INTERPOLATION THEOREMS FOR THE CLASS N^{+}

BY

Niro Yanagitara

1. Introduction

Let D be the unit disk $\{|z|<1\}$. A function $f(z)$, holomorphic in D, is said to belong to the class $H^{p}, 0<p<\infty$, or H^{∞}, if

$$
\begin{equation*}
\|f\|_{p}=\left\{\sup _{0 \leqq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}<\infty \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\|f\|_{\infty}=\sup _{0 \leqq r<1} \max _{|z|=r}|f(z)|<\infty \tag{1.2}
\end{equation*}
$$

respectively.
A function $f(z)$, holomorphic in D, is said to belong to the class N of functions of bounded characteristic if

$$
\begin{equation*}
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta \leqq M<\infty \tag{1.3}
\end{equation*}
$$

for $0 \leqq r<1$, with a constant M. A function $f(z)$ of the class N is said to belong to the class N^{+}if

$$
\begin{equation*}
\lim _{r \rightarrow 1} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta=\int_{0}^{2 \pi} \log ^{+}\left|f\left(e^{i \theta}\right)\right| d \theta \tag{1.4}
\end{equation*}
$$

Thus, for $0<p<q<\infty$,

$$
\begin{equation*}
H^{\infty} \subset H^{q} \subset H^{p} \subset N^{+} \subset N \tag{1.5}
\end{equation*}
$$

and these inclusion relations are proper (see [9, p. 82], where N and N^{+}are denoted as A and D, respectively).

Interpolation problems have been studied by several authors. For H^{∞}, by Carleson [1], Hayman [5], and Newman [8]; for $H^{p}, 1 \leqq p<\infty$, by Shapiro and Shields [10]; for $H^{p}, 0<p<1$, by Kabaila [6]; for N, by Naftalevič [7]. (The present author wishes to express his gratitude to Professor Shields for having let him know of the interesting paper [7]. See Math. Reviews, vol. 22 (1961) \#11141.)

Here we consider corresponding problems for the class N^{+}.

2. The interpolation problems

Suppose a class X of holomorphic functions in D be given. Let $\left\{z_{n}\right\}$ be a point sequence in D. When a complex sequence $\left\{c_{n}\right\}$ is given, the problem is to seek a function $f(z) \in X$ such that

$$
\begin{equation*}
f\left(z_{n}\right)=c_{n} \text { for each } n \tag{2.1}
\end{equation*}
$$

[^0]Let Y be a collection of complex sequences. Suppose for any sequence $\left\{c_{n}\right\} \in Y$ there is a function $f(z) \in X$ which satisfies (2.1); then the sequence of points $\left\{z_{n}\right\}$ in D is said to be a universal interpolation sequence for the pair (X, Y). We write it simply as u.i.s. for (X, Y).
We use the following notations: For a sequence $Z=\left\{z_{n}\right\}$ in D, we put

$$
\begin{equation*}
l_{z}^{p}=\left\{\left\{c_{n}\right\} ; \sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)\left|c_{n}\right|^{p}<\infty\right\}, \quad 0<p<\infty \tag{2.2}
\end{equation*}
$$

In the sequel we suppose that

$$
\begin{equation*}
z_{n} \neq 0, \quad z_{n} \neq z_{m} \quad \text { if } n \neq m, \quad\left|z_{n}\right| \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty . \tag{2.4}
\end{equation*}
$$

We denote by $B_{n}(z)$ the infinite product

$$
\begin{equation*}
B_{n}(z)=\prod_{m \neq n}\left\{\left(\left|z_{m}\right| / z_{m}\right)\left(\left(z_{m}-z\right) /\left(1-\bar{z}_{m} z\right)\right)\right\} \tag{2.5}
\end{equation*}
$$

Carleson [1] showed that, $\left\{z_{n}\right\}$ is a u.i.s. for $\left(H^{\infty}, l^{\infty}\right)$ if and only if $\left(l^{\infty}\right.$ denotes, as usual, the set of all bounded sequences)

$$
\begin{equation*}
\left|B_{n}\left(z_{n}\right)\right|=\prod_{m \nsim n}\left|\left(z_{m}-z_{n}\right) /\left(1-\bar{z}_{m} z_{n}\right)\right| \geqq \delta>0 \text { for all } n \tag{2.6}
\end{equation*}
$$

Shapiro and Shields [10] showed that (2.6) is necessary and sufficient also for $\left\{z_{n}\right\}$ to be a u.i.s. for $\left(H^{p}, l_{z}^{p}\right), 1 \leqq p<\infty$. Kabaila [6] obtained analogous results for $0<p<1$.

