A CHARACTERIZATION OF CERTAIN FROBENIUS GROUPS

BY
Michael Aschbacher

1. Introduction

Let \mathfrak{F} be a collection of groups and G a finite group. Following B. Fischer, an \mathfrak{F}-set of G is a collection D of subgroups normalized by G and generating G, such that the subgroup generated by any pair of distinct members of D is isomorphic to a member of \mathfrak{F}.

Let p be a fixed odd prime and D an \mathfrak{F}-set of the nonabelian group G, such that each member of D has order p. Fischer has shown that if $\mathfrak{F}=\{G\}$, and G is solvable, then $G / Z(G)$ is a Frobenius group [4]. He has further shown that if \mathfrak{F} is the collection of Frobenius groups with cyclic kernals, then G is a Frobenius group [5].

In this paper it is shown that:
Theorem 1. Let \mathfrak{F} be the collection of groups F with $F / Z(F)$ Frobenius of odd order. Then $G \in \mathfrak{F}$, and $Z(G)$ is generated by the centers of 2 -generator D-subgroups.

As a corollary it follows that:
Theorem 2. Let $\mathfrak{F}=\{F\}$ with F of odd order. Then $G / Z(G)$ is a Frobenius group of odd order.

The restriction in Theorems 1 and 2 that F have odd order is necessary. For example if $\mathfrak{F}=\left\{S L_{2}(3)\right\}$ then $U_{3}(3)$ possesses an \mathfrak{F}-set. The following theorem is however true:

Theorem 3. Let \mathfrak{F} be the collection of Frobenius groups whose kernel is an elementary 2-group. Then $G \in \mathfrak{F}$.

The analogous theorem for \mathfrak{F} the collection of groups F of order $p m$ with ($m, 2 p$) $=1$, probably holds. Some progress is made in this paper toward such a result.

The proof of Theorem 3 is combinatorial. The proof of Theorem 1 is more complicated, and uses signalizer arguments. A contradiction is arrived at by showing a minimal counterexample has 2 -rank at most 2, or possesses a proper 2-generated core.

Certain specialized notation and terminology is used. A D-subgroup of G is a subgroup H with $\langle H \cap D\rangle=H$. Given $X \leq G, \theta(X)=\langle X \cap D\rangle$. $\quad И(X)$ is the set of proper D-subgroups of G normalized by X, and $\Lambda^{*}(X)$ the set of maximal elements of $\Pi(X)$. $\quad \Lambda=\Pi(1)$ and $\Pi^{*}=\Pi^{*}(1) . \quad m(G)$ is the 2-rank of $G . \quad O_{\infty}(G)$ is the largest normal solvable subgroup of $G . \quad F(X)$ is the set of fixed points of X under its action by conjugation on D.

2. \mathfrak{F}-sets

Throughout this section p is a fixed odd prime, and D is an \mathfrak{F}-set of a nonabelian finite group G, such that the members of D have order p. \mathfrak{F} will be one of the following collections of groups:
2.1. The collection of groups F with $F / Z(F)$ Frobenius.
2.2. The collection of groups in 2.1 of odd order.
2.3. The collection of groups of order $m p$ where $(2 p, m)=1$.

Lemma 2.4. Let \mathfrak{F} be as in 2.1. Then:
(1) If H is a D-subgroup, $H \cap D$ is an \mathfrak{F}-set of H.
(2) If α is a homomorphism of G then $D \alpha$ is an \mathfrak{F}-set of $G \alpha$.
(3) If A and B are in D then A is conjugate to B in $\langle A, B\rangle$.

Proof. (1) is trivial. Let G be a minimal counterexample to (2) and (3). Then $G=\langle A, B\rangle$ for some A and B in D and $Z(G)=1$. Let H and K be the Frobenius compliment of G containing A, and the Frobenius kernel of G, respectively. Then $C_{G}(A) \leq H$, so K is a p^{\prime}-group and thus $B \cap K=1$. So $B^{k} \leq H$ for some $k \in K$. (3) now follows from minimality of G. In (2), $G \alpha$ is not Frobenius, so $K \leq \operatorname{ker}(\alpha)$. Thus $G \alpha \cong\left\langle A, B^{k}\right\rangle \alpha \in \mathfrak{F}$ by minimality of G.

Lemma 2.5. Let \mathfrak{F} be as in 2.1, let $G \in \mathfrak{F}, A \in D$ and $\bar{G}=G / Z(G)$. Then either
(1) \bar{G} has Frobenius kernel \bar{G}^{\prime} and compliment A, or
(2) \bar{G} has a Frobenius compliment isomorphic to $S L_{2}(3)$ and $p=3$.

