ON FINITE SIMPLE GROUPS OF LENGTH 8

BY
Vhadimir Cepulić ${ }^{1}$
\section*{1. Introduction}

Let G be a finite group. Let $H_{0}>H_{1}>\cdots>H_{n}$ be a chain of subgroups of G, where H_{i} is a proper subgroup of $H_{i-1}(1 \leq i \leq n)$. Then we say that the chain has length n. For a fixed group G we denote by $l(G)$ the maximum of chain lengths, where the chain ranges over all possible ones. We call $l(G)$ the length of G.

The purpose of this paper is to prove the following
Theorem. Let G be a finite simple group of length 8 with S_{2}-subgroups of order 2^{7}. Then G is isomorphic to PSL $(2,127)$.

Using this statement together with the recent results ${ }^{2}$ of D. Gorenstein and K. Harada on finite simple groups with S_{2}-subgroups of sectional rank 4 and the characterization of finite groups with abelian S_{2}-subgroups of J. H. Walter [15], one can obtain a classification of all finite simple groups of length 8. More precisely, we have the

Corollary. Let G be a finite simple group of length 8 . Then G has either abelian S_{2}-subgroups or S_{2}-subgroups of sectional rank 4. Especially, G is a known group.

Proof of the corollary. Let T be an S_{2}-subgroup of G. Suppose that T is neither of sectional rank 4 nor abelian. Then $|T|=2^{6}, T^{\prime \prime} \neq 1$ and either $|T / D(T)|=2^{5}$ or there exists an elementary abelian subgroup E of T of order 32. Assume that $|T / D(T)|=2^{5}$. Now $T^{\prime}=D(T)=\langle z\rangle, z^{2}=1$. By a theorem of Glauberman [3], there exists an element $z_{1}, z_{1} \sim_{G} z, z_{1} \in T \backslash$ $\langle z\rangle$. It is $\left|C_{T}\left(z_{1}\right)\right| \geq 2^{5}$, as $\left|T^{\prime}\right|=2$. Since $\langle z\rangle=\mho^{1}(T)$, for all S_{2}-subgroups T of $C(z)$, it follows that $z_{1} \notin Z(T)$ and $C_{T}\left(z_{1}\right)$ is elementary abelian of order 32.

Thus, in any case, T contains an elementary abelian subgroup E of order 32 and $|Z(T)| \geq 2^{3}$. If $|Z(T)|=2^{3}$, then $|T / Z(T)|=2^{3}$ with $|T, E|=$ $2, Z(T) \leq E$, and we get a contradiction by a result of Harada [5a]. Therefore $|Z(T)|=2^{4}$. Let t be an element of order 4 in T and z_{1} an inovlution in $E \backslash Z(T)$. Then $z_{1} \in\langle Z(T), t\rangle$ and by a result of Thompson [13, Lemma 5.38] $z_{1} \sim_{G} z$ for some $z \in Z(T)$. Since $E \triangleleft T_{1} \leq C\left(z_{1}\right)$, for some S_{2}-subgroup

[^0]T_{1} of $C\left(z_{1}\right)$, and $T_{1} \neq T$, it follows that $N(E)=\left\langle T, T_{1}\right\rangle=T P$, where P is a subgroup of odd prime order.

Suppose that $N(T)>T$. Then $N(T)=T Q, Q$ a subgroup of odd prime order. It is not $Q \leq N(E)$, because $T \ngtr N(E)$. But there are at most two elementary abelian subgroups of order 32 in T, a contradiction.

Therefore $N(T)=T$. By a theorem of Burnside, it follows that two distinct elements of $Z(T)$ are never conjugate in G. Let v be an involution of

$$
Z(T) \cap Z\left(T_{1}\right) \leq Z(N(E)) \cap E
$$

Since $N(E)$ is maximal in G, we have $C(v)=N(E)$. Also $\left|Z(T) \cap Z\left(T_{1}\right)\right| \geq 2^{3}$. By a result of Glauberman [3], there is an element $v_{1} \in T \backslash Z(T), v_{1} \sim_{G} v$. Now $C(v) \neq C\left(v_{1}\right)$ and $C(v) \cap C\left(v_{1}\right)$ contains $M=\left\langle Z(T), v_{1}\right\rangle$ with $|M|=2^{5}$. Since M contains the S_{2}-subgroups of $Z(C(v))$ and $Z\left(C\left(v_{1}\right)\right)$, we have

$$
V=Z(C(v)) \cap \mathbf{Z}\left(C\left(v_{1}\right)\right) \neq 1
$$

It follows that $C(V) \geq\left\langle C(v), C\left(v_{1}\right)\right\rangle=G$, a contradiction. The corollary is proved.

In the whole paper G will denote a finite simple group satisfying the assumptions of our theorem. Moreover, if a group is given by its generators, then the generators whose order is not stated are involutions, and the pairs of elements whose interaction is not stated commute, e.g.,

$$
E=\langle a, b, c \mid\rangle=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1, a^{b}=a^{c}=a, b^{c}=b\right\rangle
$$

The other notation is standard (cf. Thompson [13]).

2. Some known and auxiliary results

Finite simple groups with short chains of subgroups were investigated by Z. Janko in his papers [8] and [9], and by K. Harada in his paper [5]. They have proved the following theorems, which we shall use frequently:

Theorem of Janko [8]. Let G be a finite non-abelian simple group whose length $l(G)$ is at most four. Then G is isomorphic to PSL $(2, p)$, where $p=5$ or p is such prime that $p-1$ and $p+1$ are products of at most three primes and $p \equiv \pm 3$ or $\pm 13(\bmod 40)$.

Theorem of Janko [9]. Let G be a finite non-abelian simple group whose length $l(G)$ is at most five. Then G is isomorphic to $\operatorname{PSL}(2, q)$ for some prime power q.

Theorem of Harada [5]. Let G be a finite non-abelian simple group whose length $l(G)$ is at most seven. Then G is isomorphic to one of the following groups: $\operatorname{PSL}(2, q)$ for a suitable prime power $q ; \operatorname{PSU}\left(3,3^{2}\right) ; \operatorname{PSU}\left(3,5^{2}\right) ; A_{7}$, the alternating group of degree seven; M_{11}, the Mathieu group of degree eleven; J_{1}, the first Janko group of order 175560.

We note that $l\left(J_{1}\right)=l\left(A_{7}\right)=6$ and $l\left(M_{11}\right)=l\left(\operatorname{PSU}\left(3,3^{2}\right)\right)=$ $l\left(P S U\left(3,5^{2}\right)\right)=7$.

We shall often need the following
Criterion of Nonsimplicity. Let G be a finite group of even order with the properties:
(i) $A n S_{2}$-subgroup T of G is maximal in G.
(ii) There is an involution t in T, such that $|T|:|C(t)|_{2}$ is greater than 2 and $C(t)$ contains precisely two conjugate classes of involutions under G.

Then G is not simple.
Proof. Suppose that G is simple. By a theorem of Burnside it follows from (i) and (ii) that $Z(T)$ is cyclic. Let z be the involution of $Z(T)$. If u is an other involution of T then the following relations are obviously equivalent:
(a) $u \in Z_{2}(T)$,
(b) $\langle u, z\rangle \triangleleft T$,
(c) $\left|T: C_{T}(u)\right|=2$.

Assume at first, there is an involution u in $Z_{2}(T) \backslash Z(T)$. Then by (b), $\langle u, z\rangle \triangleleft T$ and so $\langle u, z\rangle \in U(2)$. Hence by Lemma 5.38 of Thompson [13] the group $C(t)$ contains a conjugate u_{1} of u. By a result of Harada [5, p. 663] and by (c) it follows $u_{1} x_{G} z$ and $|T|:\left|C\left(u_{1}\right)\right|_{2}=2$. Thus by the condition (ii) of our criterion we have $z \varkappa_{G} u_{1} \varkappa_{G} t$, which contradicts the same condition.

Therefore, z is the unique involution in $Z_{2}(T)$. Now, by (c), the group T contains no involution v with $\left|T: C_{T}(v)\right|=2$, and by (b) no elementary abelian normal subgroup of order 8 . Since also T is maximal in G, all the conditions of the main theorem of Janko-Thompson [11] hold. But none of the groups in the statement of this theorem satisfies the conditions of our criterion.

Hence G is not simple. The criterion is proved.
In view of Lemma 5.38 of Thompson [13], our criterion has the following
Corollary. Let G be a finite simple group of even order with the properties:
(i) $A n S_{2}$-subgroup T of G is maximal in G.
(ii) There is an involution t in T, such that $C(t)$ contains precisely two conjugate classes of involutions under G.

Then G has precisely two classes of involutions.

3. Solvability of 2-local subgroups

We shall prove at first the
Lemma. Let G be a finite simple group of length 8 with S_{2}-subgroups of order 2^{7}. Then all 2-local subgroups of G are solvable.

Proof of the lemma. Suppose a 2-local subgroup H of G is not solvable. We show in several steps, that this assumption is contradictory. The following propositions are all proved under the above assumption.

Proposition 1. In the group G there is an involution t such that the centralizer C of t in G is not solvable.

Proof. We can suppose that $H=N(E)$, where E is elementary abelian. By Huppert [6], $l(H / E) \geq 4$ and so $l(E) \leq 3$. If $l(E) \leq 2$, then $C(E)$ is not solvable because $A(E)$ is solvable. Let be $|E|=2^{3}$. Now $H / C(E)$ is isomorphic to a subgroup of $\operatorname{PSL}(2,7)$ and H / E is a simple group of length 4. Thus $H=C(E)$. The assertion holds for some $t \in E^{*}$ in both cases.

Proposition 2. If $C /\langle t\rangle$ is simple, then $C=\langle t\rangle \times F$, where $F \cong P S L(2, q)$ for some prime power q.

Proof. Since $l(C /\langle t\rangle)$ is at most 6 it follows by Harada [5] that $C /\langle t\rangle$ is isomorphic to $P S L(2, q)$ for some prime power q, or to the first Janko group J_{1} or to the alternating group A_{7}.

Let S be an S_{2}-subgroup of C and T an S_{2}-subgroup of G containing S. Then $\langle t\rangle \times Z(T) \leq Z(S)$. Suppose first $C /\langle t\rangle \cong P S L(2, q)$, with $8 \neq q \neq 9$. Then the Schur multiplier of $C /\langle t\rangle$ equals 2 , as $l\left(P S L\left(2, p^{f}\right)\right) \geq 7$ for. $f \geq 4$. Since S is not generalized quaternion we get $C=\langle t\rangle \times F$ with $F \cong P S L(2, q)$. If $C /\langle t\rangle \cong P S L(2,8)$ or $P S L(2,9), S$ is elementary or a direct product of $\langle t\rangle$ and a dihedral group of order 8 respectively, because all involutions in $C /\langle t\rangle$ are conjugate, and thus C splits over $\langle t\rangle$ by Gaschütz [2], as there are involutions in $C \backslash t\rangle$.

Suppose now that $C /\langle t\rangle \cong J_{1}$ or A_{7}. As in the both cases just considered we have $C=\langle t\rangle \times F$, with $F \cong J_{1}$ or A_{7} respectively, for the same reasons. But every involution in F and therefore also in C contains a 3 -element in its centralizer. However, for a central involution z of G in C the group $C(z)$ is an S_{2}-subgroup of G, a contradiction.

Proposition 3. The group $C /\langle t\rangle$ is not simple.
Proof. Assume $C /\langle t\rangle$ is simple. By Proposition 2, $C=\langle t\rangle \times F$, $F \cong P S L(2, q), q=p^{f}, p$ a prime. Moreover $f \leq 3$ for $p=2$. Therefore an S_{2}-subgroup V of F is elementary of order 8 or dihedral of order at most 32 . The group $S=\langle t\rangle \times V$ is an S_{2}-subgroup of C. Since the involutions of F are all conjugate under F and $S=\langle t\rangle \times V$ is not an S_{2}-subgroup of G there are precisely two classes of involutions in S under G. Applying our criterion we get a contradiction if $|V|$ is smaller than 32 . Thus we can suppose that $V \cong D_{32}$, the dihedral group of order 32 .

Let T be an S_{2}-subgroup of G containing S. Since $C(z)=T$ for any involution z in $Z(T)$ it follows that $F \cong P S L(2,31)$. We can write

$$
V=\left\langle a, b \mid a^{16}=1, a^{b}=a^{-1}\right\rangle
$$

for some $a, b \in V$. Obviously $\left\langle a^{8}\right\rangle=\Omega_{1}\left(\mho^{1}(S)\right) \triangleleft T$ and therefore $C\left(a^{8}\right)=T$.
Choose $v \in T \backslash S$ to be an element of smallest possible order. By a result of Harada [5] it must be $v^{x}=v_{1}$ for some $v_{1} \in S$ and some $x \in G$. It is clear that $x \notin T$.

If $|v|>2$ it follows $v_{1}^{|v| / 2}=a^{8}=x^{-1} v^{|v| / 2} x$. Since $a^{8} x_{a} t, t \sim t a^{8}$, $t \sim t a^{\delta} b$ for all δ and $x \notin T$, we get $v^{2}=a^{\delta} b$ for some δ. It is $\left\langle a^{2}\right\rangle=\vartheta^{1}(S) \triangleleft T$ and thus $\left(a^{4}\right)^{v}=a^{45}, \zeta \in\{1,3\}$. Now $\left(a^{4}\right)^{v^{2}}=\left(a^{4}\right)^{\xi^{2}}=a^{4}=\left(a^{4}\right)^{a_{b}}=a^{-4}$, a contradiction.

We conclude that $|v|=2$. Since

$$
\left\langle a^{8}, t\right\rangle=Z(S) \triangleleft T \quad \text { and } \quad v \in C\left(a^{8}\right) \backslash C(t)
$$

it must be $t^{v}=t a^{8}$. Since $t a^{\delta} b \sim t a^{8} \sim t x_{G} a^{8} \sim a^{8} b$ we have $b^{v}=a^{\gamma} b$ and $a^{v}=a^{\eta}$. Using $v^{2}=1$ we get

$$
\eta^{2} \equiv 1(\bmod 16) ; \quad \vartheta(1+\eta) \equiv 0(\bmod 16)
$$

Replacing b by $a^{\lambda} b$ for a suitable λ, we can assume, that

$$
(\eta, \vartheta) \in\{(1,0),(1,8),(7,0),(9,0),(15,0),(15,1)\} .
$$

Consider $S_{1}=\left\langle t, a^{8}, b\right\rangle$. We have $N_{F}\left(\left\langle a^{8}, b\right\rangle\right) \cong \Sigma_{4}$ because $F \cong P S L(2,31)$. Also $N_{1}=N\left(S_{1}\right) \cap C=\langle t\rangle \times N_{F}\left(\left\langle a^{8}, b\right\rangle\right),\left|N_{1}\right|=2^{4} \cdot 3$ and $C\left(S_{1}\right)=S \cap C(b)=S_{1}$.

Suppose $N_{1}<N\left(S_{1}\right)$. Then $\left|N\left(S_{1}\right): N_{1}\right|=4$ because t is under $N\left(S_{1}\right)$ conjugated into $\{t z, t b, t z b\}$ and this set is a conjugate set under an 3-element of $N_{F}\left(\left\langle a^{8}, b\right\rangle\right)$. Therefore $\left|N\left(S_{1}\right)\right|=2^{6} \cdot 3$ and $N\left(S_{1}\right) / S_{1} \cong \Sigma_{4}$, the symmetric group of degree four, because $A\left(S_{1}\right) \cong P S L(2,7)$. It follows that $\left|O_{2}\left(N\left(S_{1}\right)\right)\right|=2^{5}$. Now a^{8} and b have under $N\left(S_{1}\right)$ precisely three conjugates and so $C(b) \cap N\left(S_{1}\right)$ and $C\left(a^{8}\right) \cap N\left(S_{1}\right)$ are S_{2}-subgroups of $N\left(S_{1}\right)$. It follows

$$
O_{2}\left(N\left(S_{1}\right)\right) \leq C(b) \cap C\left(a^{8}\right) \quad \text { and } \quad|C(b) \cap S| \geq 2^{4}
$$

as $|T: S|=2$. But $C(b) \cap S=S_{1}$ with $\left|S_{1}\right|=2^{3}$, a contradiction.
Thus $N\left(S_{1}\right)=N_{1}$. It follows $\left|N_{T}\left(S_{1}\right)\right|=2^{4}$ and so $N_{T}\left(S_{1}\right) \leq S$. But $v \in T \backslash S$ and $\left\langle t, a^{8}\right\rangle=\left\langle t, a^{8}\right\rangle$, therefore $b^{v} \in T \backslash S_{1}$. We conclude that $(\eta, \vartheta) \equiv(15,1)$, and

$$
T=\left\langle t, a, b, v \mid a^{16}=1, t^{v}=t a^{8}, a^{b}=a^{-1}, a^{v}=a^{-1}, b^{v}=a b\right\rangle
$$

Now $\left|a^{\alpha} v\right|=2,\left|t a^{\alpha} v\right|=4,\left|t^{\tau} a^{\alpha} b v\right|=32$ for all α, τ.
Suppose $t v$ is fused with an element of S, i.e. $x^{-1} t v x=s$, with $s \in S, x \in G$. Since $s^{2}=\left(t v^{2}\right)=a^{8}$, it would follow $x \in C\left(a^{8}\right)=T$ which is not possible. Hence $t v$ is not fused with any element of S. By a simplicity criterion of Harada [5] must $(t v)^{2}=a^{8}$ be fused now with an element in $T \backslash S$. We can obviously suppose that $v \sim a^{8}$. But $t a^{4} \in C_{T}(v)$ and $\left(t a^{4}\right)^{2} \neq v$, while the square of each element of order 4 in $T=C\left(a^{8}\right)$ equals a^{8}, in contradiction with $v \sim a^{8}$. Proposition 3 is completely proved.