Recently, Duren and Shapiro [4] showed that there is a u.i.s. for $\left(H^{p}, l^{\infty}\right)$ which does not satisfy the condition (2.6), if $0<p<\infty$.

Here we put

$$
\begin{equation*}
l_{z}^{+}=\left\{\left\{c_{n}\right\} ; \sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right) \log ^{+}\left|c_{n}\right|<\infty\right\} . \tag{2.7}
\end{equation*}
$$

Then:
Theorem 1. In order that a sequence $Z=\left\{z_{n}\right\}$ be a u.i.s. for $\left(N^{+}, l_{z}^{+}\right)$, it is sufficient that (2.6) hold, and is necessary that

$$
\begin{equation*}
\left(1-\left|z_{n}\right|^{2}\right) \log \left(1 /\left|B_{n}\left(z_{n}\right)\right|\right) \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.8}
\end{equation*}
$$

Remark 1. As for (2.8), we remark that if we write

$$
q_{z}^{+}=\left\{\left\{c_{n}\right\} ; \sup _{n}\left(\left(1-\left|z_{n}\right|^{2}\right) \log ^{+}\left|c_{n}\right|\right)<\infty\right\}
$$

then Naftalevic [7, p. 27] proved that Z is a u.i.s. for $\left(N, \eta_{z}^{+}\right)$only if

$$
\sup \left(\left(1-\left|z_{n}\right|^{2}\right) \log \left(1 /\left|B_{n}\left(z_{n}\right)\right|\right)\right)<\infty
$$

Remark 2. It is obvious that (2.6) implies (2.8), but the example

$$
\left\{z_{n}\right\}=\left\{1-n^{-2}\right\}
$$

shows that (2.8) does not imply (2.6).

Further, we put

$$
l_{z}^{*}=\left\{\left\{c_{n}\right\} ; c_{n}>0, \sum\left(1-\left|z_{n}\right|^{2}\right)\left|\log c_{n}\right|<\infty\right\}
$$

and denote by N^{*} the set of zero-free holomorphic functions such that (2.9) $f \in N^{*}$ means $f(0)>0$ and $\phi(z)=\log f(z) \in H^{1}$, where we take as $\phi(0)=$ real. Obviously, $l_{z}^{*} \subset l_{z}^{+}$and $N^{*} \subset N^{+}$.

Theorem 2. A sequence $Z=\left\{z_{n}\right\}$ is a u.i.s. for $\left(N^{*}, l_{z}^{*}\right)$, in the sense that for any $\left\{c_{n}\right\} \in l_{z}^{*}$ there exists $f \in N^{*}$ with $\log f\left(z_{n}\right)=\log c_{n}, n=1,2, \cdots$, if and only if (2.6) holds. (Note that $\log c_{n}=$ real.)

In [10] and [6], it is shown that if $f(z) \in H^{p}, 0<p<\infty$, then $\left\{f\left(z_{n}\right)\right\} \in l_{s}^{p}$, i.e.

$$
\sum\left(1-\left|z_{n}\right|^{2}\right)\left|f\left(z_{n}\right)\right|^{p}<\infty
$$

supposing $\left\{z_{n}\right\}$ satisfies (2.6). It would be natural to conjecture, as a corresponding statement, that $\left\{f\left(z_{n}\right)\right\} \in l_{z}^{+}$, i.e.,

$$
\sum\left(1-\left|z_{n}\right|^{2}\right) \log ^{+}\left|f\left(z_{n}\right)\right|<\infty \quad \text { for any } \quad f(z) \in N^{+}
$$

supposing that $\left\{z_{n}\right\}$ satisfies (2.6).
This is not true (Theorem 3), but a somewhat weaker result holds even for the class N (Theorem 4). That is:

Theorem 3. We can find a sequence $\left\{z_{n}\right\}$ satisfying (2.6), for which there is a function $f(z) \in N^{+}$with

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right) \log ^{+}\left|f\left(z_{n}\right)\right|=\infty . \tag{2.10}
\end{equation*}
$$

Theorem 4. Suppose $\left\{z_{n}\right\}$ satisfies (2.6). If $f(z) \in N$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)\left(\log ^{+}\left|f\left(z_{n}\right)\right|\right)^{1-\delta}<\infty \tag{2.11}
\end{equation*}
$$

for any $\delta, 0<\delta<1$.
On the other hand, we can find a sequence $\left\{z_{n}\right\}$ in D and a complex sequence $\left\{c_{n}\right\}$ such that $\left\{z_{n}\right\}$ satisfies (2.4) as well as (2.6), and $\left\{c_{n}\right\}$ satisfies, for any δ, $0<\delta<1$,

$$
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)\left(\log ^{+}\left|c_{n}\right|\right)^{1-\delta}<\infty
$$

while there is no function $f(z) \in N$ with $f\left(z_{n}\right)=c_{n}, n=1,2, \cdots$.
Remark. Naftalevič [7, p. 13 and p. 17] proved that, if $\left\{z_{n}\right\}$ satisfies (2.4), there is a sequence $\left\{z_{n}^{\prime}\right\}$ with $\left|z_{n}^{\prime}\right|=\left|z_{n}\right|$, such that

$$
\sum_{n=1}^{\infty}\left(1-\left|z_{n}^{\prime}\right|^{2}\right) \log ^{+}\left|f\left(z_{n}^{\prime}\right)\right|<\infty \quad \text { for any } \quad f(z) \in N
$$

and

$$
\left|B_{n}\left(z_{n}^{\prime}\right)\right| \geqq \delta>0 \text { for all } n
$$

3. Proof of Theorem 1

(i) Suppose $\left\{z_{n}\right\}$ satisfies (2.6). For a sequence $\left\{c_{n}\right\} \in l_{z}^{+}$, let

$$
\begin{equation*}
c_{n}^{\prime}=c_{n} \quad \text { if } \quad\left|c_{n}\right| \geqq 1 ; \quad c_{n}^{\prime}=1 \quad \text { if } \quad\left|c_{n}\right|<1 \tag{3.1}
\end{equation*}
$$

Then, by (3.1), (2.6) and (2.7), the function

$$
\begin{equation*}
g(z)=\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)^{2} \log c_{n}^{\prime} \frac{B_{n}(z)}{B_{n}\left(z_{n}\right)} \frac{1}{\left(1-\bar{z}_{n} z\right)^{2}} \tag{3.2}
\end{equation*}
$$

where we take $-\pi \leqq \arg \left[c_{n}^{\prime}\right]<\pi$, is holomorphic in D. If we put

$$
f_{1}(z)=\exp [g(z)]
$$

$f_{1}(z)$ is holomorphic in D and $f_{1}\left(z_{n}\right)=c_{n}^{\prime}, n=1,2, \cdots$. Further,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right| d \theta
$$

$$
\leqq \sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)^{2}\left(\log \left|c_{n}^{\prime}\right|+\left|\arg \left[c_{n}^{\prime}\right]\right|\right)\left(1 /\left|B_{n}\left(z_{n}\right)\right|\right)
$$

$$
\times \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|1-\bar{z}_{n} z\right|^{2}} d \theta
$$

$$
\leqq \frac{1}{\delta} \sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)\left(\log ^{+}\left|c_{n}\right|+\pi\right)
$$

$$
<\infty
$$

hence $g(z) \in H^{1}$, therefore $f_{1}(z) \in N^{+}$.
Put

$$
c_{n}^{\prime \prime}=1 \quad \text { if } \quad\left|c_{n}\right| \geqq 1 ; \quad c_{n}^{\prime \prime}=c_{n} \quad \text { if } \quad\left|c_{n}\right|<1
$$