Proof. Let G be a minimal counterexample. Then $Z(G)=1$. Let H be the Frobenius compliment containing A. By 2.4, $D \cap H$ is an \mathfrak{F}-set of the Frobenius compliment H of G, and as $H \neq A$ there exists some B in $H \cap D$ distinct from A. Minimality of G implies either $H=\langle A, B\rangle$ or $\langle A, B\rangle \cong$ $S L_{2}(3)$. Assume $H=\langle A, B\rangle$, and let $K / Z(H)$ be the Frobenius kernel of $H / Z(H)$. Then K is a nilpotent Frobenius compliment, so $O(K)=J$ is cyclic. It follows that $J \cap C(A)=1$, as $A J \in \mathfrak{F}$. But $A J$ is a Frobenius compliment so $[A, j]=1$ for any $j \in J$ of prime order. Thus $J=1$. Similarly it follows that K is a quaternion group. As $[A, K] \neq 1$, minimality of G implies $H=A \cong S L_{2}(3)$.

So for every choice of distinct A and B in $D, H \neq\langle A, B\rangle \cong S L_{2}(3)$. It follows from [3] that $H \cong U_{3}(3)$. But $U_{3}(3)$ is not a Frobenius compliment.

Lemma 2.6. Let \mathfrak{F} be as in 2.2 with $G \epsilon \mathfrak{F}$. Then the center of G is generated by the centers of 2-generator D-subgroups of G.

Proof. $\operatorname{Set} Z=Z(G)$, let $\langle a\rangle=A \epsilon D$ and $\operatorname{set} E=a^{G}$. Let G be a minimal counterexample. As $G \in \mathfrak{F}$, the centers of all 2 -generator D-subgroups of G lie in $Z(G)$. Thus minimality of G implies all such centers are trivial.

Let $b, c \in E$, and $H=\langle a, b\rangle$. Then $a b \equiv a^{2} \bmod H^{\prime}$, so as H is Frobenius with kernel H^{\prime} and $p>2, a b=d^{2}$ for some $d \epsilon a^{H}$. Similarly considering
$\langle d, c\rangle, d^{2} c^{-1} \epsilon E$. Therefore $a b \bar{c}^{-1} \epsilon E$ and thus $E \bar{c}^{1}=\bar{a}^{1} E$ for all $a, c \in E$. So $\bar{a}^{1} E=E \bar{c}^{1}=\bar{c}^{1} E$ and therefore $\bar{a}^{1} E$ is normalized by G.

Now let M / Z be a minimal normal subgroup of G / Z. Then $M=Z \times[a$, $M]$ and $[a, M]=a^{-1} E \cap M$ is normalized by G. Thus minimality of G implies $G /[a, M]$ is a Frobenius group, whereas $1 \neq M /[a, M]$ centralizes a, a contradiction.

Lemma 2.7. Let \mathfrak{F} be as in 2.2, and assume $G^{\prime}=Q$ is a q-group for some prime q. Then $G \in \mathfrak{F}$.

Proof. Let G be a minimal counterexample, let $A \in D$ and set $Z=Z(Q)$. Clearly $Z(G)=1$, so $C(A) \cap Z=1$. Set $\bar{G}=G / Z$. Minimality of G implies $\bar{G} \in \mathfrak{F}$, so as $C(A) \neq A, 2.5$ and 2.6 imply there exists B in D distinct from A such that $\bar{H}=\langle\bar{A}, \bar{B}\rangle$ has a nontrivial center. Thus the center of H contains an element u not in the center of G. Let Γ be the collection of 2 generator D-subgroups X of G such that $Z u \cap Z(X)$ is nonempty. By 2.4, G^{D} is transitive, and minimality of G implies \bar{u} is in the center of \bar{G}, so $Q=\langle X \cap Q: X \in \Gamma\rangle$. But as $Z=Z(Q), Z u=Z(Z u \cap Z(X))$ is centralized by $X \cap Q$, so $\langle Z, u\rangle \leq Z(Q)=Z$, a contradiction.

Lemma 2.8. Let \mathfrak{F} be as in 2.2 and assume G is solvable. Then $G \in \mathfrak{F}$.
Proof. Let G be a minimal counterexample and let $A \in D$. Clearly $Z(G)=1$. Let M be a minimal normal subgroup of G. Then M is an elementary abelian q-subgroup for some prime q and minimality of G implies $G / M \in \mathfrak{F}$. Set $K=G^{\prime}$. Suppose K is nilpotent. Then minimality of G implies K is a q-group and 2.7 yields a contradiction. So K is not nilpotent and there exists a prime $r \neq q$ dividing the order of K. Let R be an A invariant Sylow r-subgroup of K. As K is not nilpotent, minimality of G implies $K=M R, A R$ is generated by any two members of $A R \cap D$, and $A R$ acts irreducibly on M.