Proposition 4. Let N be the maximal solvable normal subgroup of C and K / N a minimal normal subgroup of C / N. Then K / N is simple and uniquely determined. Moreover $C_{C / N}(K / N)=N / N$. Thus C / N is isomorphic to a subgroup of $A(K / N)$.

Proof. The simplicity of K / N is obvious. If K_{1} / N is also a minimal normal subgroup of C / N, we have $K=K_{1}$ or $K \cap K_{1}=N$. But from $K \cap K_{1}=N$ we get $|K / N|\left|K_{1} / N\right|=\left|K K_{1} / N\right|| | C / K| | K / N \mid$, and so $\left|K_{1} / N\right|||C / K|$ a contradiction to $l(C / K) \leq 2$, and to $l\left(K_{1} / N\right) \geq 4$ by Huppert [6]. Therefore $K=K_{1}$ and K is unique.

Set $C_{C / N}(K / N)=L / N$. We have $K \cap L=N$, as K / N is non-abelian. It follows that $|L / N \| C / K|$. But $l(C / K) \leq 2, L \unlhd C$ and so L is solvable. Therefore $L=N$.

Proposition 5. We have $N>\langle t\rangle$.
Proof. Assume $N=\langle t\rangle$. Then by Proposition 3, $K \neq C$. Thus $l(K / N) \leq 5$ and by Janko [9], $K / N \cong P S L(2, q), q$ a prime power.

Assume that $2 \nmid|C / K|$. By Proposition 4 and by Dieudonné [1] it must be $K / N \cong P S L\left(2, p^{3}\right)$ for some prime p. As in Proposition 2 we conclude that $K=\langle t\rangle \times F$ with $F \cong P S L\left(2, p^{3}\right)$. Since $l(F) \leq 5$, we have $p=2$ or $p=3$ and we get a contradiction in both cases applying our criterion.

Therefore $2||C / K|$. Moreover $| C / K \mid=2$. For otherwise we would have $l(K / N)=4$ and so, by Janko [8], $K / N \cong P S L(2, p), p \geq 5$. Hence by Proposition 4 and by Dieudonné [1], it follows that $C / N \cong P G L(2, p)$ and so $|C / K|=2$, a contradiction.

Assume now that $p=2$. Since $l\left(P S L\left(2,2^{f}\right)\right) \geq 6$ for $f \geq 4$ and $P S L(2,4)$ $\cong P S L(2,5)$ we can suppose that $K / N \cong P S L(2,8)$. But now $|A(K / N)|$ $=3 \cdot|K / N|$, a contradiction to $|C / K|=2$.

Thus we can assume that $p \neq 2$. Let S be an S_{2}-subgroup of C and $S_{1}=S \cap K$.

We prove next that for each S_{2}-subgroup T of G containing S, we have $Z(T) \cap S_{1} \neq 1$.

Assume conversely that there is an S_{2}-subgroup T of G containing S such that $Z(T) \cap S_{1}=1$. Because $Z(T) \leq S$ and $\left|S: S_{1}\right|=2$ we must have $Z(T)=\langle z\rangle$ with $|z|=2$, and $S=S_{1} \times\langle z\rangle$. As $K / N \cong \operatorname{PSL}\left(2, p^{f}\right)$, $p \neq 2, l(K / N) \leq 5$, we have $f \leq 3$. If $f=1$ or $f=3$, then by Proposition 4 and by Dieudonné [1], we conclude that $C / N \cong P G L\left(2, p^{f}\right)$. But an $S_{2^{-}}$ subgroup of $P G L\left(2, p^{f}\right)$ is dihedral of order of least 8 , a contradiction to $S / N=S_{1} / N \times\langle z\rangle N / N$. Thus $f=2, K / N=P S L\left(2, p^{2}\right)$. Since $l(K / N) \leq 5$, we must have $p^{f}=3^{2}$. So we can assume that

$$
K / N \cong P S L(2,9) \cong A_{6}
$$

We have $A(K / N) \cong P \Gamma L(2,9)$ and this group contains two subgroups isomorphic to $P G L(2,9)$ and to Σ_{6}, the symmetric group of degree six, respec-
tively, whose intersection is $\operatorname{PSL}(2,9)$. Moreover

$$
P \Gamma L(2,9) / P S L(2,9) \cong Z_{2} \times Z_{2}
$$

Thus by Proposition $4, C / N$ is isomorphic to one of the three subgroups of index 2 in $P \Gamma L(2,9)$, which contain $P S L(2,9)$. The corresponding S_{2}-subgroups can be easily computed and one gets

$$
\begin{aligned}
& B_{1} \cong\left\langle a, b \mid a^{8}=1, a^{b}=a^{-1}\right\rangle \\
& B_{2} \cong\left\langle c, d, f \mid c^{4}=1, c^{d}=c^{-1}\right\rangle \\
& B_{3} \cong\left\langle a f, b \mid(a f)^{8}=1,(a f)^{b}=(a f)^{\gamma}\right\rangle \quad \text { with } \quad \gamma \in\{3,7\}
\end{aligned}
$$

where B_{1}, B_{2}, B_{3} correspond to $P G L(2,9), \Sigma_{6}$ and to the third of the mentioned subgroups respectively. It holds $S / N \cong B_{i}$ for some $i, i=1,2,3$. But $\left|Z\left(B_{1}\right)\right|=\left|Z\left(B_{3}\right)\right|=2$ and therefore $S / N \cong B_{2}$, as $|Z(S / N)| \geq 2^{2}$. We get $C / N \cong \Sigma_{6}$. Hence $\langle z, t\rangle /\langle t\rangle$ has an element $x\langle t\rangle /\langle t\rangle$ of order 3 in its centralizer. We can assume that $|x|=3$ and we have $\langle z, t\rangle^{x}=\langle z, t\rangle$. But x acts nontrivially on $\langle z, t\rangle$ as $z \notin C(z)=T$, which is a contradiction to $z x_{G} t$. Our assertion is proved.

Thus for each S_{2}-subgroup T of G containing $S, Z(T) \cap S_{1} \neq 1$. In the following let z be an involution of $Z(T) \cap S_{1}$ for some T.

The group S_{1} / N is dihedral of order at most 16 . Assume first that $S_{1} / N \cong D_{4}, D_{n}$ denoting the dihedral group of order n. We know that all involutions of S_{1} / N are conjugate under K / N. This fact and $z \epsilon S_{1}$ imply that $S_{1}=\langle t\rangle \times S_{0}$, and hence it follows that $K=N \times F$, with $F \cong P S L\left(2, p^{f}\right)$, by a result of Gaschütz [2]. Obviously F char K and so $F \triangleleft C$. We have $z=t^{\tau} f, \tau \epsilon\{0,1\}, f \in F$ and $C_{C}(f)$ is a 2 -group because $C(z)=T$. Therefore $p^{f}=5, F \cong P S L(2,5) \cong A_{5}$. By Proposition 4 and Dieudonné [1] it follows that $C / N \cong P G L(2,5) \cong \Sigma_{5}$ and so $S / N \cong D_{8}$. Thus $Z(S)$ is of order at most 4 and we get $Z(T)=\langle z\rangle$. Let $V=\left\langle v_{1}, v_{2} \mid\right\rangle=S_{1} \cap F$. If $c \in S \backslash S_{1}$, then $c \in N\left(S_{1}\right) \cap N(F) \leq N(V)$. Moreover, by our criterion we can suppose that $c^{2}=1$. Thus we can write

$$
S=\left\langle t, v_{1}, v_{2}^{c}, c \mid v_{2}^{c}=v_{1} v_{2}\right\rangle
$$

Now, $\vartheta^{1}(S)=\left\langle v_{1}\right\rangle$, and $Z(S)=\left\langle t, v_{1}\right\rangle=\langle t, z\rangle$. We conclude that $v_{1}=z$ and $t \sim_{r} t z$. As known, there is a subgroup R of $F,|R|=3$, with $V R \cong A_{4}$. Therefore $t \sim t v_{1} \sim_{R} t v_{2} \sim_{R} t v_{3}$ and $z=v_{1} \sim_{R} v_{2} \sim_{R} v_{1} v_{2}$. Hence $\left|N\left(S_{1}\right)\right|=2^{4} \cdot 3$ or $\left|N\left(S_{1}\right)\right|=2^{6} \cdot 3$, since $N\left(S_{1}\right) \cap C=S R$.

Assume first that $\left|N\left(S_{1}\right)\right|=2^{4} \cdot 3$, i.e. $N\left(S_{1}\right)=S R$. Let $s \in T \backslash S$ with $s^{2} \in S$ and $\langle S, s\rangle=T_{1}$. Then

$$
T_{1}=\left\langle t, v_{1}, v_{2}, c, s \mid t^{s}=t v_{1}, v_{2}^{c}=v_{1} v_{2}, v_{2}^{s}=t^{\alpha} v_{1}^{\beta} v_{2}^{\gamma} c^{\delta}, c^{s} \in S, s^{2} \in S\right\rangle
$$

Now $\delta=1$, because $s \notin N_{T_{1}}\left(S_{1}\right)=S$. Since $\left|\iota_{2} c\right|=4$ it must be $\gamma=0$, i.e. $v_{2}^{s}=t^{\alpha} v_{1}^{\beta} c$. Hence $\left(v_{1} v_{2}\right)^{s}=t^{\alpha} v_{1}^{\beta+1} c$ and we see that S has precisely two classes of involutions, in contradiction with our criterion.

Therefore $\left|N\left(S_{1}\right)\right|=2^{6} \cdot 3$ and $t \sim t v_{1} \sim t v_{2} \sim t v_{1} v_{2}$ under $N\left(S_{1}\right)$. We easily check that $C\left(S_{1}\right)=S_{1}$ and therefore $N\left(S_{1}\right) / S_{1} \cong \Sigma_{4}, N\left(S_{1}\right) / S_{1}$ being isomorphic to a subgroup of $\operatorname{PSL}(2,7)$. Hence $O_{2}\left(N\left(S_{1}\right)\right)=M$ is of order 2^{5} and a S_{3}-subgroup R of $C(t) \cap N\left(S_{1}\right)$ acts faithfully on M / S_{1}. It follows that $C(t) \cap M=S_{1}$ and so $t \sim t v_{1} \sim t i_{2} \sim t v_{1} i_{2}$ under M. We can now apply the theorem of Janko-Thompson [11]. As none of the groups of its statement satisfies our condition it follows that there is an involution s in T with $\left|C_{T}(s)\right|=2^{6}$. But now, $s x_{G} z$, because otherwise $N\left(C_{T}(s)\right) \geq$ $\langle T, C(s)\rangle$ would be too great. We have $\langle z, s\rangle \triangleleft T$ and there is a conjugate $\left\langle u_{1}, u_{2} \mid\right\rangle$ of $\langle z, s\rangle$ in S, with $\left\langle u_{1}, u_{2}\right\rangle \triangleleft C\left(u_{1} u_{2}\right)$, and $\left|C\left(u_{1} u_{2}\right)\right|=2^{7}$, by Lemma 5.38 of Thompson [13]. The elements u_{1}, u_{2} are conjugate neither with t nor with z. Therefore u_{1}, u_{2} belong to the set $\left\{c, v_{1} c, t c, t v_{1} c\right\}$. As $u_{1} u_{2}$ is a central involution it follows

$$
\left(u_{1}, u_{2}\right) \in\left\{\left(c, v_{1} c\right),\left(t c, t v_{1} c\right)\right\} \quad \text { and } \quad\left\langle u_{1}, u_{2}\right\rangle \triangleleft C\left(u_{1} u_{2}\right)=C\left(v_{1}\right)=T
$$

There is a $u \in M S$ with $t^{u}=t v_{2}$. Also $v_{1}^{u}=v_{1}$, since $Z(S) \geq Z(T)$ and $z=v_{1}$ is the only central involution in $Z(S)$, and thus T is unique, $M S \leq T$. Hence with $u_{1}=t^{\varepsilon} c, \varepsilon \epsilon\{0,1\}$, we get $\left(t^{\varepsilon} c\right)^{u}=t^{\varepsilon} v_{1}^{\zeta} c, \zeta \epsilon\{0,1\}$. But on the other hand $\left(t^{c} c\right)^{u}=t^{c} v_{2}^{\varepsilon} c^{u}$, hence $c^{u}=v_{2}^{\varepsilon} \tau_{1}^{\zeta} c$ and we get $\left(t^{u}\right)^{c^{u}}=\left(t^{c}\right)^{u}$, i.e. $t v_{1} v_{2}=t v_{2}$, a contradiction.

Thus $S_{1} / N \npreceq D_{4}$.
Suppose next that $S_{1} / N \cong D_{8}$. By Janko [8], [9], we have $K / N \cong P S L\left(2, p^{f}\right)$ and $l(K / N)=5$. It is $\left|Z\left(S_{1}\right)\right|=4$ and thus $Z\left(S_{1}\right)=\langle t, z \mid\rangle$. Since all involutions in K / N are conjugate we see that S_{1} possesses 11 involutions and 4 elements of order 4. Let $\langle t, z, a \mid\rangle$ be an elementary abelian normal subgroup of S_{1}. Then we can write

$$
S_{1}=\left\langle t, z, a, b \mid a^{b}=t^{\alpha} z a\right\rangle=\langle t\rangle \times\langle a, b\rangle
$$

Thus, by a result of Gaschütz [2],

$$
K=\langle t\rangle \times F, \quad \text { with } \quad F \cong P S L\left(2, p^{f}\right)
$$

We have F char K char C and so F char C. Also K contains the element z with $C(z)=T$. From this we conclude that $F \cong \operatorname{PSL}(2,7)$ or $F \cong P S L(2,9)$. Let be $c \in S \backslash S_{1}, S_{1} \cap F=\left\langle h, k \mid h^{4}=1, h^{k}=h^{-1}\right\rangle$. We have

$$
S=\left\langle t, h, k, c \mid h^{4}=1, c^{2}=t^{\iota} h^{\mu} k^{\nu}, h^{k}=h^{-1}, h^{c}=h^{\sigma}, k^{c}=h^{\beta} k\right\rangle .
$$

One easily sees that $S^{\prime} \leq\langle h\rangle$ and especially $\Omega_{1}\left(S^{\prime}\right)=\left\langle h^{2}\right\rangle$. Assume first that $F \cong P S L(2,7)$. Then by Proposition 4 and by Dieudonné [1], $C / N \cong P G L(2,7)$ and $S /\langle t\rangle \cong D_{16}$. Thus $|Z(S)|=4$, and hence $Z(S)=\langle z, t\rangle=\left\langle t, h^{2}\right\rangle, Z(T)=\langle z\rangle$. Since $\left\langle h^{2}\right\rangle$ char S we get $z=h^{2}$ and $t \sim_{r} z t$. All the involutions in F are conjugate in F. If there are no involutions in $S \backslash S_{1}$, then there are exactly two classes of involutions in S under G, by a result of Glauberman [3], and by our criterion we get a contradiction.

