CARDINAL SPLINE INTERPOLATION IN L_{2}

BY
M. Marsden and R. Mureika ${ }^{1}$

Let $m \geq 1$ be an integer and let S^{m} denote the class of cardinal spline functions of order m (degree $<m$), i.e., $S \in S^{m}$ if $S^{(m-2)}$ is a continuous piecewise linear function whose corners are in the set

$$
\left\{j+\frac{m}{2}: j=0, \pm 1, \pm 2, \ldots\right\}
$$

For $n \geq 1$ an integer, let $S_{n}^{m}=\left\{S \in S^{m}: S(x+n)=S(x)\right.$ for all $\left.x\right\}$.
Let $l_{2}(n)$ be the space of real n-tuples with the norm

$$
\|y\|_{2}=\left(\sum_{1}^{n} y_{i}^{2}\right)^{1 / 2}
$$

Let $\mathscr{L}_{n}^{m}: l_{2}(n) \rightarrow S_{n}^{m}$ be defined by

$$
\left(\mathscr{L}_{n}^{m} y\right)(j)=y_{j} \quad \text { for } j=1, \ldots, n
$$

A similar definition holds for $\mathscr{L}^{m}: l_{2} \rightarrow S^{m} \cap L_{2}(-\infty,+\infty)$ where l_{2} is the space of doubly-infinite square-summable sequences.

Richards (see reference) has used the functions

$$
\begin{equation*}
\psi_{m}(\theta)=\sin ^{m}\left(\frac{\theta}{2}\right) /\left(\frac{\theta}{2}\right)^{m} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{m}(\theta)=\sum_{-\infty}^{+\infty} \psi_{m}(\theta+2 \pi j) \tag{2}
\end{equation*}
$$

to prove:
Theorem 1 (Richards). Let $m>0$ be even. Then

$$
\begin{equation*}
\left\|\mathscr{L}_{n}^{m}\right\|_{2}=\left\|\mathscr{L}^{m}\right\|_{2}=1 \tag{3}
\end{equation*}
$$

More precisely,

$$
\begin{equation*}
\left\|\mathscr{L}_{n}^{m} y\right\|_{2} \leq\|y\|_{2} \quad \text { for } y \in l_{2}(n) \tag{4}
\end{equation*}
$$

with equality if and only if $y_{1}=y_{2}=\cdots=y_{n}$ and

$$
\begin{equation*}
\left\|\mathscr{L}^{m} y\right\|_{2}<\|y\|_{2} \quad \text { for } y \in l_{2} . \tag{5}
\end{equation*}
$$

It is the purpose of this note to extend Richards' results to include the case: $m>0$ an odd integer.

[^0]In a private communication Richards has observed that
Lemma. The validity of (3), (4), and (5) for $m>1$ odd depends upon the validity of the statement

$$
\begin{equation*}
\phi_{2 m}(\theta) \leq \phi_{m}^{2}(\theta) \text { for } m>1 \text { odd and all } \theta \tag{6}
\end{equation*}
$$

This lemma is proved by replacing $2 m$ in [1] by $2 m-1$ and considering which arguments remain valid. (The only argument which becomes invalid is the sentence including [Richards, Equation (28)].)

We now establish (6).
Set $v=\theta / 2 \pi$. Then, in view of periodicity and symmetry, (6) is equivalent to

$$
\begin{equation*}
\left[\sum_{-\infty}^{+\infty}(-1)^{j}(v+j)^{-m}\right]^{2} \geq \sum_{-\infty}^{+\infty}(v+j)^{-2 m} \tag{7}
\end{equation*}
$$

for $0<v \leq 1 / 2$ and $m>1$ odd. Set

$$
\begin{aligned}
D_{j} & =(2 j-1-v)^{-m}-(2 j-1+v)^{-m}-(2 j-v)^{-m}+(2 j+v)^{-m} \\
R_{j} & =(2 j-1-v)^{-2 m}+(2 j-1+v)^{-2 m}+(2 j-v)^{-2 m}+(2 j+v)^{-2 m} \\
f(v) & =v^{-m}+\sum_{1}^{\infty} D_{j}, \quad g(v)=v^{-2 m}+\sum_{1}^{\infty} R_{j}
\end{aligned}
$$

and

$$
L_{j}=\left[f(v)+v^{-m}-D_{j}\right] D_{j}+\left(D_{j}^{2}-R_{j}\right)
$$

Then the left member of (7) is $f^{2}(v)$ and the right member of (7) is $g(v)$. By direct expansion,

$$
f^{2}(v)-g(v)=\sum_{1}^{\infty} L_{j}
$$

We shall show that $L_{j}>0$.
By elementary calculus and the Binomial theorem,

$$
\begin{aligned}
D_{j} & \geq\left[(2 j-1-v)^{-m}-(2 j-1+v)^{-m}\right](4 j-1) /\left(4 j^{2}-v^{2}\right) \\
& \geq 2 v(2 j-1-v)^{1-m}(2 j-1+v)^{1-m}(4 j-1) /\left(4 j^{2}-v^{2}\right)
\end{aligned}
$$

Thus, $D_{i}>0$ for each i so that

$$
f(v)+v^{-m}-D_{j}>2 v^{-m}
$$

Also,

$$
D_{j}^{2}-R_{j} \geq-4(2 j-1-v)^{-m}(2 j-1+v)^{-m}
$$

Thus,

$$
L_{j} \geq\left[v^{1-m}(2 j-1-v)(2 j-1+v)(4 j-1)-\left(4 j^{2}-v^{2}\right)\right] / C_{j}
$$

with

$$
C_{j}=(2 j-1-v)^{m}(2 j-1+v)^{m}\left(4 j^{2}-v^{2}\right)^{-1} / 4>0
$$

Since

$v^{1-m}(2 j-1-v)(2 j-1+v)(4 j-1)-4 j^{2}+v^{2}$

$$
\begin{aligned}
& \geq v^{-2}\left[(2 j-1)^{2}-v^{2}\right](4 j-1)-4 j^{2}+v^{2} \\
& \geq\left[(4 j-2)^{2}-1\right](4 j-1)-4 j^{2}>0
\end{aligned}
$$

we have $L_{j}>0$.
Thus, (6) is valid for $m>1$. A direct argument for $m=1$ completes the proof of the following.

Theorem 2. For $m \geq 1$ an integer,

$$
\begin{gathered}
\left\|\mathscr{L}_{n}^{m}\right\|_{2}=\left\|\mathscr{L}^{m}\right\|_{2}=1 \\
\left\|\mathscr{L}^{m} y\right\|_{2}<\|y\|_{2} \quad \text { for } y \in l_{2}
\end{gathered}
$$

and

$$
\left\|\mathscr{L}_{n}^{m} y\right\|_{2} \leq\|y\|_{2} \quad \text { for } y \in l_{2}(n)
$$

with equality if and only if $y_{1}=y_{2}=\cdots=y_{n}$.

Reference

Franklin Richards, Uniform spline interpolation operators in L_{2}, Illinois J. Math,. vol. 18 (1974), pp. 516-521.

University of Pittsburgh

Pittsburgh, Pennsylvania
University of Alberta
Edmonton, Alberta

[^0]: Received July 30, 1974.
 ${ }^{1}$ Both authors were supported in part by grants from the National Research Council of Canada.