Suppose $H=\langle A, B\rangle$ is a 2-generator D-subgroup. Then either H is conjugate to $A R$ or $H^{\prime} \leq M$. Let $m=|M|, n=\left|M: C_{M}(A)\right|$, and

$$
k=\left|R: C_{R}(A)\right|
$$

Then D has order $n k$, so there are $n k-1$ members B of D distinct from A. There are $m / n \quad D$-subgroups H conjugate to $A R$ containing A, and $|H \cap D|=k$; there are $n-1$ members B of D distinct from A with $\langle A, B\rangle^{\prime} \leq$ M. Therefore

$$
n k-1=m(k-1) / n+n-1
$$

It follows that $m=n^{2}$. Thus letting $A R=\langle A, B\rangle, M=C_{M}(A) \times C_{M}(B)$.
Extend $G F(p)$ to a splitting field F for $A R$ and M to a vector space V over F. Then $\operatorname{dim}_{F} V=2 \operatorname{dim}_{F}\left(C_{V}(A)\right)=2 r$. Let V_{i} be the absolutely irreducible components of V, and set $r_{i}=\operatorname{dim}_{F}\left(C_{V_{i}}(A)\right)$. Then $r=\sum r_{i}$, and as $C_{V}(A) \cap C_{V}(B)=1,2 r \geq \sum 2 r_{i}$. So $\operatorname{dim}_{F} V_{i}=2 r_{i}$ is even, impossible as $|A R|$ is odd.

Lemma 2.9. Let \mathfrak{F} be as in 2.3, and let S be a Sylow 2-subgroup of G. Then
(1) for any $X \leq S, F(X)=C_{D}(X)$, and
(2) $\quad F(S)$ is nonempty.

Proof. Let $X \leq S$ centralize $A \in D$ and fix $B \in D$. Then X acts on $H=\langle A, B\rangle$ of odd order, so all X invariant Sylow p-subgroups of H are conjugate in $C_{H}(X)$ to A. In particular as X centralizes A and normalizes B, X centralizes B.

Next let T be a maximal subgroup of S fixing a point of D. Suppose $T \neq S$. Then T is of index 2 in some $R \leq S$ and R acts on $F(S)$. Thus maximality of T implies R has a cycle (A, B) of length 2 in D. Then R acts on $H=\langle A, B\rangle$, and as $H \cap D=A^{H}$ has odd order, $F(R)$ is nonempty, a contradiction. This yields (2).

Finally assume (1) is false. Then by the first paragraph, $C_{D}(S)$ is empty. Let $A \in F(S)$ and $T=C_{S}(A)$. Then $S / T \leq$ Aut (A) is cyclic and T is the set of elements x of S with $C_{D}(x)$ nonempty. Thus $N(T)$ controls fusion in S and considering the transfer of G to $S / T, G$ has a subgroup of index two. But this is impossible as $G=\langle D\rangle$.

3. A signalizer theorem

In this section the following hypothesis is assumed:
Hypothesis 3.1. \mathfrak{F} is the collection of groups F of odd order with $F / Z(F)$ Frobenius. $\quad p$ is a fixed odd prime and D is an \mathfrak{F}-set of G such that each member of D has order $p . \quad O_{\infty}(G)=1$ and each member of $И$ is solvable.

Lemma 3.2. Let E be an elementary 2-group of rank at least two, and $H \in И(E)$. Then $H=\left\langle\theta\left(C_{H}(U)\right):\right| E: U|=2\rangle$.

Proof. $H / Z(H)=\left\langle C_{H / Z(H)}(U):\right| E: U|=2\rangle$. By 2.8, $H / Z(H)$ is Frobenius, while by 2.9, there exists $A \in C(E) \cap H \cap D$. Thus

$$
C_{H / Z(H)}(U)=\theta\left(C_{H}(U)\right) Z(H) / Z(H)
$$

So setting $K=\left\langle\theta\left(C_{H}(U)\right):\right| E: U|=2\rangle, H=K Z(H)$. Thus as $\left|H: H^{\prime}\right|$ $=p, Z(H) \leq K$, so $H=K$.

Theorem 3.3. Let E be an elementary 2-group of rank 3. Then $U^{*}(E)$ contains a unique member.

For the remainder of this section let M_{1} and M_{2} be distinct members of $U^{*}(E)$ with $M_{1} \cap M_{2}$ maximal. By $2.9, E$ centralizes a member of $M_{i} \cap D$, so maximality of $M_{1} \cap M_{2}$ implies there exists $A \in M_{1} \cap M_{2} \cap C_{D}(E)$.

$$
Z\left(M_{1}\right) \cap M_{2}=Z\left(M_{1}\right) \cap Z\left(M_{2}\right)=1
$$

Thus either $M_{1} \cap M_{2}$ is Frobenius or $A=M_{1} \cap M_{2}$. As $m(E)=3$, there exists $e \epsilon E^{*}$ with $\theta(C(e)) \cap M_{i}>A, i=1,2$. Thus maximality of $M_{1} \cap M_{2}$
implies $M_{1} \cap M_{2}$ is Frobenius. Let q be a prime distinct from p and $1 \neq Q$ the Sylow q-subgroup of $M_{1} \cap M_{2}$. Let Z_{i} be the Sylow q-subgroup of $Z\left(M_{i}\right)$.