Thus we can suppose that $c^{2}=1$ and we can write

$$
S=\left\langle t, h, k, c \mid h^{4}=1, h^{k}=h^{-1}, h^{c}=h^{\sigma}, k^{c}=h^{\beta} k\right\rangle
$$

Now $S=\langle t\rangle \times\langle h, k, c\rangle$ and by a result of Gaschütz [2] we have

$$
C=\langle t\rangle \times F_{1} \quad \text { with } \quad F \cong P G L(2,7) \quad \text { and } \quad F<F_{1}
$$

Since an S_{2}-subgroup of F_{1} is isomorphic with D_{16}, we now have

$$
S=\left\langle t, d, k \mid d^{8}=1, d^{k}=d^{-1}\right\rangle \quad \text { with } \quad d^{2}=h
$$

for some $d \epsilon S \backslash S_{1}$. We have under S seven classes of involutions in S with the representatives $z=d^{4}, t, z t, k, t k, d k, t d k$. But $z \sim k, t z \sim t k$ under F and $t \sim t z$ under T, and so $z \sim k, t \sim t z \sim t k$. Thus there are at most four classes of involutions in S under G with the representatives $z, t, d k, t d k$, all involutions in S_{1} being fused either with z or with t. Applying the theorem of Janko-Thompson [11] we conclude that there is an involution s in T with $\left|C_{T}(s)\right|=2^{6}$ and $s \chi_{G} z, s x_{G} t . \quad$ By Lemma 5.38 of Thompson [13], there is a conjugate $\left\langle u_{1} u_{2} \mid\right\rangle$ of $\langle z, s\rangle$ in S with $\left\langle u_{1}, u_{2}\right\rangle \triangleleft\left(u_{1} u_{2}\right)$ and $u_{1} u_{2} \sim z$. Now

$$
u_{1}, u_{2} \in\left\{d k, d^{3} k, d^{5} k, d^{7} k, t, t d k, t d^{3} k, t d^{5} k, t d^{7} k\right\} \quad \text { and } \quad\left[u_{1}, u_{2}\right]=1
$$

Since $t \sim t d^{4} \nsim d^{4}=z$ and $u_{1} u_{2} \sim z$ it must be that $u_{1} u_{2}=z$ and $\left|C_{T}\left(u_{i}\right)\right|=2^{6}$, for $i=1,2$. But then $\left|C_{S}\left(u_{i}\right)\right| \geq 2^{4}$, a contradiction to $C_{S}\left(u_{i}\right)=\left\langle u_{i}\right\rangle \times Z(S)$ for $i=1,2$, as one can directly see.

Thus we can suppose that $F \cong P S L(2,9) \cong A_{6}$. We conclude as before that C / N is isomorphic to one of the three subgroups of index 2 in $P \Gamma L(2,9)$ which contain $\operatorname{PSL}(2,9)$, and that S / N is isomorphic to one of the following groups: D_{16}, S_{16} the semidihedral group of order 16 or $Z_{2} \times D_{8}$.

The case $S / N \cong D_{16}$ yields to a contradiction in the same way as in the case $F \cong P S L(2,7) . \quad$ Suppose next that

$$
S / N \cong S_{16}=\left\langle a, b \mid a^{8}=1, a^{b}=a^{3}\right\rangle
$$

Here $S_{1} / N \cong\left\langle a^{2}, b\right\rangle$ and therefore all involutions of S are in S_{1}. Also $|Z(S / N)|=2$ and thus $Z(S)=\langle t, z\rangle, Z(T)=\langle z\rangle$. But $S_{1}=\langle t\rangle \times$ ($S_{1} \cap F$) and there are 3 classes of involutions in S_{1} under K, with the representatives $t, t z, z$. By the theorem of Glauberman [3] we conclude that S_{1} contains precisely two classes of involutions under G. Applying our criterion we get a contradiction.

Thus we may assume that $S / N \cong D_{8} \times Z_{2}$,

$$
S / N=\left\langle\bar{c}, \bar{d}, \bar{f} \mid \bar{c}^{4}=\overline{1}, \bar{c}^{\bar{d}}=\bar{c}^{-1}\right\rangle
$$

with $S_{1} / N=\langle\bar{c}, \bar{d}\rangle, c, d, f \in S$, where $\bar{x}=x N$ for all $x \in C$. In this case $C / N \cong \Sigma_{6}$.

We had $S_{1}=\left\langle t, h, k \mid h^{4}=1, h^{k}=h^{-1}\right\rangle$. Without loss of generality we may suppose that $c=h, d=k$ and we get

$$
S=\left\langle t, h, k, f \mid h^{4}=1, f^{2}=t^{\varphi}, h^{k}=h^{-1}, h^{f}=h, k^{f}=k\right\rangle, \quad \varphi \in\{0,1\}
$$

as $\langle h, k\rangle \triangleleft S$. If $f^{2}=t$, then $\langle t\rangle=\vartheta^{1}(Z(S))$ char S, which contradicts $|S|=|C(t)|_{2}$. Thus

$$
S=\left\langle t, h, k, f \mid h^{4}=1, h^{k}=h^{-1}\right\rangle=\langle t\rangle \times\langle h, k\rangle \times\langle f\rangle .
$$

By a result of Gaschütz [2] we get

$$
C=\langle t\rangle \times F_{1} \quad \text { with } \quad F_{1} \cong \Sigma_{6}
$$

and $F<F_{1}, F_{1}=\langle F, f\rangle, F \cong A_{6}$.
All the involutions of $F_{1} \backslash F$ have a 3-element in its centralizer and hence there is no central involution in $C \backslash\langle t\rangle F$. Thus

$$
\Omega_{1}(Z(T)) \leq Z\left(S_{1}\right)=\left\langle t, h^{2}\right\rangle
$$

and $\Omega_{1}(Z(T))=\langle z\rangle$ is of order 2. Thus $Z(T)$ is cyclic and $z=h^{2}$, as $\left\langle h^{2}\right\rangle=S^{\prime}$. But $Z(S)=\left\langle t, h^{2}, f\right\rangle$ is elementary abelian and therefore $Z(T)=\langle z\rangle$. Hence T containing S is unique and $z=h^{2}$ is the unique central involution of G, which is in $Z(S)$. Thus

$$
S_{1}=N(Z(S)) \leq T=C\left(h^{2}\right)
$$

Since $S_{1}>S$ the element t has some conjugate $t_{1} \neq t$ in $Z(S)$.
Let $S<T_{1}<T$. Then $\left|Z\left(T_{1}\right) \cap Z(S)\right| \geq 4$, and $\left|\Omega_{1}\left(Z\left(T_{1}\right)\right)\right| \leq 4$, as $Z(T)=\langle z\rangle$. Hence $\Omega_{1}\left(Z\left(T_{1}\right)\right)=V \leq Z(S)$ is of order 4 and $V \triangleleft T$. With $V=\langle z, s \mid\rangle$ we have $t \chi_{G} s \sim_{T} s z \chi_{G} z$.

In view of conjugance of all the involutions of F we get the following conjugate classes in $S: t, h^{2} \sim k \sim h k \sim h^{2} k \sim h^{3} k, t h^{2} \sim t k \sim t h k \sim t h^{2} k \sim t h^{3} k$, $f \sim h k f \sim h^{3} k f, k f \sim h^{2} f \sim h^{2} k f, t f \sim t h k f \sim t h^{3} k f, t k f \sim t h^{2} f \sim t h^{2} k f . \quad$ Since z is the unique central involution in $Z\left(S_{1}\right)$ it follows that $h^{2} \sim k \sim h k \sim$ $h^{2} k \sim h^{3} k$ are all the central involutions of G in S. Also we easily see that

$$
E_{1}=\left\langle t, h^{2}, f, k\right\rangle \quad \text { and } \quad E_{2}=\left\langle t, h^{2}, f, h k\right\rangle
$$

are the unique elementary abelian subgroups of order 16 in S . Identifying F_{1} with Σ_{6} we can take $h \equiv$ (1234) (56), $k \equiv$ (12) (34) and $f \equiv$ (56). The element $r_{1} \equiv(123)$ normalizes E_{1} and the element $r_{2} \equiv$ (125)(346) normalizes E_{2}. We have

$$
N\left(E_{1}\right) \geq\left\langle E_{1}, r_{1}, h k\right\rangle=W_{1} \quad \text { and } \quad N\left(E_{2}\right) \geq\left\langle E_{2}, r_{2}, k\right\rangle=W_{2}
$$

Also $W_{1} / E_{1} \cong W_{2} / E_{2} \cong \Sigma_{3}$. Since E_{1} and E_{2} contain each precisely 3 central involutions $h^{2}, k, h^{2} k$ and $h^{2}, h k, h^{3} k$ respectively, and $\left|N\left(E_{i}\right)\right|=2^{5} \cdot 3 p_{i}$, with $p_{i}=1$ or p_{i} a prime, it follows $\left|N\left(E_{i}\right)\right| \epsilon\left\{2^{5} 3,2^{6} 3\right\}$, for $i=1,2$. But $\left\langle E_{i}, r_{i}\right\rangle \unlhd N\left(E_{i}\right)$ and so all S_{3}-subgroups of $N\left(E_{i}\right)$ are contained in $C(t)$. As mentioned, t has some conjugate $t_{1} \neq t$ in $Z(S)$ under T. Now $\left\langle r_{1}, r_{2}\right\rangle \leq C(t) \cap C\left(t_{1}\right)$ because of symmetry and because of uniqueness of E_{1} and E_{2} in S. But $C_{Z(S)}\left(r_{1}\right)=\langle t, f\rangle$ and $C_{Z(S)}\left(r_{2}\right)=\left\langle t, h^{2} f\right\rangle$ and so $C_{Z(s)}\left(\left\langle r_{1}, r_{2}\right\rangle\right)=\langle t\rangle$, a contradiction to $t \neq t_{1}$.

Thus $S_{1} / N \npreceq D_{8}$.
We can therefore assume that $S_{1} / N \cong D_{16}$. We have $K / N \cong P S L\left(2, p^{f}\right)$. Since the Schur multiplier of K / N is 2 and $\langle t, z\rangle \leq Z(S)$ contradicting $K \cong S L\left(2, p^{f}\right)$, it follows that $K=N \times F$, with $F \cong P S L\left(2, p^{f}\right)$. We have $F \cong P S L(2,17)$ because all the involutions of F are conjugate and $z \in K$, $C(z)=T . \quad$ By Proposition 4 and Dieudonné [1] we have $C / N \cong P G L(2,17)$ and an S_{2}-subgroup S / N of C / N is dihedral of order 32. Now

$$
S_{1}=\left\langle t, h, k \mid h^{8}=1, h^{k}=h^{-1}\right\rangle
$$

with $F \cap S_{1}=\langle h, k\rangle$ and

$$
S / N=\left\langle\bar{c}, \bar{d} \mid \bar{c}^{16}=\bar{d}^{2}=\overline{1}, \bar{c}^{\bar{d}}=\bar{c}^{-1}\right\rangle \quad \text { with } c, d \in S
$$

where $\bar{x}=x N$, for $x \in S$. We can set $d=k$. We also have $|c|=16$, $c^{2}=h^{\sigma} t^{t}, c^{k}=c^{15} t^{\rho}$. Replacing if necessary h by h^{σ}, we get $c^{2}=t^{t} h$. Obviously $F \triangleleft C$ and thus $F \cap S \triangleleft S$. Hence $\langle h, k\rangle \triangleleft S$ and so $k^{c} \epsilon\langle h, k\rangle$, which yields $\iota=\rho$. We get

$$
S=\left\langle t, c, k \mid c^{16}=1\left(c^{2}=t^{t} h\right), c^{k}=t^{2} c^{15}\right\rangle
$$

We have $Z(S)=\left\langle t, c^{8}\right\rangle$ and $S^{\prime}=\langle h\rangle$. We conclude that $Z(T)=\langle z\rangle$, where $z=c^{8}=h^{4}$. Also $t \sim_{T} t c^{8}$.

Since all the involutions of F are conjugate in F and $t \in C(F)$ it follows that $t \sim_{T} t h^{4} \sim t h^{\mu} k$ for all $\mu \in\{0,1,2, \cdots, 7\}$. Set $B_{\mu}=\left\langle t, h^{4}, h^{\mu} k\right\rangle$. We have $C\left(B_{\mu}\right)=C(t) \cap T \cap C\left(h^{\mu} k\right)=B$. By Huppert [7, II.8.16], the normalizer of $\left\langle h^{4}, h^{\mu} k\right\rangle$ in F is isomorphic to Σ_{4}, because $p=17$. Thus $\left|N_{K}\left(B_{\mu}\right)\right|=2^{4} 3$.

In B_{μ} there are two conjugate classes under G :

$$
t \sim_{T} t h^{4} \sim_{L} t h^{\mu} k \sim_{L} t h^{4+\mu} k \quad \text { and } \quad h^{4} \sim_{L} h^{\mu} k \sim_{L} h^{4+\mu} k
$$

where $L=N_{K}\left(B_{\mu}\right)$.
Hence $\omega=\left|N\left(B_{\mu}\right): N_{C}\left(B_{\mu}\right)\right| \epsilon\{1,4\}$ and $\left|N\left(B_{\mu}\right): N_{T}\left(B_{\mu}\right)\right|=3$. Assume first, that $\omega=4$. Since $\left|N_{C}\left(B_{\mu}\right)\right| \geq\left|N_{K}\left(B_{\mu}\right)\right|=2^{4} \cdot 3$, it follows that $N_{C}\left(B_{\mu}\right)=N_{K}\left(B_{\mu}\right)$ and $\left|N\left(B_{\mu}\right)\right|=2^{6} \cdot 3$. This yields $\left|N_{T}\left(B_{\mu}\right)\right|=2^{6}$ and therefore $\left|N_{S}\left(B_{\mu}\right)\right| \geq 2^{5}$, a contradiction to $N_{S}\left(B_{\mu}\right) \leq N_{C}\left(B_{\mu}\right)=N_{K}\left(B_{\mu}\right)$.

Thus $\omega=1$, i.e. $N\left(B_{\mu}\right) \leq C(t)$. Since $N_{T}\left(B_{\mu}\right)$ is an S_{2}-subgroup of $N\left(B_{\mu}\right)$, we have $N_{\boldsymbol{r}}\left(B_{\mu}\right)=N_{S}\left(B_{\mu}\right)=\left\langle t, h^{2}, h^{\mu} k\right\rangle$ and so $\left|N\left(B_{\mu}\right)\right|=2^{4} \cdot 3$ for every μ.

Suppose $\iota=1$, i.e. $c^{2}=t h$ and $c^{k}=t c^{15}$. Now $\Omega_{1}(S)=S_{1}=\langle t, h, k\rangle$. We have $C(t) \cap C\left(t h^{4}\right)=S$. Since $t \sim_{T} t h^{4}, S$ is an S_{2}-subgroup of $C\left(t h^{4}\right)$ also. Also $S_{1} \triangleleft T$, as $S \triangleleft T$. Therefore $\left(h^{\mu} k\right)^{v}=t^{\xi} h^{\eta} k$, as $\left(h^{4}\right)^{v}=h^{4}, t^{v}=t h^{4}$, for every $v \in T \backslash S$. Thus $B_{\mu}^{v}=B_{\eta}$ is in $C(t)$ of the same type as in $C\left(t h^{4}\right)$. But then $N\left(B_{\eta}\right) \leq C(t) \cap C\left(t h^{4}\right)=S$, a contradiction. It follows that $\iota=0$ and we get

$$
S=\left\langle t, c, k \mid c^{16}=1, c^{k}=c^{-1}\right\rangle=\langle t\rangle \times\langle c, k\rangle \quad \text { with } \quad c^{2}=h
$$

One can easily compute that $S^{\prime}=\left\langle c^{2}\right\rangle, Z(S)=\left\langle t, c^{8}\right\rangle, Z_{2}(S)=\left\langle t, c^{4}\right\rangle$, $Z_{3}(S)=\left\langle t, c^{2}\right\rangle$ and $\Omega_{4}(S)=\langle t, c\rangle$.

Let now $v \in T \backslash S$ be an element of smallest possible order. Because of the above relations we can write

$$
\begin{aligned}
& T=\langle t, c, k, v| c^{16}=1, v^{2}=t^{\rho} c^{\sigma} k^{\tau}, t^{v}=t c^{8} \\
& \left.\qquad c^{k}=c^{-1}, c^{v}=t^{\vartheta} c^{\iota}, k^{v}=t^{\delta} c^{\varepsilon} k\right\rangle \text { with } 2 \nmid \iota .
\end{aligned}
$$

In S we now have the following conjugate classes of involutions under S : $t, t c^{8}, c^{8}, k \sim c^{\alpha} k, c k \sim c^{\alpha+1} k, t k \sim t c^{\alpha} k, t c k \sim t c^{\alpha+1} k$, for all α with $2 \mid \alpha$. But also $c^{8} \sim_{c} k, t \sim_{T} t c^{8} \sim_{c} t k$.