Then, by the theorem of Carleson [1], there is a bounded holomorphic function $f_{2}(z)$ with $f_{2}\left(z_{n}\right)=c_{n}^{\prime \prime}$; Thus if we put $f(z)=f_{1}(z) f_{2}(z)$ then $f(z) \in N^{+}$ and $f(z)$ satisfies $f\left(z_{n}\right)=c_{n}^{\prime} c_{n}^{\prime \prime}=c_{n}$.
(ii) We need some lemmas to obtain the second part of the theorem.

Lemma 1. The class N^{+}is an F-space in the sense of Banach [2, p. 51] with the distance function

$$
\begin{equation*}
\rho(f, g)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left(1+\left|f\left(e^{i \theta}\right)-g\left(e^{i \theta}\right)\right|\right) d \theta \tag{3.4}
\end{equation*}
$$

for $f, g \in N^{+}$. That is:
$\left(1^{\circ}\right) \quad \rho(f, g)=\rho(f-g, 0)$.
$\left(2^{\circ}\right) \quad$ Let f_{n} be functions in N^{+}such that $\rho\left(f, f_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then for any complex number $\alpha, \rho\left(\alpha f, \alpha f_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
$\left(3^{\circ}\right)$ Let α, α_{n} be complex numbers such that $\alpha_{n} \rightarrow \alpha$ as $n \rightarrow \infty$. Then for each function $f \in N^{+}, \rho\left(\alpha_{n} f, \alpha f\right) \rightarrow 0$ as $n \rightarrow \infty$.
(4°) $\quad N^{+}$is complete with respect to the metric (3.4).
Lemma 2. The class l_{z}^{+}is an F-space in the sense of Banach with the distance function

$$
\begin{equation*}
\sigma(u, v)=\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right) \log \left(1+\left|c_{n}(u)-c_{n}(v)\right|\right) \tag{3.5}
\end{equation*}
$$

for $u=\left\{c_{n}(u)\right\}, v=\left\{c_{n}(v)\right\} \in l_{z}^{+}$.
For the proofs, see [11, Theorem 1] and [12, Theorem 1].
Lemma 3. We have, for $f(z) \in N^{+}$,

$$
\begin{equation*}
\left(1-|z|^{2}\right) \log (1+|f(z)|) \leqq 4 \rho(f, 0), \quad|z|<1 \tag{3.6}
\end{equation*}
$$

Proof. The function $\log (1+|f(z)|)$ is subharmonic if $f(z)$ is holomorphic. Hence for $R, 0<R<1$,
$\log (1+|f(z)|)$

$$
\leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}+r^{2}-2 R r \cos (\theta-\phi)} \log \left(1+\left|f\left(R e^{i \phi}\right)\right|\right) d \phi
$$

$z=r e^{i \theta}, r<R$. Thus

$$
\log (1+|f(z)|) \leqq \frac{R+r}{R-r} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left(1+\left|f\left(R e^{i \phi}\right)\right|\right) d \phi
$$

Letting $R \rightarrow 1$ we have, using the property (1.4) of functions of N^{+},

$$
(1-|z|) \log (1+|f(z)|) \leqq 2 \rho(f, 0)
$$

and hence (3.6). Q.E.D.
Now we prove the second part of Theorem 1. Let K be the set of functions $f(z) \in N^{+}$such that $f\left(z_{n}\right)=0, n=1,2, \cdots . K$ is easily seen to be a closed subspace of N^{+}. Put

$$
\bar{N}^{+}=N^{+} / K, \quad \bar{f}=f+K \in \bar{N}^{+} \quad \text { for } \quad f \in N^{+}
$$

and

$$
\bar{\rho}(\bar{f}, \bar{o})=\inf _{f \in \dot{j}} \rho(f, 0), \quad \bar{\rho}(\bar{f}, \bar{g})=\bar{\rho}\left((f-g)^{-}, \bar{\delta}\right)
$$

Then $\bar{\rho}$ is a distance function in \bar{N}^{+}, and \bar{N}^{+}becomes an F-space in the sense of Banach.

