
A CHARACTERIZATION OF CERTAIN FROBENlUS GROUPS

BY

1. Introduction

Let be collection of groups nd G finite group. Following B. Fischer,
n -se of G is collection D of subgroups normalized by G nd generating G,
such that the subgroup generated by ny pir of distinct members of D is
isomorphic to member of .

Let p be fixed odd prime nd D n -set of the nonbelin group G, such
that ech member of D hs order p. Fischer hs shown that if {G}, nd
G is solvable, then G/Z(G) is Frobenius group [4]. He hs further shown
that if is the collection of Frobenius groups with cyclic kernels, then G is
Frobenius group [5].

In this pper it is shown that"

THEOREM 1. Le be he collection of groups F wih F/Z(F) Frobenius of odd
order. Then G e , and Z(G) is generated by $he centers of 2-generator D-sub-
groups.

As corollary it follows that"

TI-IEOREM 2. Le F} wih F of odd order. Then G/Z(G) is a Frobenius
group of odd order.

The restriction in Theorems 1 and 2 that F hve odd order is necessary.
For example if SL,.(3) then U,(3) possesses n -set. The following
theorem is however true"

THEOREM 3. Le be $he collection of Frobenius groups whose kernel is an
elementary 2-group. Then G e .
The nlogous theorem for the collection of groups F of order pn with

(n, 2p) 1, probably holds. Some progress is made in this pper toward
such result.
The proof of Theorem 3 is combinatorial. The proof of Theorem 1 is more

complicated, nd uses signlier rguments. A contradiction is rrived t by
showing minimal counterexmple has 2-rnk t most 2, or possesses proper
2-generated core.

Certain specialized notation nd terminology is used. A D-subgroup of G
is subgroup H with (H n D) H. Given X _< G, (X) (X n D). 4(X)
is the set of proper D-subgroups of G nor.mlied by X, nd 14*(X) the set of
mximl elements of (X). I4 (1) nd I4" 14"(1). (G) is the
2-rnk of G. 0(G) is the lrgest normal solvable subgroup of G. F(X) is
the set of fixed points of X under its ction by conjugation on D.
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2. -sets
Throughout this section p is a fixed odd prime, and D is an -set of a non-

abelian finite group G, such that the members of D have order p. will be
one of the following collections of groups"

2.1.
2.2.
2.3.

The collection of groups F with F/Z(F) Frobenius.
The collection of groups in 2.1 of odd order.
The collection of groups of order mp where 2p, m) 1.

LEMMA 2.4. Let be as in 2.1. Then:
(1) If H is a D-subgroup, H n D is an -set of H.
(2) If a is a homomorphism of G then Da is an -set of Ga.
(3) If A and B are in D then A is conjugate to B in (A, B).

Proof. (1) is trivial. Let G be a minimal counterexample to (2) and (3).
ThenG (A,B}forsomeA andBinDandZ(G) 1. LetHandKbe
the Frobenius compliment of G containing A, and the Frobenius kernel of G,
respectively. Then Ca(A)

_
H, so K is a pP-group and thus B n K 1. So

Bk

_
H for some le K. (3) now follows from minimality of G. In (2), Ga

is not Frobenius, so K
_

ker (a). Thus Ga (A, Bk}a by minimality of
G.

LEMMA 2.5.
Then either

Let be as in 2.1, let G , A D and G G/Z( G).

(1)
(2)

has Frobenius kernel ’ and compliment A, or
has a Frobenius compliment isomorphic to SLy.(3) and p 3.

Proof. Let G be a minimal counterexample. Then Z(G) 1. Let H be
the Frobenius compliment containing A. By 2.4, D n H is an -set of the
Frobenius compliment H of G, and as H A there exists some B in H n D
distinct from A. Minimality of G implies either H (A, B) or (A, B)
SLy.(3). Assume H (A, B), and let K/Z(H) be the Frobenius kernel of
H/Z(H). Then K is a nilpotent Frobenius compliment, so O(K) J is
cyclic. It follows that J C(A) 1, as AJ . But AJ is a Frobenius
compliment so [A, j] 1 for any j e J of prime order. Thus J 1. Simi-
larly it follows that K is a quaternion group. As [A, K] 1, minimality of
G implies H A - SL2(3).