For $B=\left\langle c^{8}, t, k_{0}\right\rangle$ with k_{0} an arbitrary involution of $S_{1} \backslash\left\langle c^{8}, t\right\rangle$ we have, as shown, $N(B) \leq C(t)$ and $3\left||N(B)|\right.$. Assume $S_{1}^{w}=S_{1}$, for a $w \in T \backslash S$. Then $B \leq S_{1} \cap S_{1}^{w}$ and so $N(B) \leq C(t) \cap C\left(t c^{8}\right)$, as $t^{w}=t c^{8}$, which is a contradiction to $3\left||N(B)|\right.$. Thus $S_{1} \cap S_{1}^{w}=\left\langle t, c^{2}\right\rangle=Z_{3}(S)$. But $S / Z_{3}(S) \cong E_{4}$ and $S_{1}^{w}=\left\langle t, c^{2}, c k\right\rangle$, as $\langle t, c\rangle$ is of exponent 16. We get $k^{v}=t^{\delta} c^{25} c k \sim_{s} t^{\delta} c k \sim c^{8},(t k)^{v}=t c^{8} t^{\delta} c^{2 \zeta} c k \sim t^{\delta+1} c k \sim t k \sim t$, for some integers δ, ζ. We see that there are precisely 2 classes of involutions in S, which contain t and c^{8} respectively. Moreover $k^{v}=t^{\delta} c^{\varepsilon} k$ with $2 \nmid \varepsilon$.

For $x \in S \backslash\left\langle t, c^{8}\right\rangle,|x|=2$, the group $\left\langle t, c^{8}, x\right\rangle$ is of considered type B_{μ} either in S_{1} or in S_{1}^{w} and so

$$
N\left(\left\langle t, c^{8}, x\right\rangle\right) \leq C(t) \quad \text { or } \quad N\left(\left\langle t, c^{8}, x\right\rangle\right) \leq C\left(t c^{8}\right)
$$

Since $N_{T}\left(\left\langle t, h^{4}, h^{\mu} k\right\rangle\right)=\left\langle t, h^{2}, h^{\mu} k\right\rangle$, we have

$$
N_{T}\left(\left\langle t, h^{4},\left(h^{\mu} k\right)^{w}\right\rangle\right)=N_{T w}\left(\left\langle t, h^{4}, h^{\mu} k\right\rangle^{w}\right)=\left\langle t, h^{2}, h^{\mu} k\right\rangle^{w}=\left\langle t, h^{2},\left(h^{\mu} k\right)^{w}\right\rangle
$$

Hence $N_{\boldsymbol{T}}\left(\left\langle t, c^{8}, x\right\rangle\right)=\left\langle t, c^{4}, x\right\rangle$ and so $x^{w} \notin\left\langle t, c^{8}, x\right\rangle$, for all x and all w chosen as above.

Let $y=t^{\alpha} c^{\beta} k^{\gamma} \in S$. Then $y^{2}=c^{\beta+(-1) \gamma \beta}$. Thus $x=t^{\alpha} c^{\beta} k$ with arbitrary α, β. We have

$$
c^{v^{2}}=\left(t^{\vartheta} c^{\iota}\right)^{v}=c^{8 \vartheta+\iota^{2}}=c^{t \rho_{c} \sigma^{k} r}=c^{(-1) r}
$$

as $2 \nmid \iota$. Hence $8 \vartheta+\iota^{2} \equiv(-1)^{\tau}(\bmod 16)$. If $\vartheta=0$, then $\iota^{2} \equiv(-1)^{\tau}$ $(\bmod 16)$ and it follows that $\tau=0, \iota \in\{1,7,9,15\}$. If $\vartheta=1$, then $8+\iota^{2} \equiv(-1)^{\tau}(\bmod 16)$ and we get $\tau=0, \iota \epsilon\{3,5,11,13\}$.

Now

$$
k^{v^{2}}=\left(t^{\delta} c^{\ell} k\right)^{v}=t^{\vartheta \varepsilon} c^{8 \delta+(\iota+1) \varepsilon} k=k^{t \rho c^{\sigma}}=c^{-2 \sigma} k
$$

and hence $\vartheta \varepsilon \equiv 0(\bmod 2), 8 \delta+(\iota+1) \varepsilon \equiv-2 \sigma(\bmod 16)$. As $2 \nmid \varepsilon$ we get $\vartheta=0$, and we can write

$$
T=\left\langle t, c, k, v \mid c^{16}=1, v^{2}=t^{\rho} c^{\sigma}, t^{v}=t c^{8}, c^{k}=c^{-1}, c^{v}=c^{\iota}, k^{v}=t^{\delta} c^{\varepsilon} k\right\rangle
$$ with $\rho, \delta \epsilon\{0,1\}, \iota \in\{1,7,9,15\}, 2 \nmid \varepsilon$.

Also we have the equation

$$
\begin{equation*}
2 \sigma \equiv 8 \delta-(\imath+1) \varepsilon \quad(\bmod 16) \tag{*}
\end{equation*}
$$

We consider in the following the particular cases for ι.

Case (a) $\iota=1$. By $(*), \sigma+\varepsilon \equiv 4 \delta(\bmod 8)$. Now $(k v)^{8}=1$, but $v^{8}=c^{4 \sigma} \neq 1$, because $2 \nmid \varepsilon, 2 \mid \sigma+\varepsilon$. Thus we have a contradiction to the minimality of order of v.

Case (b) $\iota=7$. From (*) and $2 \nmid \varepsilon$ it follows that $\sigma \epsilon\{0,8\}$ for $\delta=1$, and $\sigma \epsilon\{4,12\}$ for $\delta=0$.

Suppose first that $\delta=0$. Since the order of v is minimal, v must be conjugated under G with an element $s \in S$, by a criterion of Harada [5]. It is $|v|=|s|=8$. But $x^{-1} v x=s$ gives $x^{-1} v^{4} x=s^{4}$, i.e. $x^{-1} c^{8} x=c^{8}$, which implies $x \in T=C\left(c^{8}\right)$, a contradiction.

Therefore $\delta=1$ and $\sigma \epsilon\{0,8\}$. If $\rho=1$ we would have $\left(v^{2}\right)^{v}=v^{2}=\left(t c^{\sigma}\right)^{v}$ $=t^{v} c^{\sigma}=t c^{\sigma}$, as $c^{\sigma} \in Z(T)$. But $t^{v}=t c^{8}$ and we get a contradiction. Thus $\rho=0$ and we have

$$
T=\left\langle t, c, k, v \mid c^{16}=1, v^{2}=c^{\sigma}, t^{v}=t c^{8}, c^{k}=c^{-1}, c^{v}=c^{7}, k^{v}=t c^{\varepsilon} k\right\rangle
$$

with $\sigma \in\{0,8\}, 2 \npreceq \varepsilon$.
If $\sigma=8$, then $|v|=4$ and by the criterion of Harada [5] we get the same contradiction as above. Therefore $\sigma=0, v^{2}=1$.

One computes easily that $\left|t^{\alpha} c^{\beta} k v\right|=32$ for all $\alpha, \beta ;\left|t^{\alpha} c^{\beta} v\right|=4$ for $\alpha+\beta \equiv 1$ $(\bmod 2) ;\left|t^{\alpha} c^{\beta} v\right|=2$ for $\alpha+\beta \equiv 0(\bmod 2)$.

Consider the element $t v$. From $t v=x^{-1} s x, s \in S, x \in G$ it follows that $x \in T$, a contradiction. Therefore by Harada [5], $(t v)^{2}=c^{8}$ is conjugate with some involution in $T \backslash S \cdot$ of the form $w=t^{\alpha} c^{\beta} v, \alpha+\beta \equiv 0(\bmod 2)$. Since $w^{c}=x c^{-6}$ and $v^{k}=t c^{-\varepsilon} v$, with $2 \nmid \varepsilon$, all the involutions of $T \backslash S$ are conjugate with another and therefore with c^{8}. In particular $v \sim c^{8}$. But $t c^{4} \in C(v),\left(t c^{4}\right)^{2}=c^{8}$ $\neq v$, while in $C\left(c^{8}\right)=T$ all the elements of order 4 have c^{8} as its square, a contradiction.

Case (c) $\iota=9 . \quad$ By $(*) \sigma+5 \varepsilon \equiv 4 \delta(\bmod 8) . \quad$ It is now $(k v)^{8}=1 \neq v^{8}$, a contradiction to the minimality of the order of v.

Case (d) $\iota=15$. The relation $(*)$ gives $\sigma \equiv 4 \delta(\bmod 8)$, and so $\sigma \in\{0,4,8,12\}$. From $\left(v^{2}\right)^{v}=v^{2}$ it follows $\sigma \equiv 4 \rho(\bmod 8)$. Thus $\rho=\delta$. If $v^{2} \neq 1$ we get the same contradiction as in Case (b). Therefore $v^{2}=1$ and we can write

$$
T=\left\langle t, c, k, v \mid c^{16}=1, \quad t^{v}=t c^{8}, \quad c^{k}=c^{-1}, \quad c^{v}=c^{-1}, \quad k^{v}=c^{\varepsilon} k\right\rangle
$$

with $2 \nmid \varepsilon$. Now $\left|c^{\beta} v\right|=2,\left|t c^{\beta} v\right|=4$ and $\left|t^{\alpha} c^{\beta} k v\right|=32$, for all α, β. We have $v^{c}=c^{-2} v, v^{k}=c^{-\varepsilon} v$ and therefore all the involutions in $T \backslash S$ are conjugate. Considering the element $t v$ we get the contradiction in the same way as in the Case (b).

Proposition 5 is completely proved.
Proposition 6. Let $C \neq K$. Then $|C: K|=2$ and $C / N \cong \operatorname{PGL}(2, p)$ with $K / N \cong P S L(2, p), p$ a prime, $p \geq 5$. In particular, an S_{2}-subgroup of C / N is dihedral of order 8 in the considered case.

Proof. By Proposition 5 we have $l(N) \geq 2$. If $C \neq K$, then $l(K / N)=4$, as $l(G)=8$, by Huppert [6]. Proposition 4 and the results of Janko [8] and Dieudonné [1] give now the assertion.

Proposition 7. We have $|N| \neq 4$.

Proof. Assume $|N|=4$. We shall prove that this assumption yields to a contradiction.

Since K / N is simple, we conclude that $C_{C}(N) \geq K$ and by Janko [9] we have $K / N \cong P S L\left(2, p^{f}\right), p$ a prime. If $p=2$, then $p^{f} \epsilon\{4,8\}$. If $p \neq 2$ then $S / N \cong D_{k}$, the dihedral group of order $k, k \epsilon\{4,8,16\}$, where S is an S_{2}-subgroup of C. Let T be an S_{2}-subgroup of G containing S, the chosen S_{2}-subgroup of C, and $z \in S$ a central involution of T. Since $C_{C}(N) \geq K$ we have $z \in S \backslash N$.

Assume now that N is cyclic. We consider first the case $C=K$. If $p^{f}=8$, then $C / N \cong P S L(2,8), S / N$ is elementary abelian and all the involutions of S / N are conjugate in $N_{C / N}(S / N)$. Since $\langle z\rangle \times N \leq Z(S)$ it follows $S^{\prime}=$ $\langle 1\rangle$ and thus $S=N \cap S_{1}$, with S_{1} elementary abelian. Therefore $\langle t\rangle=v^{1}(S)$, which contradicts $|C(t)|_{2}=|S|$. Hence $p^{f} \neq 8$.

If $S / N \cong D_{k}, k \in\{4,8,16\}$ we again have $\langle z\rangle \times N \leq Z(S)$, and $\langle t\rangle=$ $\mho^{1}(Z(S))$ in each case, which yields to the same contradiction as above.

Thus $C \neq K$ if N is cyclic, and by Proposition 6 we have

$$
|C: K|=2, \quad K / N \cong P S L(2, p), \quad C / N \cong P G L(2, p)
$$

Suppose that $C(N)=C$. Since S / N is dihedral of order 8 , we would have $Z(S)=\langle z\rangle \times N$ and so $\langle t\rangle=\mho^{1}(Z(S))$, a contradiction. Therefore $C(N)=K$. Now $z \in K$ and $S_{1}=S \cap K=\langle z\rangle \times N$ is abelian. Since all involutions of S_{1} / N are conjugate in K / N, we have $S_{1}=N \times L$, for a subgroup L of S_{1}. By a result of Gaschütz [2], it follows that $K=N \times F$, with $F \cong P S L(2, p)$. Let $S_{1} \cap F \geq\left\langle v_{1}, v_{2} \mid\right\rangle$; hence $S_{1}=\left\langle n, v_{1}, v_{2} \mid n^{4}=1\right\rangle$, with $\langle n\rangle=N$. We have $F \triangleleft C, S_{1} \cap F \triangleleft S$. Since $Z(S) \leq\langle z\rangle \times N$, it follows that $Z(S)=\langle z, t\rangle$ with $n^{2}=t$ and one of the $v_{i}, i=1,2$, say v_{1} belongs to $Z(S)$. Thus $Z(S)=\left\langle n^{2}, v_{1}\right\rangle$. We have $\langle t\rangle=v^{1}\left(S_{1}\right)$ and hence there is an automorphism φ of S with $S_{1}^{\varphi} \neq S_{1}$. Obviously $S_{1} S_{1}^{\varphi}=S, S_{1} \cap S_{1}^{\varphi} \leq Z(S)$ and $S_{1} \cap S_{1}^{\varphi}$ is of order 8, a contradiction to $|Z(S)|=4$.

We have proved that N is not cyclic.
Assume next that N is a four-group, $N=\langle t, n \mid\rangle$.
We consider first the case $C=K$. Here $C(N)=C$. Suppose at first that $C / N \cong P S L(2,8)$. Because all involutions of S / N are conjugate in C / N and $\langle z\rangle \times N \leq Z(S)$, we conclude by a result of Gaschütz [2] that $C=N \times F$ with $F \cong \operatorname{PSL}(2,8)$. We know that there is an element r in $F,|r|=7$, such that $S \triangleleft S R$, where $R=\langle r\rangle$. Denote $T_{1}=N_{T}(S)$. Then $N(S)=T_{1} R$, where $\left|T_{1}\right|=2^{6}$, and $N(S) / S \cong D_{14}$. Let $s \epsilon T \backslash T_{1}$. Then [$T_{1}=S \cdot S^{s}, Z\left(T_{1}\right) \geq S \cap S^{s} \triangleleft T$ and $\left|S \cap S^{s}\right|=2^{4}$. By Suzuki [12
there is a complement L of S in $N(S)$ with

$$
L=\left\langle r, w \mid r^{7}=1, r^{w}=r^{-1}\right\rangle
$$

as there are involutions in $S^{s} \backslash S$ and $S=O_{2}(N(S))$. By Gorenstein [4, 5.2.3] we have $S=C_{S}(R) \times[S, R]$. Obviously $S \cap Z\left(T_{2}\right)=C_{S}(w)$, with $T_{2}=S\langle w\rangle \sim_{N(S)} T_{1}$. Denote $C_{S}(R)=U,[S, R]=V$. Then $|U|=4$, $|V|=8$ and $\left|C_{S}(w)\right|=16$. We have $U^{w}=U, V^{w}=V$ and hence $C_{S}(w)=$ $C_{U}(w) \times C_{V}(w)$. It follows $C_{U}(w)=U$ or $C_{V}(w)=V$. But $U=N$ and $U=C_{U}(w) \leq Z\left(T_{2}\right)$ would imply $T_{2} \leq C(N)=C$, a contradiction.

Hence $V=C_{V}(w)$. Let $v_{1} \in V^{*}$. Now $v_{1}^{r w}=v_{1}^{r w}=v_{1}^{r}=v_{1}^{r-1}$, in contradiction with the faithful action of r on $[R, S]$.

Suppose next, that $S / N \cong D_{4}, C / N \cong P S L\left(2, p^{f}\right)$. Since $P S L(2,4) \cong$ $P S L(2,5)$, we can assume without loss that $p \neq 2$. Similarly as in the previous cases we conclude that $C=N \times F$, with $F \cong \operatorname{PSL}\left(2, p^{f}\right)$. Since $N \leq Z(C), C(z)=T$ and $z \epsilon C \backslash N$, one easily sees that

$$
F \cong P S L(2,5) \cong A_{5}
$$

In F there is an $r,|r|=3$, such that $R=\langle r\rangle$ normalizes the S_{2}-subgroup S of C. Therefore $|N(S)|=2^{5} \cdot 3 \cdot k, k$ a prime or $k=1$, where $3 k \leq 12$, as the elements of N are not central involutions. Hence $k \in\{1,2,3\}$.

Assume first that $k=3$. Let T_{1} be an S_{2}-subgroup of $N(S)$ and $T_{1}<T_{2}<T$. If $s \in T_{2} \backslash T_{1}$, then $T_{1}=S S^{s}, S \cap S^{8 ;} \leq Z\left(T_{1}\right)$ and $\left|S \cap S^{s}\right|=$ 2^{3}. Since $S=C_{T_{1}}(S)$, the group T_{1} is not abelian and hence $S \cap S^{s}=Z\left(T_{1}\right)$. It follows that $N \cap Z\left(T_{1}\right) \neq 1$ and we may assume that $n \in Z\left(T_{1}\right)$. Thus $n x_{G} t$. But now $z \in Z(T) \cap S$ would have 9 conjugates in S under $N(S)$ and t would have the remaining 6 involutions as conjugates, because $\left|C_{N(S)}(t)\right|$ $=2^{4} \cdot 3$. This, however, contradicts $t \nsim n \nsim z$. It follows that $k \neq 3$.