As each member of K is nilpotent, if Q is Sylow in M_{1}, then maximality of M_{i} implies $M_{1}=\theta(N(Q))$ and Q is not Sylow in M_{2}. As $m(E)=3$, with 3.2 there exists $e \in E$ such that $\theta\left(C_{M_{1}}(e)\right)$ has a nontrivial Hall q^{\prime} - group R, and a Sylow q-group Q_{2} of $\theta\left(C_{M_{2}}(e)\right)$ is not contained in Q. Let $\theta(N(R)) \leq M_{3} \epsilon$ $U^{*}(E)$. Then $\left\langle Q, Q_{2}\right\rangle \leq Q_{3} \in \operatorname{Syl}_{q}\left(M_{2} \cap M_{3}\right)$, and as above $A Q_{3}$ is Frobenius. So $A Q<\theta\left(N_{A Q_{3}}(Q)\right) \leq M_{1}$ contradicting Q Sylow in M_{1}.

So Q is not Sylow in $M_{i}, i=1,2$. But maximality of Q implies $M_{1} \cap M_{2}=$ $\theta\left(N_{M_{i}}(Q)\right)$ for $i=1$ or 2 , say the former. Thus M_{1} is a q-group and $N_{M_{1}}(Q)$ $=Z_{1}\left(M_{1} \cap M_{2}\right)$. In particular $Z_{1} \neq 1$ and thus $M_{1} \in K^{*}$.
Lemma 3.4. If Z_{1} acts on a D-subgroup H with $A<H \leq M \in$ H$^{*}(E)$, H^{\prime} a q-group with $Z(H) \neq 1$, then $A \neq M_{1} \cap M \neq M_{1} \cap M_{2}$.

Proof. Choose M_{2} so that either Q is maximal or $Q=1$. Let

$$
U_{2}=N_{Z_{2}}\left(Q Z_{1}\right), \quad X=Q Z_{1} U_{2} \quad \text { and } \quad Y=\theta\left(N_{M_{1}}(X)\right)
$$

Then $M_{1} \cap M_{2}<Y$. If $M_{1} \cap M_{2}=\theta\left(N_{M_{1}}(Q)\right)$ then $Z_{1} \cap Y \neq 1$ while if $Q=1$ then as $\left[Y, U_{2}\right] \neq 1$, the same holds. So

$$
\left\{M_{1}\right\}=\theta(N(X)) \quad \text { and } \quad N(X) \cap Z_{2}=N\left(X_{\cap} M_{1}\right) \cap Z_{2}=N\left(Z_{1} Q\right) \cap Z_{2}=U_{2}
$$

Thus $U_{2}=Z_{2}$. But then arguing as above on $M_{2},\left\{M_{2}\right\}=U^{*}\left(\theta\left(N\left(Z_{1} Z_{2} Q\right)\right)\right)$ $=\left\{M_{1}\right\}$, a contradiction.

Lemma 3.5. Q is abelian.

Proof. If not then $1 \neq Q^{\prime}=\left(Q Z_{i}\right)^{\prime} \unlhd N_{M_{i}}\left(Q Z_{i}\right)$, so $Q<\theta\left(N_{M_{i}}\left(Q^{\prime}\right)\right)$, contradicting the maximality of Q.

Let P be the Sylow q-subgroup of M_{2} and U a 4 -group contained in E with $C_{Q}(U) \neq 1$. For some $u \in U^{*}, \theta\left(C_{A P}(u)\right) \neq M_{1} \cap M_{2}$. Let $Y=Q Z_{2} \cap$ $\theta\left(C_{M_{2}}(u)\right) . \quad Y<\theta(N(Y)) \cap P$ and as Q is abelian, $Q \leq \theta(N(Y))$. Thus maximality of $M_{1} \cap M_{2}$ implies M_{2} is the unique member of $\Lambda^{*}(E)$ containing $\theta(N(Y))$.

Maximality of $M_{1} \cap M_{2}$ implies $\theta\left(N\left(Z_{1} Q\right)\right) \leq M_{1}$ and either $M_{1} \cap M_{2}=$ $\theta\left(N_{M_{2}}(Q)\right)$ or $\theta(N(Q)) \leq M_{2}$. As Z_{1} acts on $\theta(N(Q))$, with 3.4 and our initial remark, it is the former. So there is symmetry between M_{1} and M_{2}.