So for every choice of distinct A and B in D, H (A, B) _--__ SL2(3). It
follows from [3] that H U3(3). But U3(3) is not a Frobenius compliment.

LEMMA 2.6. Let be as in 2.2 with G . Then the center of G is generated
by the centers of 2-generator D-subgroups of G.

Proof. SetZ Z(G),let (a} A eD andsetE av. Let G be a minimal
counterexample. As G e , the centers of all 2-generator D-subgroups of G
lie in Z(G). Thus minimality of G implies all such centers are trivial.

Let b, c e E, and H (a, b}. Then ab =- a rood H’, so as H is Frobenius
with kernel H’ and p > 2, ab d for some d e a’. Similarly considering
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(d, c), d- E. Therefore ab E and thus E E for all a, c E. So
E Eg E and therefore E is normalized by G.
Now let M/Z be a minimal normal subgroup of G/Z. Then M Z [a,

M] and [a, M] a-E M is normalized by G. Thus minimality of G implies
G/[a, M] is a Frobenius group, whereas 1 M/[a, M] centralizes a, a contra-
diction.

LEMMA 2.7. Let be as in 2.2, and assume G’ Q is a q-group for some
prime q. Then G .

Proof. Let G be a minimal counterexample, let A e D and set Z Z(Q).
ClearlyZ(G) 1, so C(A) a Z 1. Set . G/Z. Minimality of G
implies ( e , so as C(A) A, 2.5 and 2.6 imply there exists B in D distinct
from A such that/ (2:,/} has a nontrivial center. Thus the center of H
contains an element u not in the center of G. Let F be the collection of 2-
generator D-subgroups X of G such that Zu Z(X) is nonempty. By 2.4,
G is transitive, and minimality of G implies is in the center of ,
so Q (X Q X F}. But as Z Z(Q), Zu Z(Zu Z(X) is central-
ized by X n Q, so (Z, u) <_ Z(Q) Z, a contradiction.

LEMMA 2.8. Let be as in 2.2 and assume G is solvable. Then G .
Proof. Let G be a minimal counterexample and let A e D. Clearly

Z(G) 1. Let M be a minimal normal subgroup of G. Then M is an
elementary abelian q-subgroup for some prime q and minimality of G implies
G/M . Set K G’. Suppose K is nilpotent. Then minimality of G
implies K is a q-group and 2.7 yields a contradiction. So K is not nilpotent
and there exists a prime r q dividing the order of K. Let R be an A invari-
ant Sylow r-subgroup of K. As K is not nilpotent, minimality of G implies
K MR, AR is generated by any two members of AR. D, and AR acts
irreducibly on M.

Suppose H (A, B) is a 2-generator D-subgroup. Then either H is conju-
gate toARorH’ <: M. Letm MI, n M" C(A I, and

k

Then D has order n/c, so there are nk 1 members B of D distinct from A.
There are m/n D-subgroups H conjugate to AR containing A, and
H D k; there are n 1 members B of D distinct from A with (A, B)’ <_
M. Therefore

nit- 1 re(k- 1)/n- n- 1.

It follows that m n. Thus letting AR (A, B), M C(A) X C(B).
Extend GF(p) to a splitting field F for AR and M to a vector space V over

F. Then dimV 2dim(C,(A)) 2r. Let V be the absolutely
irreducible components of V, and set r dim (C,(A)). Then r ’ r,
and as C,(A) C,(B) 1, 2r _>_ 2r. So dim r V 2r is even, impossi-
ble as ]ARI is odd.
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LEMMA 2.9.
Then

Let be as in 2.3, and let S be a Sylow 2-subgroup of G.