For each $u=\left\{c_{n}(u)\right\}=\left\{c_{n}\right\} \in l_{z}^{+}$there corresponds a unique $\bar{f} \in \bar{N}^{+}$such that

$$
f\left(z_{n}\right)=c_{n}, \quad n=1,2, \cdots \quad \text { for each } f \in \bar{f}
$$

Write this correspondence as $\bar{T}: \bar{f}=\bar{T} u$. Obviously \bar{T} is linear. We will show that \bar{T} is a closed operator. Suppose $u_{n} \in l_{z}^{+}, \sigma\left(u_{n}, 0\right) \rightarrow 0$, and

$$
\bar{\rho}\left(\bar{T} u_{n}, \bar{f}^{*}\right) \rightarrow 0 .
$$

We have only to prove that $\bar{f}^{*}=\overline{0}$, i.e.,

$$
f^{*}\left(z_{k}\right)=0, \quad k=1,2, \cdots \quad \text { for } \quad f^{*} \in f^{*}
$$

Put $\bar{T} u_{n}=\bar{f}_{n}$. Then, from $u_{n}=\left\{c_{k}\left(u_{n}\right)\right\} \rightarrow 0$, we have

$$
f_{n}\left(z_{k}\right)=c_{k}\left(u_{n}\right) \rightarrow 0 \text { for each } k \text {, as } n \rightarrow \infty .
$$

Put $f^{*}\left(z_{k}\right)=c_{k}$ and $g_{n}(z)=f_{n}(z)-f^{*}(z)$; then

$$
g_{n}\left(z_{k}\right)=c_{k}\left(u_{n}\right)-c_{k}, \quad k=1,2, \cdots \quad \text { for each } \quad g_{n} \in \bar{g}_{n}
$$

Since $\bar{\rho}\left(\bar{g}_{n}, \overline{0}\right) \rightarrow 0$, for any given $\epsilon>0$ there is an n_{0} such that, if $n \geqq n_{0}$, we can find a $g_{n} \in \bar{g}_{n}$ with $\rho\left(g_{n}, 0\right)<\epsilon / 4$. Then, by Lemma 3,

$$
\left(1-\left|z_{k}\right|^{2}\right) \log \left(1+\left|c_{k}\left(u_{n}\right)-c_{k}\right|\right)<\epsilon \text { for each } k
$$

Letting $n \rightarrow \infty$ and $\epsilon \rightarrow 0$, we get $c_{k}=0$, which proves that \bar{T} is closed.
By the closed graph theorem [2, p. 57], we know that \bar{T} is continuous.
Let $u_{n}=\left\{c_{k}\left(u_{n}\right)\right\}_{k=1}^{\infty}$ be the sequence such that

$$
c_{k}\left(u_{n}\right)=0 \quad \text { if } \quad k \neq n ; \quad c_{n}\left(u_{n}\right)=1
$$

Obviously $\sigma\left(u_{n}, 0\right) \rightarrow 0$, hence $\bar{\rho}\left(\bar{f}_{n}, \overline{0}\right) \rightarrow 0$, where $\bar{f}_{n}=\bar{T} u_{n}$. There are $f_{n} \in \bar{f}_{n}$ such that $\rho\left(f_{n}, 0\right) \rightarrow 0$, Put $F_{n}(z)=f_{n}(z) / B_{n}(z)$; then $F_{n}(z) \in N^{+}$ and $\left|F_{n}\left(e^{i \theta}\right)\right|=\left|f_{n}\left(e^{i \theta}\right)\right|$, almost every θ.