Suppose $Y \cap Z_{2}=1$. Then $\left[Y, Z_{1}\right]=1$, so Z_{1} acts on $\theta(N(Y))$. By 3.4, Q is Sylow in $\theta(N(Y)) \cap \theta(N(Q))$, and $Q<P \cap \theta(N(Y))$, so $\theta(N(Y)) \cap Z_{2} \neq$ 1. Therefore 3.4 yields a contradiction. It follows that:

Lemma 3.6. $\quad Z_{2} \cap \theta(C(u)) \neq 1$ and $M_{2}=\theta\left(C\left(Z_{2}\right)\right) \in U^{*}$.
By symmetry there exists $v \in U^{*}$ with $Z_{1} \cap \theta(C(v)) \neq 1$.
Lemma 3.7. Let $\theta(C(u v)) \leq M_{3} \in \Pi^{*}(E)$. Then either $M_{3}=M_{1}$ or M_{2}, or $Z_{3} \cap \theta(C(u v)) \neq 1$ and $M_{1} \cap M_{2}=M_{1} \cap M_{3}=M_{2} \cap M_{3}$.

Proof. Assume $M_{3} \neq M_{1}$ or M_{2} and choose $M_{3} \neq M \epsilon प^{*}(E)$ with $\theta(C(U))$ $\leq M \cap M_{3}$ maximal. Then by 3.6, $\theta(C(w)) n M_{8} \neq 1$ for some $w \in U^{*}$ and as $M_{1} \neq M_{3} \neq M_{2}, w=u v$. Further $Z(M) \cap \theta(C(x)) \neq 1$ for some $x \in U^{*}$, say $x=v$, so $M=M_{1}$. Let $A X=M_{1} \cap M_{2} \cap M_{3} . \quad 1 \neq C_{Q}(U) \leq X$ and as $M_{i} \cap M_{j}$ is abelian,

$$
\left\langle M_{i} \cap M_{j}: 1 \leq i<j \leq 3\right\rangle \leq \theta(N(X))=M_{1} \cap M_{2} .
$$

So $M_{1} \cap M_{2}=M_{1} \cap M_{3}$ by maximality of $M_{1} \cap M_{8}$.
Lemma 3.8. $\left|И^{*}(E)\right|>3$.
Proof. There exists $e \in E^{*}$ with $\theta\left(C_{M_{i}}(e)\right) \neq M_{j}, i \neq j$. Thus $\left|И^{*}(E)\right| \geq 3$. Assume equality. Then $\theta(C(e)) \leq M_{\mathfrak{z}}$, and $M_{1} \cap M_{3}$ 车 $M_{1} \cap M_{2}$. So arguing as in $3.7, A=M_{1} \cap M_{2} \cap M_{3}$. Thus for $a \in E^{*}$ with $\theta(C(a)) \leq M_{1}, a$ inverts $M_{2} \cap M_{3}$. Now for some M_{i}, say M_{1}, there exists $e_{i} \in E^{*}, 1 \leq i \leq 3$, with $\theta\left(C\left(e_{i}\right)\right) \leq M_{1}$. Further $\theta\left(C\left(e_{i} e_{j}\right)\right) \not M_{1}$, so we may choose $\theta\left(C\left(e_{1} e_{i}\right)\right) \leq M_{2}, i=2,3$, and $\theta\left(C\left(e_{2} e_{3}\right)\right) \leq M_{3}$. Now e_{i} inverts $M_{2} \cap M_{3}$ and thus $b=e_{2} e_{3}$ centralizes $M_{2} \cap M_{3}$. Also

$$
M_{\mathrm{z}}=\left\langle\theta\left(C_{M_{3}}\left(e_{i} e_{j}\right): i \neq j\right\rangle=\theta(C(b))\left(M_{2} \cap M_{3}\right) \leq \theta(C(b)),\right.
$$