Assume now $k=2$, i.e. $N(S)=T_{2} R$, with $\left|T_{2}\right|=2^{6}$. We have $T_{2} \nexists N(S)$ as $l(G)=8$. Let t, t_{1}, t_{2}, t_{3} be the conjugates of t in S under $N(S)$. Since R has no fixpoints on $S \backslash N$ it follows that $t_{i} \in \mathbb{S} \backslash N$, for $i=1,2,3$. Consider $C\left(t_{1}\right) \cap C(t)$. Because of $C=N \times F, F \cong A_{5}, t_{1}$ has no element of odd order in its centralizer in C. Therefore $C\left(t_{1}\right) \cap C(t)=S$. If $O_{2}(N(S))=S$, it would be $O_{2,2^{\prime}}(N(S))=S R \leq C(t) \cap C\left(t_{1}\right)$, a contradiction. It follows that $O_{2}(N(S))=T_{1}$ is of order 2^{5}, and $N(S) / T_{1} \cong D_{6}, N_{T}(S)=N_{T}\left(T_{1}\right)=$ T_{2}.

Let $v \in T \backslash T_{2}$. Then $S \cdot S^{v} \leq T_{2}, \bar{S}=S S^{v} \triangleleft T$.
Suppose that $|\bar{S}|=2^{5}$. Then $\bar{S}_{0}=S \cap S^{v}=Z(\bar{S})$ is of order 8. We have $\bar{S}_{0}^{r} \not{ }^{\prime} \bar{S}_{0}$, as $T \neq T^{r}$. Hence $\left|\bar{S}_{0}^{r} \cup \bar{S}_{0}\right|=12$ and t, t_{1}, t_{2}, t_{3} are the only elements of S, which are conjugate with t under G. Similarly, there is an element of $\bar{S}_{0}^{r 2}$, which is not contained in $\bar{S}_{0}^{r} \cup \bar{S}_{0}$. Since this is also not conjugate with t, there are at least 13 elements of S, which are not conjugate with t, a contradiction to $t \sim t_{1} \sim t_{2} \sim t_{3}$.

Therefore $\bar{S}=T_{2}$ and $\left|S \cap S^{v}\right|=4$. Now $T_{2}=S\left\langle a_{1}, a_{2} \mid\right\rangle, S \cap\left\langle a_{1}, a_{2}\right\rangle=1$,
$\left\langle a_{1}, a_{2}\right\rangle \leq S^{v}$, and by Gaschütz [2], S has a complement B in $N(S)$. Since $B \cong N(S) / S$ and $S \triangleleft T_{1} \triangleleft T_{1} R \triangleleft T_{2} R=N(S)$ is the corresponding $\left\{2,2^{\prime}\right\}$-series, we have $T_{2} / S \cong D_{4}$ and

$$
B=\langle b \mid\rangle \times\left\langle r, a \mid r^{3}=1, \quad r^{a}=r^{-1}\right\rangle
$$

for some involutions $a, b \in N(S) \backslash S$, assuming $B \geq R$.
By Gorenstein [4, 5.2.3], we get $S=C_{S}(R) \times[S, R]$, with $C_{S}(R)=N$. Since $S^{a}=S^{b}=S$ and $R^{a}=R^{b}=R$, we now have $N=N^{a}=N^{b}=N^{r}$, and so $N \triangleleft N(S)$, a contradiction to $t \in N, t \sim_{N(S)} t_{1} \in S \backslash N$.

It remains to consider the case $k=1$. Now t has 2 conjugates under $N(S)$. Since R acts fixpointfree on $S \backslash N$, we may suppose that $t \sim_{N(S)} n$.

Let T_{1} be an S_{2}-subgroup of $N(S)$ and $T_{1}<T_{2}<T$. For $s \in T_{2} \backslash T_{1}$ we have $S S^{s}=T_{1}$ and $Z\left(T_{1}\right)=S \cap S^{s}$ is of order 8 , as $S=C_{T}(S)$. Since S has a complement in T_{1}, it is $N(S)=S B$, with $B \cong D_{6}$ or $B \cong Z_{6}$. We may assume that

$$
B=\left\langle r, v \mid r^{3}=1, r^{v}=r^{\alpha}\right\rangle, \quad \alpha \in\{1,-1\} .
$$

We have $T_{1} \sim S\langle v\rangle$ and thus $|Z(S\langle v\rangle)|=8$. We have again $S=U \times V$, with $U=C_{s}(R), V=[S, R]$. Since $U^{r}=U, V^{r}=V$ it follows that $C_{S}(v)=$ $C_{U}(v) \times C_{V}(v)=Z(S\langle v\rangle)$. Because of $|U|=|V|=4$, we must have $C_{U}(v)=U$, or $C_{V}(v)=V$. But $t \epsilon C_{S}(R)$ and $t^{v} \neq t$. Thus $V=C_{V}(v)$. If $\alpha=-1$ we get a contradiction to the faithful action of $\langle r\rangle$ on V. Therefore $T_{1} \triangleleft N(S)$ and we can write

$$
N(S)=\left\langle t, n, h_{1}, h_{2}, r, v \mid r^{3}=1, t^{v}=n, n^{v}=t, h_{1}^{r}=h_{2}, h_{2}^{r}=h_{1} h_{2}\right\rangle
$$

where $\left\langle t, n, h_{1}, h_{2}\right\rangle=S$.
Now $Z(N(S))=\langle t n\rangle$ and $N(S) \triangleleft N\left(T_{1}\right)=T_{2} R$. Thus

$$
C(t n) \geq\left\langle N\left(T_{1}\right), C(t)\right\rangle>N\left(T_{1}\right) \quad \text { and } \quad l\left(N\left(T_{1}\right)\right)=7
$$

a contradiction.
Suppose now that $S / N \cong D_{8}$ or D_{18}. Then $K / N \cong P S L\left(2, p^{f}\right)$ with $l(C / N)=5$ and thus $l(C / N)=7$. Since $Z(S / N) \cong Z_{2}$ it follows that $Z(S)=N \times Z(T)$ is elementary abelian of order 8 . Let $S<T_{1}<T$ with $\left|T: T_{1}\right|=2$. Then $\left|Z\left(T_{1}\right) \cap Z(S)\right| \geq 4$ and hence $Z\left(T_{1}\right) \cap N \neq 1$, a contradiction to $C(n)=C(t)=C(t n)$, because of maximality of $C(t)$. Thus $S / N \npreceq D_{8}, D_{16}$ also.

We have proved that $C \neq K$. Hence by Proposition 6,

$$
|C: K|=2, \quad K / N \cong P S L(2, p), \quad C / N \cong P G L(2, p)
$$

where p is a prime, $p \geq 5$, and an S_{2}-subgroup S / N of C / N is dihedral of order 8.

Suppose first that $C(N)=C(t)=C$. Now $|S|=32$ and we have $Z(S)=$ $\langle z\rangle \times N$. If $S<T_{1}<T$, then $\left|Z\left(T_{1}\right) \cap Z(S)\right| \geq 4$, and so $Z\left(T_{1}\right) \cap N \neq 1$, a contradiction to $C(N)=C$, because of maximality of C.

Thus we have $C(N)=K$. Let $S_{1}=S \cap K$. Now $Z(T) \leq S_{1}$, because
$K=C(N)$. Since $\langle z\rangle \times N \leq Z\left(S_{1}\right)$ and $\left|S_{1}\right|=16, S_{1}$ is abelian. Moreover S_{1} is elementary abelian, as all involutions of S_{1} / N are conjugate under K / N. Thus $K=N \times F$, with $F \cong P S L(2, p)$. It is $z \epsilon K, C(z)=T$ and all involutions of F are conjugate in F. Therefore we conclude, that $F \cong P S L(2,5) \cong A_{5}$.

Let $c \in S \backslash S_{1}$. Then $C=(N \times F)\langle c\rangle$. Since $S / N \cong D_{8}$ the element c does not act trivially on $S \cap F=V \triangleleft S$. Let $V=\left\langle v_{1}, v_{2} \mid\right\rangle$. Then we can write

$$
S=\left\langle t, n, v_{1}, v_{2}, c \mid c^{2}=t^{l} n^{\nu} v_{1}^{\alpha} v_{2}^{\beta}, n^{c}=t n, v_{1}^{c}=v_{2}, v_{2}^{c}=v_{1}\right\rangle
$$

$\iota, \nu, \alpha, \beta \in\{0,1\}$.
It is $Z(S)=\langle t, z\rangle=\left\langle t, v_{1} v_{2}\right\rangle$, and $Z(T)=\langle z\rangle$, because $Z(S / N)$ is of order 2. For $S<T_{1}<T$ we get therefore $t \sim_{T_{1}} z t=t^{\varepsilon} v_{1} v_{2}$, where either $\varepsilon=0$ or $\varepsilon=1$. Since $\left(c^{2}\right)^{c}=c^{2} \in Z(S)$, we have $c^{2}=t^{2} v_{1}^{\alpha} v_{2}^{\alpha}$, with $\alpha, \iota \in\{0,1\}$. But now ($n^{\alpha} v_{1}^{\beta} c$) ${ }^{2}=1$, and replacing c by $n^{\alpha} v_{1}^{\beta} c$, we can write

$$
S=\left\langle t, n, v_{1}, v_{2}, c \mid n^{c}=t n, v_{1}^{c}=v_{2}, v_{2}^{c}=v_{1}\right\rangle
$$

Consider now $N\left(S_{1}\right)$. Obviously $\left|N\left(S_{1}\right)\right|=2^{5} \cdot 3 k, k=1$ or k a prime, as V has a normalizer $V R \cong A_{4}$ in $F, R \cong Z_{3}$. Since $z \in S_{1}$ and z is not conjugated with any element of N, we have $3 k \leq 12$, and hence $k \in\{1,2,3\}$.

Let $k \neq 2$. Then $S=N_{T}\left(S_{1}\right)$. For $S_{1}<S<T_{1}<T$ and $s \in T_{1} \backslash S$ it follows that $S_{1} S_{1}^{s}=S$ and $S_{1} \cap S_{1}^{8} \leq Z(S)$ is of order 8, a contradiction to $|Z(S)|=4$.

Therefore $k=2, N\left(S_{1}\right)=T_{2} R$, with $\left|T_{2}\right|=2^{6}$. If $T_{2} \triangleleft N\left(S_{1}\right), T_{2}$ would have a too large normalizer. Thus $T_{2} \nVdash N\left(S_{1}\right)$.

We have $t \sim_{T_{2}} t^{\alpha} v_{1} v_{2} \sim_{R} t^{\alpha} v_{1}$, with $\alpha=0$ or $\alpha=1$. Consider

$$
C_{0}=C(t) \cap C\left(t^{\alpha} v_{1}\right)
$$

We have $C_{0} \cap K=C_{K}\left(v_{1}\right)=S_{1}$, as $C_{F}\left(v_{1}\right)=V$. Since $C_{0} / K \cong C_{0} /\left(C_{0} \cap K\right)$ and $\left|C_{0} K / K\right| \mid 2, C_{0}$ is a 2 -group.

If $O_{2}\left(N\left(S_{1}\right)\right)=S_{1}$, then

$$
S_{1} R \unlhd N\left(S_{1}\right) \quad \text { and } \quad S_{1} R \leq C(t)
$$

But $t \sim_{N\left(S_{1}\right)} t^{\alpha} v$, and therefore it must be also $S_{1} R \leq C\left(t^{\alpha} v\right)$, a contradiction to $3 \nmid\left|C_{0}\right|$.

Hence $O_{2}\left(N\left(S_{1}\right)\right)=T_{3}$ with $\left|T_{3}\right|=2^{5}$. Obviously we can suppose that $T_{2}>S$. But then $Z\left(T_{2}\right) \leq Z(S)$ and $Z(S)$ is of order 4. Let $v \in T \backslash T_{2}$. Then $S_{1} S_{1}^{v} \leq T_{2}$ and $S_{1} S_{1}^{v} \triangleleft T$.

Suppose that $\left|S_{1} S_{1}^{v}\right|=2^{5}$. Then $S_{1} \cap S_{1}^{v} \leq Z\left(S_{1} S_{1}^{v}\right)$ and thus

$$
\left|\Omega_{1}\left(Z\left(S_{1} S_{1}^{v}\right)\right)\right| \geq 2^{3}
$$

It follows that $\left|Z\left(T_{2}\right)\right| \geq 4$ and therefore $Z\left(T_{2}\right)=Z(S)=\left\langle t, v_{1} v_{2}\right\rangle$, a contradiction to $2^{6} \not \backslash|C(t)|$.

Therefore $\left|S_{1} S_{1}^{v}\right|=2^{6}$, i.e. $S_{1} S_{1}^{v}=T_{2}$. But now $S_{1} \cap S_{1}^{v} \leq Z\left(T_{2}\right)$ and
hence $\left|Z\left(T_{1}\right)\right|=4$, which yields the same contradiction as in the preceding case.

We have shown that the assumption $|N|=4$ yields a contradiction in all cases. The Proposition is completely proved.

Proposition 8. The group N is not a 2-group.
Proof. Since $l(C / N) \geq 4$ and therefore $l(N) \leq 3$, it remains by Propositions 5 and 7 to show, that $|N| \neq 2^{3}$.

Assume the contrary, i.e. $|N|=8$. By Huppert [6] and Janko [8], the group C / N is simple and $C / N \cong \operatorname{PSL}(2, p), p$ a prime, $p \geq 5$, with $l(C / N)=4$.

We have shown in the proof of the Proposition 1, that $N \leq Z(C)$ if N is elementary abelian. One can easily see that the same holds also in the other cases, where N is abelian, because of the simplicity of C / N. In all cases an S_{2}-subgroup of C / N is dihedral of order 4, by Janko [8], and C / N contains alternating groups A_{4}.

Suppose at first that $N \cong E_{8}$, the elementary abelian group of order 8. In C there is a subgroup M, with $|M|=2^{5} \cdot 3, M / N \cong A_{4}$, and $\left|O_{2}(M)\right|=2^{5}$. Denote $O_{2}(M)=A$. If $N=Z(A)$, then $N \triangleleft A_{1}$ for $A<A_{1}$ with $\left|A_{1}: A\right|=$ 2, which contradicts $C=N_{G}(N)$ and $|C|_{2}=|A|$. Therefore $Z(A)>N$ and A is abelian. We have $M=A R$, with $|R|=3$. Since $M / N \cong A_{4}$ the group R acts faithfully on A and therefore on $\Omega_{1}(A)$. Since $N \leq \Omega_{1}(A) n$ $C(R)$, it follows $\Omega_{1}(A)=A$ and A is elementary abelian. By Gaschütz [2] N has now a complement F in C, i.e. $C=N \times F$, with $F \cong P S L(2, p)$. Consider now $N(A)$. We see that $N(A) / A \cong D_{6}$. Let A_{1} be an S_{2}-subgroup of $N(A), A<A_{1}<T$, where T is an S_{2}-subgroup of G. For $v \epsilon T \backslash A_{1}$ we have $A A^{v}=A_{1}$ and $Z\left(A_{1}\right) \geq A \cap A^{v}$, because $A \notin T$. Thus $\left|Z\left(A_{1}\right)\right|=2^{4}$. With $a \in A^{v} \backslash A$ we have $A_{1}=A\langle a\rangle$, and hence A has a complement L in $N(A)=A_{1} R$. We can write $N(A)=A L$, with

$$
L=\left\langle r, m \mid r^{3}=1, r^{m}=r^{-1}\right\rangle .
$$

Now, by Gorenstein [4, 5.2.3], we have $A=U \times V$, where $U=C_{A}(R)$, $V=[A, R]$. Obviously $U^{r}=U^{m}=U, V^{r}=V^{m}=V$. Therefore $C_{A}(m)=$ $C_{V}(m) \times C_{V}(m)$. Since $A\langle m\rangle \sim_{N\left(A_{1}\right)} A_{1}$, we have $|Z(A\langle m\rangle)| \geq 2^{4}$. If $A\langle m\rangle=Z(A\langle m\rangle)$, then $C_{A}(m)=A$, otherwise $C_{A}(m)=Z(A\langle m\rangle)$. We have $U=N$ and $|V|=4$ because of the faithful action of R on A. It follows that $U=C_{U}(m)$ or $V=C_{V}(m)$. But $U=C_{V}(m)=N$ implies $Z\left(T_{1}\right) \cap N \neq$ 1 for the S_{2}-subgroup T_{1} of G containing $A\langle m\rangle$. But this is impossible, because $C(N)=C$. Hence $V=C_{V}(m)$, which contradicts again the faithful action of R on V.