Thus, since $f_{n}\left(z_{n}\right)=1$ and $\rho\left(F_{n}, 0\right)=\rho\left(f_{n}, 0\right)$,

$$
\begin{aligned}
\left(1-\left|z_{n}\right|^{2}\right) \log \left(1 /\left|B_{n}\left(z_{n}\right)\right|\right) & \leqq\left(1-\left|z_{n}\right|^{2}\right) \log \left(1+\left|f_{n}\left(z_{n}\right) / B_{n}\left(z_{n}\right)\right|\right) \\
& =\left(1-\left|z_{n}\right|^{2}\right) \log \left(1+\left|F_{n}\left(z_{n}\right)\right|\right) \\
& \leqq 4 \rho\left(F_{n}, 0\right) \\
& =4 \rho\left(f_{n}, 0\right) \rightarrow 0
\end{aligned}
$$

which proves (2.8).

4. Proof of Theorems 2

Sufficiency. Take a sequence $\left\{c_{n}\right\} \in l_{z}^{*}$. Then $\left\{b_{n}\right\}, b_{n}=\log c_{n}\left(\arg \left[c_{n}\right]=\right.$ 0), belongs to l_{z}^{1}, and by the theorem of Shapiro and Shields [10], there is a function $g(z) \in H^{1}$ with $g(0)=0$ and $g\left(z_{n}\right)=b_{n}, n=1,2, \cdots$. Hence we put $f(z)=\exp [g(z)]$, we have that $f(z) \in N^{*}$ and $f\left(z_{n}\right)=c_{n}, n=1,2, \cdots$.

Necessity. l_{z}^{*} can be considered as a real Banach space with addition and scalar multiplication defined as follows:
(4.11) $\quad\left\{c_{n}\right\}+\left\{b_{n}\right\}$ is defined to be the sequence $\left\{c_{n} b_{n}\right\}$.
(4.12) For a real number $\lambda, \lambda\left\{c_{n}\right\}$ is defined to be the sequence $\left\{\left(c_{n}\right)^{\lambda}\right\}$.
(4.2) $\quad\left\|\left\{c_{n}\right\}\right\|=\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)\left|\log c_{n}\right|$.
N^{*} can also be considered as a real Banach space with addition and scalar multiplication defined as follows:
(4.31) $f+g$ is defined to be the function whose value at z equals $f(z) g(z)$, i.e., $(f+g)(z)=f(z) g(z)$,
(4.32) For a real number $\lambda, \lambda f$ is defined to be the function whose value at z equals $(f(z))^{\lambda}$, i.e., $(\lambda f)(z)=(f(z))^{\lambda},(\lambda f)(0)>0$,
(4.4) $\|f\|=\sup _{0 \leqq r \leqq 1}(1 / 2 \pi) \int_{0}^{2 \pi}\left|\log f\left(\mathrm{re}^{i \theta}\right)\right| d \theta=(1 / 2 \pi) \int_{0}^{2 \pi}\left|\log f\left(e^{i \theta}\right)\right| d \theta$ where the logarithm is determined by $\arg [f(0)]=0$.

Now, let P be the set of functions $f(z) \in N^{*}$ such that $\log f\left(z_{n}\right)=0, n=1,2$, $\cdots . \quad P$ is obviously a closed subspace of N^{*}. Let $\bar{N}^{*}=N^{*} / P, f=f+P$. Then \bar{N}^{*} is a real Banach space with the norm $\|\bar{f}\|=\inf _{f \in f}\|f\|$. For each
$u=\left\{c_{n}(u)\right\}=\left\{c_{n}\right\} \in l_{z}^{*}$ there corresponds a unique $\bar{f} \in \bar{N}^{*}$ such that

$$
\log f\left(z_{n}\right)=\log c_{n}(u), \quad n=1,2, \cdots, \quad \text { for each } f \in \bar{f}
$$

Write this correspondence as \bar{S}, i.e., $\bar{f}=\bar{S}[u]$. Obviously \bar{S} is linear. \bar{S} is shown to be a closed operator, as in (ii) of the proof of Theorem 1. Thus \bar{S} is continuous by the closed graph theorem. Hence we have

$$
\begin{equation*}
\|f\| \leqq M^{\prime}\|u\| \tag{4.5}
\end{equation*}
$$

with a constant M^{\prime}, for an $f \in \bar{f}=\bar{S}[u]$. Obviously

$$
\begin{equation*}
\left(1-|z|^{2}\right) \log f(z) \mid \leqq M^{\prime \prime}\|f\| \tag{4.6}
\end{equation*}
$$

with a constant $M^{\prime \prime}$.
Let $u_{n}=\left\{c_{k}\left(u_{n}\right)\right\}_{k=1}^{\infty}$ be a positive sequence such that

$$
c_{k}\left(u_{n}\right)=1 \quad \text { if } k \neq n ; \quad c_{n}\left(u_{n}\right)=e
$$

