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1. Introduction

The projective commutator subgroup of an orthogonal group over a finite
field K of odd characteristic, PIa,(K) (where n >_ 5), is known to be a rank 3
permutation group on the one-dimensional singular subspaces of the underlying
vector space [6]. In this paper, we prove the following theorem:

MAIN THEOREM. Let H < Pa,(K), 5 < n <_ 7, KafinitefieMofodd charac-
teristic. Suppose H is a rank 3 permutation group on the one-dimensional singular
subspaces of the underlying n-dimensional orthogonal space. Then H Pt)n(K).

This result is analogous to a result of Higman and McLaughlin on rank 3
subgroups of symplectic and unitary groups for dimensions 4 _< n < 8 [3],
later improved to include dimensions n > 8 by Perin [4]. Unfortunately, we
were not able to apply Perin’s method in this paper. However, we do prove
some lemmas in Sections 3, 4, and 6 which hold for all dimensions n _> 5, and
which may be of independent interest. In addition, we make some remarks in
Section 8, explaining why the question in the main theorem does not make
sense for smaller dimensions.

2. Siegel elations

Let B(x, y) be the nondegenerate symmetric bilinear form defining the ortho-
gonal space. If B(x, x) 0 and x is not zero, we say x is singular. If all of the
vectors of some nonzero subspace are singular or zero we say the subspace is
singular. The set of all vectors y such that B(x, y) 0 for all x in some subset
S of vectors is called S" ("S perp"). With these notations, we can define a
Siegel transformation p(x, u) in I),(K), and its image in PQ,(K), the Siegel
elation r(x, u). (A Siegel elation is an elation on the hyperplane x.)
A Siegel transformation, p(x, u), (where x is singular, and B(x, u) 0) sends

vectors v in x to v + B(v, u)x. Tamagawa [6] shows that such a transforma-
tion can be extended in only one way to an element (also called p(x, u)) of the
orthogonal group. Precisely, if y is a singular vector such that B(x, y)
and B(u, y) 0 (such a vector y can always be found), then p(x, u) sends y to
y- u- Q(u)x (where 2Q(u)= B(u, u)).
We define a point to be a one-dimensional subspace and a line to be a 2-

dimensional subspace.
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The set of all p(x, ku), k K, x and u fixed (p(x, 0) is the identity), and u not
in the subspace spanned by x, is a group E(x, u) isomorphic to the additive
group of K, since p(x, u)p(x, v) p(x, u + v). We showed in [5] that if u is
singular, E(x, u) is determined by the line (x, u) spanned by x and u. (We use
(x) to mean subspace spanned by x.) Further, such a group is conjugate in
f,(K) to a root group for long roots in the Chevalley group B, or Dn. (Root
groups are the canonical generators of Chevalley groups [2].) Accordingly, if
u is singular, we call E(x, u) a group of root type 1. If u is not singular, Z(x, u)
corresponds to a root group (in the Chevalley group B,) for short roots, and we
call it a group of root type 2. We shall speak of Siegel elations and transforma-
tions of type or 2 with u singular or nonsingular respectively.

3. Rank 3 subgroups of Pn(K)
with projective root groups

Let us define the image of a group of root type in Pf,(K) to be a projective
root group. The set of all Siegel elations of type generates Pf,(K) whenever
the index of the space is >_ 2 (the index of the space is the dimension of the largest
totally singular subspace; for n > 5 the index is always > 2). [1-1. We now
show:

LEMMA 1. Suppose G is a rank 3 subgroup ofPf,(K), n > 5, which contains
a projective root group. Then G Pf,(K).

Proof First, if G is rank 3 on singular points, this means the stabilizer of
one such point P is transitive on the set of points perpendicular to P. Thus G
is transitive on singular lines. But for z 0,(K), zp(x, u)z -1 p(z(x), x(u)).
Thus by conjugation z sends E(x, u) to E(z(x), z(u)). Now suppose the image
of such a z is in G. The transitivity of G on singular lines thus implies the
transitivity of G on projective root groups. (We recall there is a one-to-one
correspondence between groups of root type and singular lines.) Thus we get
all Siegel elations of type 1, and G Pf,(K).

4. One Siegel elation of type

In this section, we prove the following lemma, which is immediate from
Lemma in the case K is a prime field, but is otherwise nontrivial"

LEMMA 2. Suppose G is a rank 3 subgroup ofPf,(K), n >_ 5, which contains
one Siegel elation of type 1. Then G Pf,(K).