Therefore $N \npreceq E_{8}$.
Suppose now that $N \cong Z_{4} \times Z_{2}$ or $N \cong Z_{8}$. We know that $N \leq Z(C)$. Let S be an S_{2}-subgroup of C. Since $N=Z(C)$, we have $N \cap Z(T)=1$ for each S_{2}-subgroup T of G containing S. It follows that there is a central
involution $z \in Z(T)$ in $S \backslash N$. But $N_{C}(S)=S R$, with $R=\langle r\rangle$ of order 3 and $S R / N \cong A_{4}$. It follows that $S=N \times\langle z\rangle \times\left\langle z^{r}\right\rangle$. Now $\mho^{1}(S) \leq N$ and $N\left(\Omega_{1}(S)\right)=C$, which contradicts $2 \nmid|C: S|$.

Assume at last that $N \cong D_{8}$ or $N \cong Q_{8}$, the quaternion group of order 8 . Since C / N is simple and $A(N)$ is solvable it must be again $C=C(N)$. Now, the contradiction follows as in the preceding case.

The proposition 8 is proved.
Proposition 9. We have $l(N)>2$.
Proof. In view of Propositions 5 and 7 it remains to show that $|N| \neq 2 \cdot q$, where q is an odd prime.

Assume the contrary, i.e. $|N|=2 \cdot q, q$ an odd prime. Then

$$
N=\langle t\rangle \times\langle m\rangle
$$

with $|m|=q$. Since $A(N)$ is solvable it must be $C(N)=K$ or $C(N)=C$. But there are central involutions in C and thus $C(N)=K \neq C$, as S_{2}-subgroups of G are maximal. By Proposition 6 we now have

$$
C / N \cong P G L(2, p), \quad K / N \cong P S L(2, p)
$$

and an S_{2}-subgroup S / N of C / N is dihedral of order 8. Let $S_{1}=S \cap K$ and $z \in Z(T),|z|=2$, where T is an S_{2}-subgroup of G containing S. But then $S / N=S_{1} / N \times\langle z\rangle N / N$, a contradiction to $S / N \cong D_{8}$.

Proposition 10. If t is an involution of G, then $C=C(t)$ is solvable. (This contradicts Proposition 1, proving our lemma.)

Proof. By Propositions 8 and 9 it remains to consider the case, where $l(N)=3,|N|=2 q_{1} q_{2}$, with q_{1}, q_{2} primes, which are not both even. By Janko [8] we have $C / N \cong P S L(2, p), p$ a prime, $p \geq 5$, as $l(C / N)=4$.

Suppose at first that q_{1} and q_{2} are both odd.
If $q_{1} \neq q_{2}$, let be $q_{1}>q_{2}$ and Q_{1} the $S_{q_{1}}$-subgroup of N. Then $Q_{1} \triangleleft C$, $C / C_{C}\left(Q_{1}\right)$ is cyclic and it must be that $C \neq C_{C}\left(Q_{1}\right)$, as C contains some central involution of G, which cannot be in $C_{C}\left(Q_{1}\right)$. Now $C>C_{c}\left(Q_{1}\right)>Q_{1}\langle t\rangle>$ $Q_{1}>1$ is a normal series and $C>N>Q_{1}\langle t\rangle>Q>1$ is already a chief series. It follows that $C / C_{C}\left(Q_{1}\right) \cong N / Q_{1}\langle t\rangle$ is of odd order and so $C_{C}\left(Q_{1}\right)$ contains nevertheless an S_{2}-subgroup of C, a contradiction.

Thus we can assume that $q_{1}=q_{2}=q$ is an odd prime. Now $N=\langle t\rangle \times Q$, where $|Q|=q^{2}$. Since $C_{c}(Q)$ contains no central involutions of G and C does contain such involutions, it must be that $C_{c}(Q)=N, N_{c}(Q)=C$. Therefore C / N is isomorphic to a subgroup of $A(Q)$ and Q must be elementary abelian. Let S be an S_{2}-subgroup of C and T an S_{2}-subgroup of G containing T. Since $S N / N \cong S / S \cap N \cong D_{4}$ and $Z(T)^{*} \leq S \backslash S \cap N, S$ is abelian. If S is not elementary abelian, then $\langle t\rangle=\vartheta^{1}(S)$ char S, which is a contradiction. Hence $C=\langle t\rangle \times F$, with $Q \leq F, F / Q \cong P S L(2, p)$ and $Q=C_{L}(Q)$. Let V be an S_{2}-subgroup of L. Then $V=\left\langle v_{1}, v_{2} \mid\right\rangle$ and $v_{1} Q \sim_{L} v_{2} Q \sim_{L} v_{3} Q$,
where $v_{3}=v_{1} v_{2}$. It follows $v_{1} \sim_{L} v_{2} \sim_{L} v_{3}$. By a result of Brauer and Wielandt [16], we get

$$
|Q| \cdot\left|C_{Q}(V)\right|^{2}=\left|C_{Q}\left(v_{1}\right)\right| \cdot\left|C_{Q}\left(v_{2}\right)\right| \cdot\left|C_{Q}\left(v_{3}\right)\right|=\left|C_{Q}\left(v_{1}\right)\right|^{3}
$$

It follows that $\left|C_{Q}\left(v_{1}\right)\right|=q^{2}$, a contradiction to $Q=C_{L}(Q)$.
Suppose now that $|N|=2^{2} q, q$ an odd prime. Now $N=Q M,|Q|=q$, $|M|=4$. Obviously $Q \triangleleft C$ and also $C=N \cdot N_{C}(M)$, by the Frattini argument. Assume that $M \leq C(Q)$. Since $C / C_{c}(Q)$ is cyclic and $C_{c}(Q) \geq N$, it follows $C_{C}(Q)=C$, a contradiction, because C contains central involutions of C. Now, $C / N=N \cdot N_{c}(M) / N \cong N_{c}(M) / M \cong P S L(2, p)$ and so $\left|C: N_{c}(M)\right|=q$. Since $|M|=4$, it follows that $C_{C}(M)=N_{c}(M)$ and hence $C_{C}(M) / M \cong P S L(2, p)$. In particular M contains no central involution of G.

Let S be an S_{2}-subgroup of C contained in $C_{C}(M)$. Since

$$
C_{c}(M) / M \cong P S L(2, p), \quad p \geq 5
$$

there is a subgroup U / M in $C_{C}(M)$ isomorphic to A_{4}, with $S / M \triangleleft U / M$. Now $U=S R, R=\langle r\rangle,|r|=3$. Let T be an S_{2}-subgroup of G containing S. Then $Z(T) \leq Z(S)$ and $Z(T) \cap M=1$. Thus there is an involution $z \in Z(T)$ in $S \backslash M$ and so $S=M \times\langle z\rangle \times\left\langle z^{r}\right\rangle$. Consequently $C_{C}(M)=$ $M \times F$, with $F \cong P S L(2, p)$. It must be now $M \cong D_{4}$, because otherwise $\langle t\rangle=\vartheta^{1}(S)$ char S, a contradiction. Hence from it follows $C=\langle t\rangle \times L$.

Obviously $F \leq L$, as $L \cap F \triangleleft F$. Also $Q \leq L$. Let $M \cap L=\langle m\rangle$. Then

$$
Q\langle m\rangle=N \cap L \triangleleft L \quad \text { and } \quad L / N \cap L \cong P S L(2, p)
$$

Consider $C_{L}(Q)$. Since $m \notin C_{L}(Q), L / C_{L}(Q) \cong W \leq A(Q)$ and $C_{L}(Q) \geq Q$, it follows that $\left|L: C_{L}(Q)\right|=2, L=C_{L}(Q)\langle m\rangle$, with $C_{L}(Q) / Q \cong$ $\operatorname{PSL}(2, p)$. One can easily see that $F \leq C_{L}(Q), Q \cap F=1$ and thus

$$
C_{L}(Q)=Q \times F, \quad L=(Q \times F)\langle m\rangle=F \times Q\langle m\rangle
$$

From $C=\langle t\rangle \times L$, it follows now that

$$
C=\langle t\rangle \times Q m\rangle \times F
$$

with $F \cong P S L(2, p)$ and $Q\langle m\rangle \cong D_{2 q}$.
The group S contains a central involution z of G and z is of the form $t^{\alpha} m^{\beta} h$, $h \in F \cap S$. Since $C(z)=T$ is an S_{2}-subgroup of G, we have $\beta=1$ and $h \neq 1$. In particular $|h|=2$. It follows now, that $p=5, F \cong \operatorname{PSL}(2,5)$.

Let $V=S \cap F=\left\langle v_{1}, v_{2} \mid\right\rangle$. Then
$S=\left\langle t, m, v_{1}, v_{2} \mid\right\rangle, \quad N_{F}(V)=V R=\left\langle v_{1}, v_{2}, r \mid r^{3}=1, v_{1}^{r}=v_{2}, v_{2}^{r}=v_{1} v_{2}\right\rangle$
with $R=\langle r\rangle$.
Therefore $|N(S)|=2^{5} \cdot 3 k$, with $k=1$ or k a prime. Since the central involutions of G in S have the form mentioned above, one easily sees, that z has at most 6 conjugates in S. Thus $k=1$ or $k=2$.

Assume first that $k=2$, i.e. $N(S)=T_{1} R$, where $\left|T_{1}\right|=2^{6}$. Obviously $T_{1} \nVdash N(S)$. Since t has 4 conjugates under $N(S), t, t_{1}, t_{2}, t_{3}$ say, and R acts fixed-point-free on $S \backslash M$, it follows that $t_{1}, t_{2}, t_{3} \in \mathbb{S} \backslash M$. Moreover we can suppose that $t_{1}^{r}=t_{2}, t_{2}^{r}=t_{3}$.

If $O_{2}(N(S))=S$, then $O_{2,2^{\prime}}(N(S))=S R$ char $N(S)$. Consider $C(t) \cap C\left(t_{1}\right)$. Since $t \sim_{N(S)} t_{1}$, it follows $S R \leq C(t) \cap C\left(t_{1}\right)$, a contradiction to $C_{S}(R)=M$.

Thus $O_{2}(N(S))=T_{2}$, with $\left|T_{2}\right|=2^{5}, N(S) / T_{2} \cong D_{6}$. We can assume that $T>T_{1}>T_{2}>S$. Let $v \in T \backslash T_{1} . \quad$ It is $S_{1}=S S^{v} \leq T_{1}$ and $S_{1} \triangleleft T$. Also $S_{2}=S \cap S^{v} \triangleleft T$, because $T_{1}=N_{T}(S)$.

Suppose at first that $\left|S_{1}\right|=2^{5}$. Then $S_{2}=Z\left(S_{1}\right)$ is of order 8, as $S=C_{T}(S)$. If $S_{2}^{r^{i}}=S_{2}^{r^{i}}$, for $r^{i} \neq r^{j}, S_{2}^{r^{i}}$ would have a too great normalizer. Thus $S_{2}, S_{2}^{r}, S_{2}^{r^{2}}$ are all different and their union contains at least 13 elements, as their pairwise intersections contain 4 elements. But t is not conjugate with any element of arbitrary group $S_{2}^{r^{i}}$, because $S_{2}^{r^{i}} \leq Z\left(S_{1}^{r^{i}}\right)$, but $2^{5} \nmid|C(t)|$. Therefore t would have at most 3 conjugates, a contradiction.

Thus we can suppose that S_{1} has order $2^{6}, S_{1}=T_{1}$, and S_{2} is of order 4. Now S has a complement in T_{1} and by Gaschütz [2] also in $N(S)$, i.e. $N(S)=$ $S B, S \cap B=1$, where B is a subgroup of $N(S)$.

We have $S \triangleleft T_{2} \triangleleft T_{2} R \triangleleft T_{1} R=N(S)$ as a $\left\{2,2^{\prime}\right\}$-series of $N(S)$ and $T_{1} / S \cong D_{4}$. We may suppose that $r \in B$, and we can write

$$
B=\langle b \mid\rangle \times\left\langle r, a \mid r^{3}=1, r^{a}=r^{-1}\right\rangle
$$

Let us denote $U=C_{s}(R)=\langle t, m\rangle$. Now $U=U^{r}=U^{a}=U^{b}=\langle t, m\rangle$ and therefore $\langle t, m\rangle \triangleleft N(S)$, a contradiction to $t \sim_{N(s)} t_{1} \in S \backslash\langle t, m\rangle$.

Therefore we must have $k=1$ and so $N(S)=T_{1} R$, with $\left|T_{1}\right|=2^{5}$. Since $\langle t, m\rangle=C_{s}(R)$ it must be $t \sim_{N(S)} t^{\tau} m=m_{1}$, where either $\tau=0$ or $\tau=1$, because t has precisely 2 conjugates in $N(S)$.

Let $T_{1}<T_{2}<T$, where T is an S_{2}-subgroup of G. If $s \in T_{2} \backslash T_{1}$, we have $S S^{s}=T_{1}, Z\left(T_{1}\right)=S \cap S^{8}$ is of order 8 , and S has a complement in T_{1}. Therefore also $N(S)=S B$, with $B \cong D_{6}$ or $B \cong Z_{6}$.

Let $B=\left\langle r, a \mid r^{3}=1, r^{a}=r^{2}\right\rangle, \varepsilon \in\{-1,1\}$. Then $\langle S, a\rangle \sim T_{1}$, hence $|Z(\langle S, a\rangle)|=8$. By Gorenstein [4, 5.2.3], we get $S=U \times V$, where $U=C_{S}(R), V=[S, R]$, and $U^{a}=U^{r}=U, V^{a}=V^{r}=V$. Moreover,

$$
Z(S\langle a\rangle)=C_{S}(a)=C_{V}(a) \times C_{V}(a)
$$

Since U and V have order 4 and $C_{s}(a)$ has order 8 , it must be $U \leq C(a)$ or $V \leq C(a)$. But $t \in U,[t, a] \neq 1$. Thus $V \leq C(a)$. Let $V=\left\langle v_{1}, v_{2} \mid\right\rangle$ and $v_{1}^{r}=v_{2}, v_{2}^{r}=v_{1} v_{2}$. If $\varepsilon=-1$, we get $v_{1}^{r a}=v_{1}^{r-1}=v_{1}^{a r a}=v_{1}^{r a}=v_{1}^{r}$, a contradiction to the faithful action of r on V. Therefore $\varepsilon=1$. We have now

$$
N(S)=\left\langle t, m_{1}, v_{1}, v_{2}, a, r \mid r^{3}=1, t^{a}=m_{1}, v_{1}^{r}=v_{2}, v_{2}^{r}=v_{1} v_{2}\right\rangle
$$

For $T_{1}=\left\langle t, m_{1}, v_{1}, v_{2}, a\right\rangle$ we have now $Z\left(T_{1}\right)=\left\langle v_{1}, v_{2}, t m_{1}\right\rangle$. Consider
$C\left(t m_{1}\right)$. It is $T_{1} \leq C\left(t m_{1}\right),\left|T_{1}\right|=2^{5}$ and $F \leq C\left(t m_{1}\right), F \cong P S L(2,5)$. Thus $C\left(t m_{1}\right)$ is not solvable. Let N_{1} be the maximal solvable normal subgroup of $C\left(t m_{1}\right)$. By Proposition $9, l\left(N_{1}\right)=3$ and therefore $C\left(t m_{1}\right) / N_{1} \cong$ $P S L(2, p)$ by Janko [8] and an S_{2}-subgroup of $C\left(t m_{1}\right) / N_{1}$ is of order 4. But 2^{5} is a divisor of the order of $C\left(t m_{1}\right)$ and therefore $\left|N_{1}\right|=2^{3}$, which contradicts the Proposition 8.

Thus $l(N)=3$ also yields to a contradiction and Proposition 10 is proved. We conclude that all the centralizers of the involutions in G are solvable. This however contradicts Proposition 1 and so completes the proof of our lemma.

4. Proof of the theorem

By our lemma all the 2-local subgroups of G are solvable. In the following T will always denote an S_{2}-subgroup of G and z an involution in $Z(T)$. We shall prove the theorem in several steps.

Proposition 11. Two different elements of $Z(T)$ are never conjugate in G. Each element of $Z(T)$ is conjugate under G with an element of $T \backslash Z(T)$. If $Z(T) \cap T^{g} \neq 1$, with $g \in G$, it follows that $\left\langle Z(T), Z\left(T^{g}\right)\right\rangle \leq T \cap T^{g}$. It is $|Z(T)|=2$ or $|Z(T)|=4$.