Then $\left\|u_{n}\right\|=\left(1-\left|z_{n}\right|^{2}\right)$.
Let f_{n} be a function of $\bar{S}\left[u_{n}\right]$ satisfying (4.5). Put $\arg \left[B_{n}(0)\right]=\alpha_{n}$ and

$$
F_{n}(z)=\exp \left[\left(\log f_{n}(z)\right) /\left(e^{-i \alpha_{n}} B_{n}(z)\right)\right]
$$

Then $F_{n}(z) \in N^{*}$ and $\left|\log F_{n}\left(e^{i \theta}\right)\right|=\left|\log f_{n}\left(e^{i \theta}\right)\right|$, a.e. Thus

$$
\left(1-\left|z_{n}\right|^{2}\right)\left|\log F_{n}\left(z_{n}\right)\right| \leqq M^{\prime \prime}\left\|F_{n}\right\|=M^{\prime \prime}\left\|f_{n}\right\| \leqq M^{\prime} M^{\prime \prime}\left(1-\left|z_{n}\right|^{2}\right)
$$

On the other hand

$$
\left|\log F_{n}\left(z_{n}\right)\right|=\left|\log f_{n}\left(z_{n}\right)\right| /\left|B_{n}\left(z_{n}\right)\right|=1 /\left|B_{n}\left(z_{n}\right)\right|
$$

Hence $\left|B_{n}\left(z_{n}\right)\right| \geqq 1 / M^{\prime} M^{\prime \prime}$, which proves (2.6).

5. Proof of Theorems 3 and 4.

We say that $\left\{z_{n}\right\}$ is an exponential sequence if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \left(\left(1-\left|z_{n+1}\right|\right) /\left(1-\left|z_{n}\right|\right)\right)<1 \tag{5.1}
\end{equation*}
$$

Such a sequence is easily seen to satisfy (2.6). Further, if $\left\{z_{n}\right\}$ lies on a radius, (5.1) is equivalent to (2.6) [3, p. 155, Theorem 9.2].

Proof of Theorem 3. Take a number $b, 0<b<1$. Let $\left\{z_{n}\right\}$ be defined by

$$
\begin{equation*}
z_{n}=1-b^{n}, \quad n=1,2, \cdots \tag{5.2}
\end{equation*}
$$

Put

$$
\begin{equation*}
f(z)=\exp \left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i t}+z}{e^{i t}-z} h(t) d t\right] \tag{5.3}
\end{equation*}
$$

where

$$
\begin{align*}
h(t) & =(1 /|t|)(\log (1 /|t|))^{-2}, & & \text { if } \quad|t| \leqq \pi / 4 \\
& =0, & & \text { if }|t|>\pi / 4 \tag{5.4}
\end{align*}
$$

Then $f(z) \in N^{+}$, and, if $z=r e^{i \theta}$,

$$
\log ^{+}|f(z)|=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-r^{2}}{1+r^{2} 2 r \cos (\theta-t)} h(t) d t .
$$

Thus, writing $1-r_{n}=\delta_{n}, r_{n}=\left|z_{n}\right|=z_{n}$,

$$
\begin{aligned}
\log ^{+}\left|f\left(z_{n}\right)\right| & \geqq \frac{1}{2 \pi} \int_{-\delta_{n}}^{\delta_{n}} \frac{1=r_{n}^{2}}{\left(1-r_{n}\right)^{2}+4 r_{n} \sin ^{2}(t / 2)} h(t) d t \\
& \geqq \frac{1}{2 \pi} \frac{1+r_{n}}{2\left(1-r_{n}\right)} \int_{-\delta_{n}}^{\delta_{n}} h(t) d t \\
& \geqq \frac{1}{2 \pi} \frac{1}{1-r_{n}} \int_{0}^{\delta_{n}} h(t) d t \\
& =\frac{1}{2 \pi}\left(1-r_{n}\right)^{-1}\left(\log \left(1 / \delta_{n}\right)\right)^{-1}
\end{aligned}
$$