so b centralizes M_{3}.
Suppose $C_{z_{1}}(b)=W \neq 1$. Then W acts on Z_{3} and centralizes a nontrivial subgroup of Z_{3}, which acts on Z_{1}. Thus $X=N_{z_{3}}\left(Z_{1}\right) \neq 1$ acts on $\left[Z_{1}, b\right]=$ $V_{1} \neq 1$ by 3.4. \quad o $V=C_{V_{1}}(X) \neq 1$ acts on Z_{8} and $V=\left[V Z_{8}, b\right] \unlhd V Z_{8}$, and therefore Z_{3} acts on $M_{1}=\theta(C(V))$, contradicting 3.4.
Thus $W=1$. So $Z_{1}=C_{Z_{1}}\left(e_{1} e_{2}\right) C_{Z_{1}}\left(e_{1} e_{8}\right)$ acts on $\left\langle\theta\left(C\left(e_{1} e_{2}\right)\right), \theta\left(C\left(e_{1} e_{3}\right)\right\rangle\right.$ $=M_{2}$, contradicting 3.4.
Lemma 3.9. $Z_{8} \cap \theta(C(u v)) \neq 1$ and for $M \neq M_{i}, 1 \leq i \leq 3, M \cap M_{3}$ is maximal and v inverts $\left(M \cap M_{3}\right)^{\prime}$.
Proof. Let $M_{i} \in U^{*}(E), 1 \leq i \leq 4$, choosing the groups with Z_{3} $n \theta(C(u v)) \neq 1$ if possible. If $M_{1} \cap M_{\mathrm{s}} \cap M_{4} \neq 1$, then by $3.6,3.7$, and choice of $M_{i}, M_{i} \cap M_{j}=M_{1} \cap M_{2}$, so for each i there is $x \in U^{*}$ with $Z_{i} \cap \theta(C(x)) \neq 1$, a contradiction. Thus u and v invert $\left(M_{3} \cap M_{4}\right)^{\prime}=Y$, so $u v$ centralizes Y. By 3.6 there exists $e \epsilon E^{*}$ with $Z_{3} \cap \theta(C(e)) \neq 1$. Suppose $\theta\left(C_{M_{4}}(e)\right)=A$, Then e inverts $M_{4}^{\prime} / C_{z_{4}}(e)$ which is therefore abelian. So as

$$
M_{4}^{\prime} / C_{z_{4}}(e)=\left[A, M_{4} / C_{z_{6}}(e)\right]
$$

$Z\left(M_{4} / C_{z_{4}}(e)\right)=1$ and thus $\left[Z_{4}, e\right]=1$. So Z_{4} acts on M_{3}, contradicting 3.4.
Therefore $1 \neq \theta\left(C_{M_{4}}(e)\right)^{\prime} \leq Y$, so as $[Y, u v]=1$, arguing as above $\theta(C(u v)) \neq M_{1}$ or M_{2}. So by 3.7 we may choose $Z_{3} \cap \theta(C(u v)) \neq 1$.

As $M_{8} \cap M_{4} \neq A$, it is maximal by 3.6 and 3.7.
We now complete the proof of Theorem 3.3. Let $Y=\left(M_{3} \cap M_{4}\right)^{\prime}$ and $u v \in W$ a 4 -group in E with $C_{Y}(W) \neq 1 . \quad Y=\left(M_{3} \cap M_{5}\right)^{\prime}$, some M_{5}. $[u v, Y]=1$, so

$$
M_{3}=\left\langle\theta\left(C_{M_{z}}(w): w \in W^{*}\right\rangle \leq Y C(u v) \leq C(u v) .\right.
$$

W acts on Z_{1}, so we may assume $Z=C_{Z_{1}}(u v) \neq 1$. By $3.4,\left[Z_{1}, u v\right] \neq 1$, so

$$
1 \neq\left[Z_{1}, u v\right] \cap C\left(C_{z_{3}}(Z)\right) \leq C\left(Z_{3}\right)
$$

against 3.4.

4. The case $m(G) \geq 3$

Lemma 4.1. Assume $m(G) \geq 3, G$ has no subgroup of index 2 , and let u be an involution in G. Then there exists an elementary 2 -subgroup E of rank 3 containing u. Let S be a Sylow 2-subgroup of G containing E. Then there exists a 4-group $W \unlhd S$ and an elementary subgroup V of S containing W with $m(V) \geq 3$ and $|E \cap V| \geq 4$.

Proof. Let S be a Sylow 2-subgroup of G. As $m(G) \geq 3$, there exists a 4 -group $W \unlhd S . \quad$ Let $T=C_{S}(W)$. If E is an elementary subgroup of order 8 in S, then choose $V=(E \cap T) W$. Let u be an involution in S and suppose $m\left(C_{S}(u)\right)<3$. Then $u \in S-T$. But as G has no subgroup of index 2, $u^{G} \cap T$ is nonempty. So $m\left(C_{G}(u)\right) \geq 3$.

Lemma 4.2. Assume Hypothesis 3.1 and let $m(G) \geq 3$. Then G has a proper 2-generated core.