Proof. By a theorem of Burnside and by Glauberman [3], the first and the second assertion follow. Suppose $v \in Z(T) \cap T^{g}$. Then $Z\left(T^{g}\right) \leq C(v)=T$ and thus $Z\left(T^{g}\right) \cap T \neq 1$. Hence also

$$
Z(T) \leq T^{g} \quad \text { and } \quad\left\langle Z(T), Z\left(T^{g}\right)\right\rangle \leq T \cap T^{g}
$$

By the second assertion, for every $s \in Z(T)^{*}$ there is some $h \epsilon G$, such that $s^{h} \in T \backslash Z(T)$. Thus $s^{h} \in Z\left(T^{h}\right) \cap T$, with $T^{h} \neq T$ and so

$$
\left\langle Z(T), Z\left(T^{h}\right)\right\rangle \leq T \cap T^{h}
$$

Because of maximality of T we have $Z(T) \cap Z\left(T^{h}\right)=1$ and also $\mid T \cap T^{h} \| 2^{5}$. Since

$$
\left|\left\langle Z(T), Z\left(T^{h}\right)\right\rangle\right|=\left|Z(T) \times Z\left(T^{h}\right)\right|=|Z(T)|^{2}| | T \cap T^{h} \mid
$$

it follows that $|Z(T)|=2$ or $|Z(T)|=4$. The proposition is proved.
In Propositions $12-20$ we shall suppose that $S C N_{3}(2) \neq 0$, the case $S C N_{3}(2)$
$=0$ remaining to be considered in the following.
Proposition 12. Let U be an element of $S C N_{3}(T)$. Then the set $\Lambda_{G}\left(U ; 2^{\prime}\right)$ is trivial.

Proof. By Gorenstein [4, 8.5.6] and by our lemma, the assertion follows, because of maximality of T.

Proposition 13. If A belongs to $U(2)$, then the set $\Pi_{G}\left(A: 2^{\prime}\right)$ is trivial.
Proof. Let $U^{*}(2)$ be the set of B such that
(i) $B \leq G$ and B is of type (2,2),
(ii) $N(B)=T^{g}$, for some $g \in G$.

Since we have supposed that $S C N_{3}(2) \neq 0$, we have $U^{*}(2) \neq 0$.
Let $N(B)=T, B \in U^{*}(2)$. Since $|A(B)|=6,|T: C(B)| \mid 2$. Suppose that $C(B)$ centralizes some non-trivial 2 'subgroup Q of G. Then $C(B) \neq T$ because of maximality of T and so $|C(B)|=2^{6}$. Since $l(G)=8$, it must be that $|Q|=q$ a prime. If $U \in S C N_{3}(T)$, then by Proposition $12, \Lambda_{G}\left(U ; 2^{\prime}\right)$ is trivial. Thus $U \neq C(B)$ and therefore $C(B) U=T$. But now $\mid \Omega_{1}(U)$ n $C(B) \mid \geq 2^{2}$. Also $B \neq U$, since otherwise $U \leq C(B)$. It follows that $C=B\left(\Omega_{1}(U) \cap C(B)\right)$ is elementary abelian of order at least 2^{3}. Thus there exists a subgroup Y with $C \leq Y \in \operatorname{SCN}_{8}(T)$. As above we have $C(B) Y=T$. But now

$$
B \leq Z(C(B)) \cap Z(Y) \leq Z(C(B) Y)=Z(T)
$$

and thus $C(B)=T$, a contradiction. Thus for a $B \in U^{*}(2), C(B)$ centralizes no nontrivial 2^{\prime}-subgroup of G.

Therefore Hypothesis 7.1 of Thompson [14] holds, and by Lemma 7.1 of Thompson [14], any subgroup A of G belonging to $U(2)$ centralizes all the elements of $\Pi_{\theta}\left(A ; 2^{\prime}\right)$.
If $1 \neq H \in \overleftarrow{K}_{G}\left(A ; 2^{\prime}\right)$ then $H A=H \times A$ and thus $H \leq N(A)=T$, a contradiction to $2 \nmid|H|$. Hence $\Pi_{G}\left(A ; 2^{\prime}\right)$ is trivial.
Proposition 14. Let $A \in U(2)$ and $A<H<G, H$ a solvable group. Then $O_{2^{\prime}}(H)=1, H / O_{2}(H)$ is faithfully represented on $O_{2}(H) / D\left(O_{2}(H)\right)$ and $C_{H}\left(O_{2}(H)\right) \leq O_{2}(H)$. Moreover $\Pi(H) \in\{2,3,5,7,31\}$.

Proof. By Proposition 13, $\Lambda_{G}\left(A ; 2^{\prime}\right)$ is trivial and therefore $O_{2^{\prime}}(H)=1$. By Gorenstein [4, 6.3.4], the first assertion holds. Since

$$
\mid O_{2}(H) / D\left(O_{2}(H)\right) \| 2^{6}
$$

we have $\left|H / O_{2}(H)\right|\left||G L(6,2)|=2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31\right.$. Hence the second assertion follows.

Proposition 15. Let $A \in U(2)$ and let B be a p-subgroup of G satisfying one of the following conditions:
(a) $p=3$ and $B \cong Z_{9}$ or $3^{3}| | B \mid$;
(b) $p \in\{5,7,31\}$ and $p^{2}| | B \mid$;
(c) $p \notin\{2,3,5,7,31\}$.

Then the group $\langle A, B\rangle$ is not solvable.
Proof. Suppose the contrary holds. If $\langle A, B\rangle=H$ is a solvable group, we can apply the Proposition 14. Denote $E=O_{2}(H) / D\left(O_{2}(H)\right)$. Since $|E| \mid 2^{6}, l(H) \leq 7, H / O_{2}(H) \cong L \leq A(E)$ and as $G L(4,2)$ and $G L(5,2)$ have elementary abelian S_{3}-subgroups of order 3^{2}, the assertion follows.

Proposition 16. $Z(T)$ contains no elementary abelian group of order 4.
Proof. Let $H=N(U), U$ a nontrivial 2 -subgroup of G and $O_{2}(H) \leq T$. Then $U \leq T$ and so $Z(T) \leq H$. Since $Z(T) \epsilon U(2)$ we have, by Proposition 14, that $H / O_{2}(H)$ is faithfully represented on $O_{2}(H) / D\left(O_{2}(H)\right)$. Suppose
there is in H a non-cyclic S_{p}-subgroup P, for an odd prime p. Then $9 \leq|P|$. Since $l(H) \leq 7$ and $O_{2}(H) P \leq H$, it follows that $\left|O_{2}(H)\right| \mid 2^{5}$. Any element $s \in Z(T)$ has $|P|$ different conjugates under P. Since $Z(T) \leq Z\left(O_{2}(H)\right)$, $O_{2}(H)$ has, by Proposition 11, at least $\left|Z(T)^{*}\right||P| \geq 3.9=27$ involutions in its center. Consequently, $O_{2}(H)$ is elementary abelian of order 2^{5} and $\left|H / O_{2}(H)\right|=3^{2}$. Since $O_{2}(H) \triangleleft H$ and $O_{2}(H)<T$, it follows that $2^{6} \cdot 3^{2}| | N\left(O_{2}(H)\right) \mid$, a contradiction to $l(G)=8$. Thus all S_{p}-subgroups in H, for odd primes p, are cyclic. Therefore we can apply the theorem of Janko [10]. But none of the groups in the list of the theorem satisfies our conditions. The assertion follows.

Proposition 17. Suppose that $Z(T)$ contains a cyclic group of order 4. Let t be an involution of G and $C=C(t)$. Then $|C|=2^{\alpha} 3^{\beta}$ with $\alpha \in\{3,4,5$, 6, 7$\}, \beta \in\{0,1\}$.

Proof. Let $T \cap C$ be an S_{2}-subgroup of C. By Thompson [13, Lemma 5.38], $C(t)$ contains a subgroup $A \epsilon U(2)$. By Proposition $14, O_{2^{\prime}}(C)=1$ and $C / O_{2}(C)$ is faithfully represented on $O_{2}(C) / D\left(O_{2}(C)\right)$. It follows that $\langle t\rangle Z(T) \leq O_{2}(C)$ and so $\langle t\rangle Z(T) \leq Z\left(O_{2}(C)\right)=X$. Obviously, we may assume that t is non-central. Let P be an S_{p}-subgroup of C, p an odd prime. Then $X=C_{X}(P) \times[P, X]$ and P is represented faithfully on $\Omega_{1}(X)$ as $Z(T) \leq X$. Assume $|P|>3$. Then $\left|\Omega_{1}(X)\right| \geq 2^{4}$ and hence $\left|X / \mho^{1}(X)\right|$ $\geq 2^{4}$. But $\left|\mho^{1}(X)\right| \geq 2^{3}$ as $z \epsilon \mho^{1}(X)$. This is however a contradiction to $l(C) \leq 7$. The proposition is proved.

Proposition 18. $Z(T)$ contains no cyclic group of order 4.
Proof. Let $N=N(U)$, where U is a nontrivial 2-subgroup of G. Suppose, there is an odd prime p such that $p^{2}| | N \mid$ and let P be an S_{p}-subgroup of N.

Obviously, we can suppose, that U is elementary abelian and also that $N \cap T$ is an S_{2}-subgroup of N. Denote $M=C(U)$.

Clearly $|U|<2^{6}$. If $|U|=2^{5}$, it would be $|Z(T) U| \geq 2^{6}$, a contradiction to $l(N) \leq 7$, because $Z(T) U \leq M \leq N$.

Suppose $|U|=2^{4}$. Since $l(N) \leq 7$ it must be $U \cap Z(T)=\langle z\rangle$. Now $N=(U Z(T)) P$, with $|P|=p^{2}$, and $U Z(T)$ is abelian. It is $M=C(U)=$ $U Z(T)$, because none element of P^{*} centralizes $z \epsilon U$. Now

$$
\langle z\rangle=\mho^{1}(M) \operatorname{char} N
$$

which contradicts $C(z)=T$.
Suppose next, that $|U|=2^{3}$ or 2^{2}. If $U \cap Z(T)=\langle z\rangle$, then $z \epsilon U$ would have $p^{2} \geq 9$ conjugates in U, which is impossible. Therefore $U \cap Z(T)=1$, $U \times Z(T) \leq M$. Assume first, that $O_{2^{\prime}}(N) \neq 1$. Then $M \geq U Z(T) O_{2^{\prime}}(N)$ and $O_{2^{\prime}}(N) \cong Z_{3}$ by Proposition 17. But Z_{3} has not an automorphism of order 4, which contradicts $C(Z(T))=T, Z(T) \leq N$. Thus $O_{2^{\prime}}(N)=1$. By Gorenstein [4, 6.3.4], $N / O_{2}(N)$ is faithfully represented on
$O_{2}(N) / D\left(O_{2}(N)\right)$. Therefore

$$
Z(T) \leq O_{2}(N) \quad \text { and } \quad\left|O_{2}(N) / D\left(O_{2}(N)\right)\right| \geq 2^{4}
$$

as $p^{2}| | N / O_{2}(N) \mid, p \neq 2$. It follows that $\left|O_{2}(N)\right|=2^{5}$ and $\langle z\rangle=D\left(O_{2}(N)\right)$ char N, a contradiction to $C(z)=T$.

Suppose at last that $|U|=2$. Then Proposition 17 contradicts the assumption $p^{2}| | N(U) \mid$.

We have proved that $p^{2} \nmid|N(U)|$ for all nontrivial 2-subgroups U, if p is an odd prime. Hence all S_{p}-subgroups of $N(U)$ are cyclic and we can apply the theorem of Janko [10]. This yields a contradiction again as in the proof of Proposition 16.

Proposition 19. Let $Z(T)$ be cyclic of order 2 and t an involution of G, $C=C(t)$. Then $|C|=2^{\alpha} p^{\beta}, p \epsilon\{3,7\}, \alpha \in\{2,3,4,5,6,7\}, \beta \in\{0,1\}$. If $O_{2}(C)$ is not abelian, then $p=3$.

Proof. Let $T \cap C$ be an S_{2}-subgroup of C. By Thompson [13, Lemma 5.38], C contains a subgroup $A \in U(T)$. By Proposition 14, we get $O_{2^{\prime}}(C)=1$ and $C / O_{2}(C)$ is faithfully represented on $O_{2}(C) / D\left(O_{2}(C)\right)$. Therefore $Z(T)=\langle z\rangle \leq O_{2}(C)$. If C is a 2 -group the assertion holds. Thus we can suppose that C is not a 2 -group and so $t \varkappa_{G} z$. We have $\langle z\rangle \times\langle t\rangle \leq Z\left(O_{2}(C)\right)$. Also $\left|O_{2}(C)\right| \mid 2^{5}$ because otherwise $O_{2}(C)$ would have a too large normalizer.

Assume first that $O_{2}(C)$ is not abelian. Then $\left|Z\left(O_{2}(C)\right)\right| \mid 8$ and since C is solvable, there exists a Hall 2^{\prime}-subgroup B of C. Because of $C(z)=T$ and $z \varkappa_{G} t$, it must be that $|B| \leq 6$ and so $|B|=5$ or 3 . But if $|B|=5$, then $\left|Z\left(O_{2}(C)\right)\right|=8$ and B acts faithfully on $Z\left(O_{2}(C)\right)$, which is impossible. Therefore $|B|=3$, if $O_{2}(C)$ is nonabelian.

Assume now that $O_{2}(C)$ is abelian. Let B be again a Hall 2^{\prime}-subgroup of the solvable group C. Then $|B|+2 \leq\left|\Omega_{1}\left(O_{2}(C)\right)\right|$. But

$$
\left|\Omega_{1}\left(O_{2}(C)\right)\right| \leq 2^{4}
$$

because T contains no elementary abelian subgruop of order 2^{5}, as $|Z(T)|=2$. It follows that $|B| \leq 14$ and thus $|B| \epsilon\{3,5,7,11,13\}$ or $|B|=9$. Let $\Omega_{1}\left(O_{2}(C)\right)=K$. Then by Gorenstein [4, 5.2.3], $K=C_{K}(B) \times[K, B]$ and B acts faithfully on $[K, B]$ if $|B|$ is a prime.

Therefore $|B| \neq 11,13$. Suppose $|B|=9$. Then $\left|\Omega_{1}\left(O_{2}(C)\right)\right|=16$. First let $O_{2}(C)=\Omega_{1}\left(O_{2}(C)\right)$. Then B acts faithfully on $O_{2}(C)$ and thus on $[K, B]$. The element z has precisely 9 conjugates under B because $C(z)=T$. Therefore some conjugate of z under B is in $[K, B]$ and thus all nine are in $[K, B]$. It follows that $[K, B]=K$, a contradiction to $t \epsilon C_{K}(B)$. Hence $O_{2}(C)>\Omega_{1}\left(O_{2}(C)\right)$ and thus $\left|O_{2}(C)\right|=2^{5}$. But now $N\left(O_{2}(C)\right)$ would be too large, a contradiction. Thus $|B| \neq 9$.

If $|B|=5$, then $|K| \epsilon\{8,16\}$ as $C(z)=T, z \epsilon K$. Since B acts faithfully on K, it must be that $|K|=16$ and $C_{K}(B)=1$, which contradicts $t \epsilon C_{K}(B)$. The assertion of the proposition is completely proved.

Proposition 20. $Z(T)$ is not cyclic of order 2. The assumption $S C N_{3}(2) \neq 0$ is contradictory.

Proof. It is clear that the fisst assertion, together with the Propositions 11,16 , and 18 , implies the second.

Suppose that $Z(T)=\langle z\rangle$. By the theorem of Janko [10], we can suppose, that there is an elementary abelian 2 -subgroup A of G, such that $N(A)=N$ has a non-cyclic S_{p}-subgroup for some odd prime p.

Let $M=C(A)$ and $a \in A$. Then $M \leq C(a)$. Let $C(a) \cap T$ be an $S_{2^{-}}$ subgroup of $C(a)$ containing A. By Thompson [13, Lemma 5.38], $C(a)$ contains a subgroup $B \in U(2)$. By Proposition 14, $O_{2^{\prime}}(C(a))=1$ and $C(a) / O_{2}(C(a))$ is faithfully represented on $O_{2}(C(a)) / D\left(O_{2}(C(a))\right.$. Thus $Z(T)=\langle z\rangle \leq O_{2}(C(a)) \cap M \triangleleft M$. Obviously $z \epsilon O_{2}(M)$.

Suppose that $O_{2^{\prime}}(N) \neq 1$. Then $\left[O_{2^{\prime}}(N), O_{2}(M)\right]=1$. because $O_{2}(M)$ $\operatorname{char} M \triangleleft N$. But this is impossible, as $z \in O_{2}(M), C(z)=T$.

