(z) N such that logf(z,) 0,n 1,2,... P is obviously a closed subspace of Ne. Let N*/P, ] f - P.
Then/ is a real Banach space with the norm ] [t infei ]1 f II. For each
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u {cn(u)} {c} l there corresponds a unique ] such that

logf(zn) =logc(u), n= 1,2,..., for each ]].
Write this correspondence as , i.e., ] [u]. Obviously is linear. is
sho to be a closed operator, as in (ii) of the proof of Theorem 1. Thus
is continuous by the closed aph theorem. Hence we have

(4.5)

th a constant M’, for an f ] [ul. Obously

(4.6) ( 1

th a constant M’.
Let u c(u) be a positive sequence such that

c(u) 1 if k n; c(u) e.

Then u (1 z ).
Let f be a function of [u] satisfying (4.5). Put arg [B(0)] a and

Thenz N nd [log log) [, .e. Thus

(1 z 2) log F(z)

On the other hand

]log f(z)

Hence B(z) 1/M’M", which proves (2.6).

5. Proof of Theorems 3 and 4.
We say that {z} is an exponential sequence if

(5.1) lim. sup ((1 -] z.+ )/(1 -]z] )) < 1.

Such a sequence is easily seen to satisfy (2.6). Further, if {z} lies on a radius,
(5.1) is equivalent to (2.6) [3, p. 155, Theorem 9.2].

Proof of Theorem 3. Take a number b, 0 < b < 1.

(5.2) z. 1 b’,

Put

(5.3)

where

(5.4)

n= 1,2, ....
Let {z} be defined by

I 1 ’e*+Zh(t) dt1f(z) exp
.e*- z

h(t) (1(1/Itl ))-, if

O, if

Ill
_

./4,

Ill > =/4.



434 NIRO YANAGIHARA

Then f(z) N+, and, if z re,
1 .[" 1 r

log+ If(z) .-,1-t-r2rcos(- 0
h() d$.

Thus, iting 1 r = $, r {z z,

1 f 1 rlog+ f(z) _
(1 r) + 4r sin (t/2)

h() d$

1 lr h(t) dt
22(1 r)

1 1 h(t) dt
2 1 r

( 1 r)-(lo(1/))%
2=

Since t b, we hve

1 1 = 1 Q.E.D.,= (1 --[z, {)log+ [f(z,)l log (l/b) n

Proof of Theorem 4. Let f(z) N and B(z) be the Blaschke product th
respect to zero points of f(z). If we write g(z) l(z)/B(z), log g(z) is
easily seen to be represented by a Poisson-Stieltjes tegral, hence log g(z)
belongs to H for any p, 0 < p < 1 [3, p. 35, Corollaryl. Hence by [6, Theo-
rem 2],

Z:=, (1 -z. I)[ log (.) < , 0 < p < 1;

therefore for any , 0 $ 1,

7_, (1 I. l)(og+ l](z.) )-’ Z:_, ( [z. [) log#(z.) -’ < ,
which proves the flint part of the Theorem 4.

For the second pa, let b be a number, 0 < b 1, and put z 1 b’;
c exp [n/b]. Then {z,} satisfies (2.4) as well as (2.6), {c satisfies
(2.11’) for any , 0 < $ < 1, and

Since for any f(z) N there must hold log+ f(z) 0(1/(1 z ) )
[9, p. 106, where N is denoted as A ], (5.5) shows that there is no f(z) N th
f(z,) c,. Q.E.D.
The author shes to express his hearty gratitude to the referee for cordial

and valuable suggestions.
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