(2)
for any X <_ S, F(X) CD(X), and
F( S) is nonerpty.

Proof. Let X <_ S centralize AeD and fix BeD. Then X acts on
H {A, B) of odd order, so all X invariant Sylow p-subgroups of H are conju-
gate in C(X) to A. In particular as X centralizes A and normalizes B, X
centralizes B.
Next let T be a maximal subgroup of S fixing a point of D. Suppose T S.

Then T is of index 2 in some R _< S and R acts on F(S). Thus maximality
of T implies R has a cycle (A, B) of length 2 in D. Then R acts
on H (A, B), and as H n D A has odd order, F(R) is nonempty, a
contradiction. This yields (2).

Finally assume (1) is false. Then by the first paragraph, CD(S) is empty.
Let A F(S) and T Cs(A). Then S/T <_ Aut (A) is cyclic and T is the
set of elements x of S with C(x) nonempty. Thus N(T) controls fusion in
S and considering the transfer of G to S/T, G has a subgroup of index two.
But this is impossible as G

3. A signalizer theorem
In this section the following hypothesis is assumed"

HYPOTHESIS 3.1. is the collection of groups F of odd order wih F/Z(F)
Frobenius. p is a fixed odd prine and D is an -set of G such $hat each nenber
ofD has order p. O.( G) 1 and each nenber of ld is solvable.

IEMMA 3.2. Le$ E be an elementary 2-group of rank at least two, and
He’if(E). Then g (O(C( U) E V 2).

Proof. H/Z(H) (CIz(H)(U) E" U 2). By 2.8, H/Z(H) is
Frobenius, while by 2.9, there exists A C(E) H n D. Thus

CHIz(g( U) O(C,( U) )Z(H)/Z(H).

So setting K (0(C( U) ) E" U 2, H KZ(H). Thus as H" H’
p,Z(H) <_K, soH K.

THEOREM 3.3. Le$ E be an elenentary 2-group of rank 3. Then I*(F)
contains a unique enber.

For the remainder of this section let M and M be distinct members of
YI*(E) with M n M maximal. By 2.9, E centralizes a member of M n D,
so maximality of M nM implies there exists A M n M. CD(E).

Z(M) n M Z(M) n Z(M) 1.

Thus either M n M is Frobenius or A M n M. As re(E) 3, there
exists e E$ with 0(C(e) ) M > A, i 1, 2. Thus maximality of M M.
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implies M1 n M is Frobenius. Let q be a prime distinct from p and 1 Q
the Sylow q-subgroup of M1 n M. Let Z be the Sylow q-subgroup of Z(M).
As each member of Yl is nilpotent, if Q is Sylow in M, then maximality of
M implies M1 O(N(Q)) and Q is not Sylow in M.. As re(E) 3, with 3.2
there exists e E such that (C (e)) has a nontrivial Hall q’- group R, and a
Sylow q-group Q of O(CM.(e)) is not contained in Q. Let O(N(R)) <_ M8
YI*(E). Then (Q, Q) <_ Q8 Syl(M n M), and as above AQ is Frobenius.
So AQ < 0(N.8 (Q))

_
MI contradicting Q Sylow in M.

So Q is not Sylow in M, i 1, 2. But maximality of Q implies M M
O(NM, (Q)) for i 1 or 2, say the former. Thus M is a q-group and NI(Q)
Z(M M) In particular Z 1 and thus M1 e

LEMMA 3.4. If Z acts on a D-subgroup H with A .< H <_ M e YI*(E),
H’ a q-group with Z(H) 1, then A M M M M.

Proof. Choose M. so that either Q is maximal or Q 1. Let

U, Nz, (QZt), X QZIU and Y O(Nut (X)),

Then Mt n M < Y. If Mx n M O(N (Q)) then Z n Y lwhile if Q 1

then as [Y, U] 1, the same holds. So

{M} O(N(X)) and N(X) n Z, N(X n MI) n Z N(ZQ) n Z. U,.