It follows that $O_{2^{\prime}}(N)=1$. Now $N / O_{2}(N)$ is faithfully represented on $O_{2}(N) / D\left(O_{2}(N)\right)$. Since $l(N) \leq 7$ and $p^{2}| | N / O_{2}(N) \mid, p$ an odd prime, it must be that

$$
\left|O_{2}(N)\right| \mid 2^{5} \quad \text { and }\left|O_{2}(N) / D\left(O_{2}(N)\right)\right| \geq 2^{4}
$$

If $\left|O_{2}(N)\right|=2^{5}$, then $\left|O_{2}(N) / D\left(O_{2}(N)\right)\right|=2^{4}$, because G contains no elementary abelian subgroup of order 2^{5}, as $|Z(T)|=2$. Hence

$$
D\left(O_{2}(N)\right)=\langle d\rangle \operatorname{char} N, \quad \text { with } \quad|d|=2
$$

It follows $C(d) \geq N$, a contradiction, as $p^{2} \nmid|C(d)|$, by Proposition 19.
Thus $O_{2}(N)$ is elementary abelian of order 2^{4}. We can obviously replace A by $O_{2}(N)$ and set $A=O_{2}(N)$. Since $p^{2}| | G L(4,2) \mid$ it must be that $p=3$ and $|N|=2^{5} 3^{2}$. Moreover, an S_{3}-subgroup P of N is elementary abelian.

Let $R=N \cap T$. Then R is an S_{2}-subgroup of N. Let $R_{1} \leq T, R_{1}>R$ and $\left|R_{1}: R\right|=2$. Then $A \nless R_{1}, R \triangleleft R_{1}$ and thus there exists some $r \in R_{1}$, with $A A^{r}=R$. We see that A has a complement in B and therefore also in N. We get $N=A K, A \cap K=1$, with $K \leq N$. We can suppose that $P \leq K$. Then $P \triangleleft K, K=P\langle s\rangle$, with $|s|=2$. Since $z \epsilon O_{2}(M) \leq O_{2}(N)$, it follows that $z \in A$ and z has 9 conjugates in A under N. We denote the set of these conjugates with \mathcal{Z}.

Let $x_{1} \in A^{*} \backslash Z$. Then $C_{P}\left(x_{1}\right)=\left\langle m_{1}\right\rangle$, with $\left|m_{1}\right|=3$. If $m \in P \backslash\left\langle m_{1}\right\rangle$, for $x_{2}=x_{1}{ }^{m}, x_{3}=x_{2}{ }^{m}$ it holds $C_{P}\left(x_{1}\right)=C_{P}\left(x_{2}\right)=C_{P}\left(x_{3}\right), x_{1} x_{2}=x_{3}$, because x_{1} has not more than three conjugates in A under T and because of Proposition 19. Similarly, there is an element

$$
y_{1} \in A \backslash Z \backslash\left\{x_{1}, x_{2}, x_{3}\right\}
$$

with $C_{P}\left(y_{1}\right)=m_{2},\left|m_{2}\right|=3$, and for $y_{2}=y_{1}^{m_{2}}, y_{3}=y_{2}^{m_{2}}$, we have

$$
C_{P}\left(y_{1}\right)=C_{P}\left(y_{2}\right)=C_{P}\left(y_{3}\right) \quad \text { and } \quad y_{1} y_{2}=y_{3} .
$$

One easily checks, that $P=\left\langle m_{1}\right\rangle \times\left\langle m_{2}\right\rangle$, and we may assume that $m=m_{2}$.

Let $A_{1}=\left\langle x_{1}, x_{2}\right\rangle, A_{2}=\left\langle y_{1}, y_{2}\right\rangle . \quad$ Then $A=A_{1} \times A_{2}$.
Consider now the action of s on $O_{2}(N) P$. Let $A\langle s\rangle<S<T$ and $v \in S \backslash A\langle s\rangle$. Then $A\langle s\rangle=A A^{v}$ and $Z(A\langle s\rangle) \geq A \cap A^{v}$. Since N / A acts faithfully on $A=O_{2}(N)$, it follows that $C(A)=A$ and thus $A\langle s\rangle$ is not abelian. Hence $Z(A\langle s\rangle)=C_{A}(s)=A \cap A^{v}$ is of order 8 and thus s fixes precisely 8 elements of A.

The element s fixes the set $A_{1} \cup A_{2}$. If $A_{1}^{s} \neq A_{1}$, then we can suppose $x_{1}^{s}=y_{1}$. We now have $x_{2}^{s} \neq x_{3}$ because $x_{2} x_{3}=x_{1}$. For the same reason it is not true that $x_{2}^{s}=x_{2}, x_{3}^{s}=x_{3}$. Thus $x_{i}^{s}=y_{j}$, with $i, j \in\{2,3\}$, implying that s fixes only 4 elements in A, a contradiction.

Therefore $A_{1}^{s}=A_{1}$ and $A_{2}^{s}=A_{2}$. Now we can suppose without loss, that $y_{1}^{s}=y_{1}, y_{2}^{s}=y_{3}=y_{1} y_{2}, x_{1}^{s}=x_{1}, x_{2}^{s}=x_{2}$, because $\left|C_{A}(s)\right|=8$ and $A=A_{1} \times A_{2}$. One easily sees that this implies $m_{1}^{8}=m_{1}^{-1}$ and $m_{2}^{s}=m_{2}$. Thus we can write

$$
\begin{aligned}
N=\left\langle x_{1}, x_{2}, y_{1}, y_{2}, m_{1}, m_{2}, s\right| m_{1}^{3}=m_{2}^{3}=1, x_{1}^{m_{2}}=x_{2}, x_{2}^{m_{2}}=x_{1} x_{2} \\
\left.y_{1}^{m_{1}}=y_{2}, y_{2}^{m_{1}}=y_{1} y_{2}, y_{2}^{s}=y_{1} y_{2}, m_{1}^{s}=m_{1}^{-1}\right\rangle .
\end{aligned}
$$

Consider again S and v chosen as before. We have

$$
Z(A\langle s\rangle)=\left\langle x_{1}, x_{2}, y_{1}\right\rangle \triangleleft S
$$

Since $Z(T)=\langle z\rangle$ is of order 2 , it must be that $\left|\Omega_{1}(Z(S))\right| \leq 4$. But $\Omega_{1}(Z(S))$ contains the group $C_{Z(A\langle s\rangle)}(v)$ and therefore is of order at least 4. Consequently, $\Omega_{1}(Z(S))=Z(S)=C_{Z(A\langle\delta))}(v)$ and this group is of order 4, because $C(A)=A$ and $A \leq S$.

Let $Z(S)^{*}=\left\{s_{1}, s_{2}, z\right\}$. Now $\left\langle s_{1}, s_{2}\right\rangle \triangleleft T$ and $2^{6}| | C\left(s_{1}\right)\left|=\left|C\left(s_{2}\right)\right|\right.$, as $s_{1} \sim_{T} s_{2}$. If $\left|C\left(s_{1}\right)\right|=\left|C\left(s_{2}\right)\right|=2^{7}$, then $N\left(C_{T}(Z(S))\right) \geq\left\langle C\left(s_{1}\right)\right.$, $\left.C\left(s_{2}\right)\right\rangle$ and thus $C\left(s_{1}\right)=C\left(s_{2}\right)$. Since $Z(T)$ has order 2 , this implies $s_{1}=s_{2}$, which is a contradiction. Therefore $C\left(s_{i}\right)$ are not S_{2}-subgroups of G and especially $s_{i} \chi_{G} z$, for $i=1,2$.

It is $Z(S) \leq Z(A\langle s\rangle)=\left\langle x_{1}, x_{2}, y_{1}\right\rangle$. But s_{1}, s_{2} are not central involutions and hence $s_{1}, s_{2} \in\left\{x_{1}, x_{2}, x_{3}, y_{1}\right\}$. Also $s_{1} s_{2} \in\left\langle x_{1}, x_{2}\right\rangle y_{1}$, as $s_{1} s_{2}=z$. Thus we can suppose $s_{1}=y_{1}, s_{2}=x_{i}$, for some $i \epsilon\{1,2,3\}$. It follows that $x_{1} \sim x_{2} \sim x_{3} \sim y_{1} \sim y_{2} \sim y_{3}$ and $\left|C\left(x_{i}\right)\right|=\left|C\left(y_{i}\right)\right|=2^{6} \cdot 3$, for $i=1,2,3$, as $s_{1} \sim_{T} s_{2}$ and $\left\langle m_{1}\right\rangle \leq C\left(x_{1}\right)$.

Consider again $A\langle s\rangle=A A^{v}$. Since $|Z(A\langle s\rangle)|=8$ one can easily see, that all the involutions of $A\langle s\rangle$ are contained in $A \cup A^{v}$. Thus $s \in A^{v} \backslash A$ and $A\langle s\rangle \backslash A$ contains precisely 8 involutions which belong to $A^{v}=C_{A}(S) \times$ $\langle s\rangle$. Here $C_{A}(s)=\left\langle x_{1}, x_{2}, y_{1}\right\rangle$, as one checks directly. Since the groups A and A^{v} are conjugate and $C_{A}(s)$ contains 4 non-central and 3 central involutions, $A^{\nu} \backslash A$ must contain still 2 non-central and 6 central involutions.

Since $m_{2}^{s}=m_{2}, s$ is not central. Also $y_{1}^{m_{2}}=y_{1}$ and thus $\left(y_{1} s\right)^{m_{2}}=y_{1} s$. Therefore $y_{1} s$ and s are the both non-central involutions of $A^{v} \backslash A$. We see, that $x_{1} \sim x_{2} \sim x_{3} \sim y_{1} \sim y_{2} \sim y_{3} \sim s \sim y_{1} s$ form a class of involutions in $A\langle s\rangle$ under G, all the others involutions of $A\langle s\rangle$ being central in G.

We have proved that $\left|C\left(y_{1}\right)\right|=2^{6} \cdot 3$ and that $A\left\langle s, m_{2}\right\rangle \leq C\left(y_{1}\right)$. We can suppose that $A\langle s\rangle<S<C\left(y_{1}\right)$ with $T=N(S), S$ being an S_{2}-subgroup of $C\left(y_{1}\right)$. Now $\left\langle S, m_{2}\right\rangle \leq N(A\langle s\rangle)$ and hence $N(A\langle s\rangle)=C\left(y_{1}\right)$. In $S \backslash A\langle s\rangle$ there exists an involution v. Otherwise $A\langle s\rangle=\Omega_{1}(S) \triangleleft T$, a contradiction. We get $S=\left\langle x_{1}, x_{2}, y_{1}, y_{2}, s, v\right\rangle$. We have

$$
\left\langle x_{1}, x_{2}, y_{1}\right\rangle=Z(A\langle s\rangle) \triangleleft S
$$

Since $y_{1} \in Z(S)$, we have $\left\langle x_{1}, x_{2}\right\rangle^{v}=\left\langle x_{1}, x_{2}\right\rangle$ and so $\left\langle x_{1}, x_{2}\right\rangle \triangleleft S$. We can suppose that $x_{i}^{v}=x_{i}, x_{i+1}^{v}=x_{i+2}$, for some i, where the indices are taken $\bmod 3$. Here we have used the fact that $Z(T)$ is of order 2. On the other hand $\left\langle y_{1}, y_{2}\right\rangle \notin S$, as $A \nVdash S$. Especially $\left\langle y_{1}, y_{2}\right\rangle^{v} \cap(A\langle s\rangle \backslash A) \neq 0$. Since $y_{1}^{v}=y_{1}$, it follows that $y_{2}^{v} \epsilon\left\{s, y_{1} s\right\}$. Now
$S=\left\langle x_{1}, x_{2}, y_{1}, y_{2}, s, v\right| x_{i}^{v}=x_{i}, x_{i+1}^{v}=x_{i+1} x_{i}$,

$$
\left.y_{2}^{s}=y_{1} y_{2}, y_{2}^{v}=y_{1}^{\alpha} s, s^{v}=y_{1}^{\alpha} y_{2}\right\rangle
$$

where $i \epsilon\{1,2,3\}, \alpha \in\{0,1\}$, and $x_{1} x_{2}=x_{3}$.
Obviously $Z(S)=\left\langle x_{i}, y_{1}\right\rangle$. From here we get

$$
S / Z(S)=\bar{S}=\left\langle\bar{x}_{i+1}, \bar{y}_{2}, \bar{s}, \bar{v} \mid \bar{y}_{2}^{\bar{v}}=\bar{s}, \bar{s}^{\bar{v}}=\bar{y}_{2}\right\rangle
$$

where $\bar{m}=m Z(S)$ for $m \epsilon S$. One can easily compute that $Z(\bar{S})=\left\langle\bar{x}_{i+1}\right.$, $\left.\bar{y}_{2} \bar{s}\right\rangle$ and therefore

$$
Z_{2}(S)=\left\langle x_{i}, y_{1}, x_{i+1}, y_{2} s\right\rangle=\left\langle x_{1}, z_{2}, y_{2} s\right\rangle=\left\langle x_{1}, x_{2}\right\rangle \times\left\langle y_{2} s\right\rangle
$$

But now $\left(y_{2} s\right)^{2}=y_{2}\left(y_{1} y_{2}\right)=y_{1}$. Thus $\left\langle y_{1}\right\rangle=v^{1}\left(Z_{2}(S)\right)$ char $S \triangleleft T$. It follows that $C\left(y_{1}\right)=T$, a contradiction, because s_{1} is not a central involution in G.

Thus, $Z(T)$ is not of order 2, and the Proposition 20 holds, as noted at the beginning of the proof.

Now, we are in the position to prove our theorem.
From Proposition 20 it follows that $S C N_{3}(2)=0$. Thus we can apply the theorem of Janko-Thompson [11]. One can easily see, that among the groups listed in this theorem only $\operatorname{PSL}(2,127)$ satisfies the conditions of our theorem.

The theorem is proved.
Acknowledgment. It is a pleasure to express my gratitude to Professor D. Held, who was my advisor in this research. He has given me a large amount of help at all stages of the work.

I wish to thank Professor Z. Janko for suggesting the problem to me and for his kind help during the work.

I also thank Dr. U. Dempwolff for very profitable conversations.
My thanks go to the Alexander von Humboldt foundation for its generous support.

References

1. J. Dieudonń, La géométrie des groupes classiques, Erg. Math., vol. 5, Springer, Berlin, 1963.
2. W. Gaschütz, Zur Erweiterungstheorie der endlichen Gruppen, J. Reine Angew. Math., vol. 190 (1952), pp. 93-107.
3. G. Glauberman, Central elements in core-free groups, J. Algebra, vol. 4 (1966), pp. 403-420.
4. D. Gorenstein, Finite groups, Harper, New York, 1968.
5. K. Harada, Finite simple groups with short chains of subgroups, J. Math. Soc. Japan, vol. 20 (1968), pp. 655-672.
5a. ——, Finite simple groups whose Sylow 2-subgroups are of order 2^{7}, J. Algebra, vol. 14 (1970), pp. 386-404.
6. B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Zeit., vol. 60 (1954), pp. 409-434.
7. - Endliche Gruppen, Springer, Berlin, 1967.
8. Z. Janko, Finite groups with invariant fourth maximal subgroups, Math. Zeit., vol. 82 (1963), pp. 82-89.
9. ——, Finite simple groups with short chains of subgroups, Math. Zeit., vol. 84 (1964), pp. 428-437.
10. ——, Nonsolvable finite groups all of whose 2-local subgroups are solvable, J. Algebra, vol. 21 (1972), pp. 458-517.
11. Z. Janko and J. G. Thompson, On finite simple groups whose Sylow 2-subgroups have no normal elementary subgroup of order 8, Math. Zeit., vol. 113 (1970), pp. 385-397.
12. M. SUZUKI, Finite groups in which the centralizers of any element of order 2 is \&-closed, Ann. of Math., vol. 82 (1965), pp. 191-212.
13. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., vol. 74 (1968), pp. 383-437.
14. -_, Nonsolvable finite groups all of whose local subgroups are solvable, II, Pacific J. Math., vol. 33 (1970), pp. 451-536.
15. J. H. Walter, The characterization of finite groups with abelian \boldsymbol{S}_{2}-subgroups, Ann. of Math., vol. 89 (1969), pp. 405-514.
16. H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Zeit., vol. 73 (1960), pp. 146-158.

University of Zagreb
Croatia, Yugoslavia

[^0]: Received September 28, 1972
 ${ }^{1}$ This work was done at the University of Mainz under the direction of Professor D. Held, while the author was a fellow of Alexander von Humboldt foundation. It constitutes the main part of the author's doctorial dissertation.
 ${ }^{2}$ Professor D. Gorenstein has informed me in a letter about these results.