Proof. By 3.3, if E is an elementary 2-subgroup of rank 3, then $U^{*}(E)$ contains a unique member M. Choose E with M of maximal order. Let S be a Sylow 2 -subgroup of G containing E and W a 4 -group normal in S. By 4.1 there exists an elementary subgroup V of S containing W, of rank at least 3, such that $|E \cap V| \geq 4$. Now by 3.2,

$$
M=\left\langle\theta(C(x)): x \in(E \cap V)^{*}\right\rangle
$$

so $\{M\}=U^{*}(V)$. Therefore $M=\left\langle\theta(C(w)): w \in W^{*}\right\rangle$, and thus S normalizes M. Set $T=C_{S}(W)$. Then $m\left(C_{s}(u)\right) \geq 3$ for any involution in T, so by 3.3, $\theta(C(u)) \leq M$. Suppose $\theta(C(s)) \neq M$ for some involution s in $S-T$. Then $m\left(C_{s}(s)\right)=2$, so $Z(S)$ contains a unique involution z. Let R be a Sylow 2 -subgroup of $C(s)$ containing z. By 4.1, $m(R) \geq 3$. Further if $m\left(C_{R}(z)\right) \geq 3$ then $И^{*}\left(C_{R}(z)\right)$ contains a unique member K and

$$
M=\left\langle\theta\left(C_{M}(x)\right): x \in\langle s, z\rangle^{*}\right\rangle \leq K
$$

So maximality of M implies $M=K$, contradicting the choice of s. Therefore s is the unique involution in the center of R, so s is conjugate to z. As $s \in S-T$ and T has index 2 in S, s is not rooted in S, a Sylow 2 -subgroup of $C(z)$. Therefore z is not rooted in $C(s)$, so $C_{s}(s)$ is a 4 -group. It follows from a result of Suzuki [6] that S is dihedral or semidihedral, and thus in particular $m(S)=2$, a contradiction.

Set $H=N_{G}(M)$ and let $X \leq S$ with $m(X) \geq 2$. We have shown that $\left.\theta(C(x)): x \in X^{*}\right\rangle=M$, so $N(X) \leq H$. Thus H contains a 2-generated core of G.

5. The proof of Theorem 1

Let G be a minimal counterexample to Theorem 1. By $2.8, G$ is not solvable, so minimality of G implies $O_{\infty}(G)=1$. Let M be a minimal normal subgroup of G, and let $A \in D . \quad M$ is not in the center of G, so $[A, M] \neq 1$. Thus as $[A, M] \unlhd M,[A, M]$ is semisimple. Then $A[A, M]$ is a nonsolvable D subgroup of G, so $G=A M$ and $M=[A, M] . M$ is the direct product of simple subgroups M_{i} permuted transitively by A. Let S be a Sylow 2-subgroup of M_{1}. Then $A[A, S]$ is a solvable D-subgroup and $[A, S]$ is a 2-group, so $[A, S]=1$. Therefore $G^{\prime}=M=M_{1}$ is simple.

Now by 4.2 either $m(G) \leq 2$ or $m(G) \geq 3$ and G has a proper 2-generated core. In the first case [1] implies $M \cong L_{2}(q), L_{3}(q), U_{3}(q), A_{7}$, or M_{11}, q odd. In the second case [2] implies $M \cong L_{2}(q), S z(q), U_{3}(q), q$ even, or J_{1}, the Janko group of order 175,560 .

Let $A=\langle a\rangle$. By 2.9, a induces an automorphism of M centralizing a Sylow 2-subgroup of M. $L_{2}(q), S z(q), U_{3}(q), q$ even, J_{1}, A_{7}, and M_{11} do not admit such an automorphism of odd order. Then G does not contain a strongly embedded subgroup, so for an involution $u \in G, \theta(C(u))$ is not cyclic. But if $M=L_{3}(q)$ or $U_{3}(q), q$ odd, $L=\operatorname{Aut}(M)$, and u is an involution in M, then $O\left(C_{L}(u)\right)$ is cyclic. So $M \cong L_{2}\left(q^{p}\right), q$ odd, and a induces a field automorphism on M.

Now if p divides the order of M, then q^{2} is congruent to 0 or 1 modulo p, and therefore $\left|M: C_{M}(a)\right|=q^{p-1}\left(q^{2 p}-1\right) /\left(q^{2}-1\right) \equiv 0 \bmod p$. So a is not in the center of a Sylow p-subgroup of G, a contradiction. Therefore p does not divide the order of M, so a normalizes a subgroup Q of order q^{p} in M. Then $\theta(N(Q)) \in \mathfrak{F}$, a contradiction.

This completes the proof of Theorem 1.

6. The proof of Theorem 3

Let \mathfrak{F} be the class of Frobenius groups whose kernel is an elementary 2group. Let G be a minimal counterexample to Theorem 3. Let $A \in D$ and a a generator of A. For $\langle b\rangle \in D$ write $a \sim b$ if b is conjugate to a in $\langle a, b\rangle$.