Thus U Z. But then arguing as aboveonM, {M,} II*(O(N(Z Z, Q)))
{M,}, a contradiction.

Lx 3.5. Q is abdian.

Proof. If not then 1 Q’ (QZ)’ N,(QZ), so Q < O(N,(Q’) ),
contradicting the maximality of Q.

Let P be the Sylow q-subgroup of M, and U a 4-group contained in E with
Cq(U) 1. For someu,U, O(C.e(u)) $ M, n M,. Let Y QZ, n
O(C,(u)). Y < O(N(Y)) n P and as Q is abelian, Q

_
O(N(Y)). Thus

maximality of M M implies M is the unique member of YI*(E) containing
O(N(Y)).
Maximality of M a M implies O(N(ZQ)) <_ MI and either M a M,.

(N, (Q)) or (N(Q)) <_ M. As Z acts on (N(Q)), with 3.4 and our initial
remark, it is the former. So there is symmetry between M and M.

Suppose Y n Z 1. Then [Y, Z] 1, so Z acts on 0(N(Y)). By 3.4,
Q is Sylow in O(N(Y) ) r O(N(Q) ), and Q < P 0(N(Y) ), so 0(N(Y) Z
1. Therefore 3.4 yields a contradiction. It follows that:

LEIIM. 3.6. Z O(C(u) ) 1 and M O(C(Z) I*.
By symmetry there exists v U with Z O(C(v)) 1.

Lx 3.7. Let O(C(uv)) <_ Ma II*(E). Then either M MI or M, or
Z8 r O( C(uv) 1 and M M M M M r Ma.
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Proof. Assume Ma MorMand choose M, M (E) with O(C(U) )
<_ M M maximal. Then by 3.6, O(C(w)) n M 1 for some w U and
as M M M, w uv. Further Z(M) O(C(x) I for some x U,
sayx v, soM M. LetAX MM,.nM. 1 C(U) <_ Xand
as M M is abelian,

(M r M" 1

_
i < j <_ 3)

_
8(N(X)) M, M.

So M n M M n M, by maximality of M n M.
LEMMA 3.8. I/I*(E) > 3.

Proof. There exists eE with O(C,(e)) $ M, i j. Thus
lid*(E) - 3. Assume equality. Then O(C(e)) <_ M, and M, n M $
M, n M. So arguing as in 3.7, A M n M, n M,. Thus for a E with
O(C(a))

_
M,, a inverts M n M. Now for some M, say M,, there exists

e E, 1 _< i _< 3, with O(C(e) _< M,. Further O(C(e e) $ M,, so we
may choose O(C(e, e))

_
M, i 2, 3, and 8(C(e.e))

_
Ma. Now e

inverts M n M and thus b e e centralizes M n M. Also

M (O(C,(e, e) i j) O(C(b))(M, n M)

_
O(C(b)),

so b centralizes Ma.
Suppose Cz (b) W 1. Then W acts on Z, and centralizes a nontrivial

subgroup of Z, which acts on Z. Thus X Nz,(Z) 1 acts on [Z, b]
V 1 by 3.4. So V Cv(X) 1 acts on Z, and V [VZ, b]

__
VZ, and

therefore Z acts on M 0(C(V) ), contradicting 3.4.
Thus W 1. So Z Cz(e e)Cz,(e e) acts on (O(C(e e).), O(C(e e))
M, contradicting 3.4.

LEMMA 3.9. Z O(C(uv)) 1 and for M M, 1

_
i

_
3, M n M

is maximal and v inverts (M n Ma)’.

Proof. Let Mi I/I*(E), 1

_
i

_
4, choosing the groups with Za

n O(C(uv)) 1 if possible. If M n M n M 1, then by 3.6, 3.7, and choice
ofM,M n M M n M, so for each i there is x U$ with Z O(C(x)) 1,
a contradiction. Thus u and v invert (M, n M)’ Y, so uv centralizes Y.
By 3.6 there exists e e E with Z n 0(C(e)) 1. Suppose O(C(e)) A,
Then e inverts M/Cz(e)which is therefore abelian. So as

MI/C, (e) [A, M,/C, (e)l,
Z(M/C(e)) 1 and thus [Z,, e] 1. So Z acts on Ma, contradicting 3.4.