Since $\delta_{n}=b^{n}$, we have

$$
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right) \log ^{+}\left|f\left(z_{n}\right)\right| \geqq \frac{1}{2 \pi} \frac{1}{\log (1 / b)} \sum_{n=1}^{\infty} \frac{1}{n}=\infty \quad \text { Q.E.D. }
$$

Proof of Theorem 4. Let $f(z) \in N$ and $B(z)$ be the Blaschke product with respect to zero points of $f(z)$. If we write $g(z)=f(z) / B(z), \log |g(z)|$ is easily seen to be represented by a Poisson-Stieltjes integral, hence $\log g(z)$ belongs to H^{p} for any $p, 0<p<1$ [3, p. 35, Corollary]. Hence by [6, Theorem 2],

$$
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)\left|\log g\left(z_{n}\right)\right|^{p}<\infty, \quad 0<p<1
$$

therefore for any $\delta, 0<\delta<1$,
$\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)\left(\log ^{+}\left|f\left(z_{n}\right)\right|\right)^{1-\delta} \leqq \sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|^{2}\right)\left|\log g\left(z_{n}\right)\right|^{1-\delta}<\infty$, which proves the first part of the Theorem 4.

For the second part, let b be a number, $0<b<1$, and put $z_{n}=1-b^{n}$; $c_{n}=\exp \left[n / b^{n}\right]$. Then $\left\{z_{n}\right\}$ satisfies (2.4) as well as (2.6), $\left\{c_{n}\right\}$ satisfies (2.11') for any $\delta, 0<\delta<1$, and

$$
\begin{equation*}
\left(1-\left|z_{n}\right|\right) \log ^{+}\left|c_{n}\right| \uparrow \infty \tag{5.5}
\end{equation*}
$$

Since for any $f(z) \in N$ there must hold $\log ^{+}|f(z)|=O(1 /(1-|z|))$ [9, p. 106, where N is denoted as A], (5.5) shows that there is no $f(z) \in N$ with $f\left(z_{n}\right)=c_{n}$. Q.E.D.

The author wishes to express his hearty gratitude to the referee for cordial and valuable suggestions.

References

1. L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., vol. 80 (1958), pp. 921-930.
2. N. Dunford and J. T. Schwartz, Linear operators, part I, Interscience, New York, 1964.
3. P. L. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970.
4. P. L. Duren and H. S. Shapiro, Interpolation in H^{p} spaces, Proc. Amer. Math. Soc., vol. 31 (1972) 162-164.
5. W. K. Hayman, Interpolation by bounded functions, Ann. Inst. Fourier, vol. 8 (1958), pp. 277-290.
6. V. Kabaila, Interpolation sequences for the H^{p} classes in the case $p<1$, Litov. Mat. Sb., vol. 3 (1963) no. 1, pp. 141-147 (in Russian).
7. Naftalevič, On interpolation by functions of bounded characteristic, Učeniye Zapiski, Vilinius, Gos. Univ., vol. 5 (1956), pp. 5-27 (in Russian).
8. D. J. Newman, Interpolation in H^{p}, Trans. Amer. Math. Soc., vol. 92 (1959), pp. 501-507.
9. I. I. Priwalow, Randeigenschaften analytischer Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.
10. H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math., vol. 83 (1961), pp. 513-532.
11. N. Yanagihara, Multipliers and linear functionals for the class N^{+}, Trans. Amer. Math. Soc., vol. 180 (1973), pp. 449-461.
12. -_, Bounded subsets of some spaces of holomorphic functions, Sci. Papers College Gen. Educ. Univ. Tokyo, vol. 23 (1973), pp. 19-28.

Chiba University
Chiba City, Chiba-Ken, Japan.

[^0]: Received December 5, 1972.