Suppose $p=3$ and let $A \neq B \in D$, and $Q=\langle A, B\rangle^{\prime}$. Then $B=A^{x}$ for some $x \epsilon Q^{*}$, so $\langle A, B\rangle=\langle A, x\rangle$ and thus A acts irreducibly on Q. So $|Q|=4$ and $\langle A, B\rangle$ is isomorphic to the alternating group on 4 letters. Therefore [3] yields a contradiction. So $p>3$.

Suppose $O_{\infty}(G) \neq 1$. Then minimality of G implies $G=A G^{\prime}$ and \sim is an equivalence relation. Further for $b, c \in a^{G}, a b^{-1}, b c^{-1}$ and $a c^{-1}$ have order 1 or 2 , so as $\left(a b^{-1}\right)\left(b c^{-1}\right)=a c^{-1}, a b^{-1}$ commutes with $a c^{-1}$. But arguing as in 2.6, $a^{-1} a^{G}$ is normalized by G, so $G^{\prime}=\left\langle a^{-1} a^{G}\right\rangle$ is an elementary 2 -group. So $O_{\infty}(G)=1$.

Let H be a proper D-subgroup of maximal order; we may assume $A \leq H$. Minimality of G implies H^{\prime} is an elementary 2-subgroup. Let $\langle b\rangle=B \in D-$ H with $a \sim b$. Define

$$
\Delta=\left\{a c^{-1}: c \in a^{H} \quad \text { and } \quad b \sim c\right\}
$$

As $|H \cap D|>p-1,\langle\Delta\rangle \neq 1$. But for $a c^{-1}=x \in \Delta, x, c b^{-1}$ and $a b^{-1}$ all have order 1 or 2 , and $x\left(c b^{-1}\right)=a b^{-1}$, so x commutes with $a b^{-1}$. Thus $x^{b}=x^{a} \in H^{\prime}$, so if $\langle\Delta\rangle=H^{\prime}$, then $G=\langle H, B\rangle$ normalizes H^{\prime}, impossible as $O_{\infty}(G)=1$. So $\langle\Delta\rangle<H^{\prime}$. Therefore

$$
\Gamma=\left\{b d^{-1}: d \epsilon a^{H} \quad \text { and } \quad b \nsim d\right\}
$$

has order at least $|H \cap D| / 2$. Let $x \in \Delta$ and $d \in a^{H}$. Then $x^{b d^{-1}}=x^{a d^{-1}}=x$. So $\Gamma \subseteq C(x)$. Therefore $K=\langle\Gamma\rangle \neq G$. Also for each $y \in \Gamma,\langle y\rangle \in D$, so K is a D-subgroup. Finally if $b d^{-1}$ and $b \bar{c}^{-1}$ are in Γ with $c \neq d$, then $\left(b \bar{c}^{-1}\right)^{-1} b d^{-1}=$ $c d^{-1}$ is an involution, so $\left\langle b d^{-1}\right\rangle \neq\left\langle b c^{-1}\right\rangle$. Therefore $|K \cap D| \geq|H \cap D| / 2$. But $|H \cap D|-2^{n+1}$ and $|K \cap D|=2^{n+r}$ with $2^{n+1} \equiv 2^{n+r} \equiv 1 \bmod p$, so $r \geq 1$, and $|K \cap D| \geq|H \cap D|$. Thus maximality of H implies $|K \cap D|=$ $|H \cap D|$.

Now if $|\Gamma|>|H \cap D| / 2$, then $Q=\langle\bar{u} v: u, v \in \Gamma\rangle=H^{\prime}$, so $x \in K \leq C(x)$, a contradiction as minimality of G implies $Z(K)=1$. Therefore $|\Gamma|=$ $|H \cap D| / 2=|Q|$. So $P=\langle\Delta\rangle$ also has order $|H \cap D| / 2$. But as $p>3$, $|H \cap D|>4$, so $Q \cap P \neq 1$. Thus we may assume $x \in Q \cap P \leq K \leq C(x)$, a contradiction.

This completes the proof of Theorem 2.

References

1. J. Alperin, R. Brauer and D. Gorenstein, Finite groups of 2-rank 2, to appear.
2. M. Aschbacher, Finite groups with a proper 2-generated core, Trans. Amer. Math. Soc., vol. 197 (1974), to appear.
3. M. Aschbacher, and M. Hall, Groups generated by a class of elements of order 3, J. Algebra, vol. 24, (1973), pp. 591-612.
4. B. Fischer, F-gruppen endlicher Ordung, Arch. Math., vol. 16 (1965), pp. 330-336.
5. -, Frobenius automorphismen endlicher Gruppen, Math. Ann., vol. 163 (1966), pp. 273-298.
6. M. Suzuki, A characterization of the simple groups $L F(2, p)$, J. Fac. Sci. Univ. Tokyo, vol. 6 (1951), pp. 259-293.

California Institute of Technology
Pasadena, California