Therefore 1 # (Cu,(e))’

_
Y, so as [Y, uv] 1, arguing as

above (C(uv)) $. Mt or M. So by 3.7 we may choose Z n (C(uv)) 1.
As M, n M # A, it is maximal by 3.6 and 3.7.
We now complete the proof of Theorem 3.3. Let Y (M, n M)’ and

uv W a 4-group in E with Cr(W) 1. Y (Ma n Ma)’, some M.
[uv, Y] 1, so

M ((Cg, (w)’w W)
_

YC(uv)

_
C(uv).
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W acts on Z1, so we may assume Z Czl (uv) 1. By 3.4, [Z, uv] 1, so

[z, uv] (c (z)) < C(Z),
against 3.4.

4. The case m(G) >_ 3

LEMMA 4.1. Assume re(G) >_ 3, G has no subgroup of index 2, and let u be
an involution in G. Then there exists an elementary 2-subgroup E of rank 3
containing u. Let S be a Sylow 2-subgroup of G containing E. Then there
exists a 4-group W _. S and an elementary subgroup V of S containing W with
re(V) >_. 3andlEn VI >_ 4.

Proof. Let S be a Sylow 2-subgroup of G. As re(G) >_ 3, there exists a
4-group W

__
S. Let T Cs(W). If E is an elementary subgroup of order

8 in S, then choose V (E n T)W. Let u be an involution in S and suppose
m(C(u)) < 3. Then u S T. But as G has no subgroup of index 2,
ua n T is nonempty. So m(Ca(u)) >_ 3.

LEMMA 4.2. Assume Hypothesis 3..1 and let. re(G) >_ 3. Then G has a
proper 2-generated core.

Proof. By 3.3, if E is an elementary 2-subgroup of rank 3, then FI*(E)
contains a unique member M. Choose E with M of maximal order. Let S
be a Sylow 2-subgroup of G containing E and W a 4-group normal in S. By
4.1 there exists an elementary subgroup V of S containing W, of rank at least
3, such that E n V >_ 4. Now by 3.2,

M ((C(x)) x e (E n V)),
so {M} VI*(V). Therefore M <0(C(w)) w W), and thus S normal-
izes M. Set T Cs(W). Then m(Cs(u)) _> 3 for any involution in T, so
by 3.3, O(C(u)) <_ M. Suppose O(C(s)) M for some involution s in
S T. Then m(C(s)) 2, so Z(S) contains a unique involution z. Le
R be a Sylow 2-subgroup of C(s) containing z. By 4.1, re(R) >_ 3. Further
if m(C(z)) >_ 3 then V*(C(z)) contains a unique member K and

M (O(C(x)) x, <s, z>> _< K.

So maximality of M implies M K, contradicting the choice of s. Therefore
s is the unique involution in the center of R, so s is conjugate to z.
As s S T and T has index 2 in S, s is not rooted in S, a Sylow 2-subgroup
of C(z). Therefore z is not rooted in C(s), so Cs(s) is a 4-group. It follows
from a result of Suzuki [6] that S is dihedral or semidihedral, and thus in
particular re(S) 2, a contradiction.

Set H Na(M) and let X <_ S with re(X) _> 2. We have shown that
(C(x)) x X) M, so N(X) <_ H. Thus H contains a 2-generated

core of G.
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5. The proof of Theorem
Let G be a minimal counterexample to Theorem 1. By 2.8, G is not solva-

ble, so minimality of G implies 0(G) 1. Let M be a minimal normal sub-
group of G, and let A e D. M is not in the center of G, so [A, M] 1. Thus
as [A, M]

__
M, [A, M] is semisimple. Then A[A, M] is a nonsolvable D-

subgroup of G, so G AM and M [A, M]. M is the direct product of
simple subgroups M permuted transitively by A. Let S be a Sylow 2-sub-
group of M1. Then A[A, S] is a solvable D-subgroup and [A, S] is a 2-group,
so [A, S] 1. Therefore G’ M MI is simple.
Now by 4.2 either re(G)

___
2 or re(G) >_ 3 and G has a proper 2-generated

core. in the first case [1] implies M L(q), Ls(q), Us(q), AT, or Mn, q odd.
In the second case [2] implies M L(q), Sz(q), U(q), q even, or J, the
Janko group of order 175,560.

Let A (a). By 2.9, a induces an automorphism of M centralizing a Sylow
2-subgroup of M. L(q), Sz(q), U(q), q even, J, AT, and Mn do not admit
such an automorphism of odd order. Then G does not contain a strongly
embedded subgroup, so for an involution u G, O(C(u)) is not cyclic. But
if M L(q) or U(q), q odd, L Aut (M), and u is an involution in M,
then O(CL(u)) is cyclic. So M L.(q), q odd, and a induces a field auto-
morphism on M.
Now if p divides the order of M, then q2 is congruent to 0 or 1 modulo p,

and thereforeiM’CM(a) q-(q2- 1)/(q- 1) --0modp. So a
is not in the center of a Sylow p-subgroup of G, a contradiction. Therefore
p does not divide the order of M, so a. normalizes a subgroup Q of order q
in M. Then O(N(Q)) , a contradiction.

This completes the .proof of Theorem 1.

6. The proof of Theorem 3
Let be the class of Frobenius groups whose kernel is an elementary 2-

group. Let G be a minimal counterexample to Theorem 3. Let A D and
a a generator of A. For (b) D write a b if b is conjugate to a in (a, b).
Supposep-- 3andletA BD, andQ-- (A,B). ThenB Afor

some x Q$, so (A, B) (A, x) and thus A acts irreducibly on Q. So Q 4
and (A, B) is isomorphic to the alternating group on 4 letters. Therefore [3]
yields a contradiction. So p 3.

Suppose O(G) 1. Then minimality of G implies G AG’ and is
an equivalence relation. Further for b, c a, ab-, bc- and ac- have order
1 or 2, so as (ab-) (bd-) ad-, ab- commutes with ac-. But arguing as
in 2.6, a-a is normalized by G, so G’ (a-a) is an elementary 2-group.
SoO(G) 1.

Let H be a proper D-subgroup of maximal order; we may assume A _< H.
Minimality of G implies H’ is an elementary 2-subgroup. Let (b) B D
H with a b. Define

A {ac-" cea and b-..,c}
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As lH nDi p- 1, ( 1. But forac- A,,cb-and ab-all
have order 1 or 2, and (cb-) ab-, so commutes th ab-. Th
Xb X H’, so if (h) H’, then G (H, B) normalizes H’, impossible
O(G) 1. So (h) < H’. Therefore

ar {b d and bd}

a.. x-,h order at least H n D ]/2. Let x A and d Then x.
So F C(x). Therefore K (F) G. Also for each y F, (y) D, so K
is a D-subgroup. Finally ifb and b5 are in F th c d, then (b5)-b
c is an involution, so (b) (bg). Therefore K n D ]H n D [/2.
ButHnD 2"+andKnD] 2+th 2"+ 2+ lmodp, so
r 1, and K n D H n D . Thus maximality of H implies K n D
HnD].
Nowif]F] >HnD]/2, thenQffi (v’u,vF) fH’,soxKC(x),

a contradiction minimality of G implies Z(K) 1. Therefore F
HnD/2 Q. SoP= ()alsohorderHnD/2. Butasp>3,
HnD] >4, soQnP 1. ThuswemayassumexQnPK g C(x),
a contradiction.

This completes the proof of Theorem 2.
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