Proof We begin with n 5. Suppose G is rank 3 subgroup of Pf5(K) and
G contains a Siegel elation of type 1. Then it contains a Siegel elation of type
for each singular line in the space, since G is transitive on singular lines. Then
G is isomorphic to a subgroup of PSp4(K) since PSp4(K) - Pf5(K). (These
are the Chevalley groups C2 and B2.) The Siegel elations of type correspond
to root groups for long roots which correspond to elations in PSp,(K). To have
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a Siegel elation of type 1 for each singular line is to have one element out of
each member of the conjugacy class of root groups for long roots. This cor-
responds to having what Higman and McLaughlin call a P, P" elation for each
nonzero point P in the 4-dimensional symplectic space. We may then quote
Theorem of Higman and McLaughlin’s paper I-3] to see that G PSp,(K) -Pns(K).
Next we argue by induction, as in Higman and McLaughlin’s proof of

Theorem 1. Suppose G is a rank 3 subgroup of Pfl(K). Then if U is a linear
variety corresponding to an n- 1 dimensional subspace U’ of V, and
V U’ _l_ P, where P is a nonsingular point, Gp U contains a Siegel elation
of type for each singular line in U. Thus, by the induction hypothesis,
G U Pf_ (K). Now we look at a Siegel elation z in Gp U. Then z is the
restriction of z .1_ a in G,, where z acts on U and a acts on P. But z _1. a has a
preimage y in On(K). We claim that y is in fact a Siegel transformation. To see
this, we first note that the natural homomorphism of the p-Sylow subgroup of
f_(K) onto the p-Sylow of PK,,_(K) is actually an isomorphism. Thus

U’ is a Siegel transformation. In particular U’ has determinant 1. But
if P (w), then y(w) w since is orthogonal. Thus, since elements of
f(K) have determinant 1, y(w) w. Thus y is a Siegel transformation on V.
Since this holds for all Siegel elations of G, U, we see G contains a projective
root one group and G PD,(K).

5. Basis notation

When we talk about elements in a subgroup G of Pf,(K), we will want to
refer to matrix representations of elements in Q(K) which correspond to these
elements of G in the sense of being preimages under the natural homomorphism
f,,(K) P,,(K). For this purpose, we set up a standard basis notation for
n-dimensional orthogonal space. The vector space V can be decomposed as
follows:

V (x, x_) _1_ (x2, x_) _t_....1_ (x, x_) _L W

where B(x, x_,) 1, W is anisotropic of dimension 0, 1, or 2, and all other
products are zero. Since K is finite of odd characteristic such a basis can always
be found [1]. In particular B(xi, xi) 0, or xi is singular. We order the basis
x, x2, x3,..., Xk, W, X-k,..., X_ . With respect to this ordering, the matrix
for Bis

1

B(W)
1
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A matrix A represents an element of the n-dimensional orthogonal group with
respect to B, if AJnAt Jn.

6. One Siegel elation of type 2.

In this section we prove the following"

LEMMA 3. Suppose G is a rank 3 subgroup of Plan(K), n > 5, which contains
a Siegel elation of type 2. Then G Pn(K).

Proof We look at a matrix representation of the preimage in fn(K) of an
element of G<x,>, <x,> (the stabilizer of two singular points which are perpen-
dicular to each other) in the standard basis.

a 0
0 b____ *

0 0 --0 b-1
0 0 a-y

Let the preimage of G<I> <2> be called M. Let H be the subgroup of M with
a b 1. But H is the preimage of some subgroup Ho of G<I>, 0,,> and the
index of Ho in G<x,>, <2> divides (q 1)2 (IKI q).
We now show Ho is transitive on the singular points which are perpendicular

to xl, but not to x2. To do this, we show that

IG<x>, <x,>" G<x>, <x2>, <_>1 qn-a,
the number of singular points perpendicular to xl, but not to x2. Since
((q 1)2, qn-a) 1, this implies IHo" Ho<_>l qn-3. We illustrate"

/G(x>,
qn-3/ NN(divides (q_ 1)2

",.> .’Ho

Let y IG<,>, <,_>: G<I>, <x2>, <_2>1. To show y qn-3, we use a similar
index argument. First we remark that in all cases, if Vn the number ofsingular
points in the n dimensional orthogonal space, then (Vn, q) !-1]. The number
of singular points perpendicular to (x2) but not equal to (x2) is qVn-2. Thus,
since G is rank 3,

IG<>: G<x,>,<,.>l qVn-2.

The number of singular points not perpendicular to (X2> is qn-2. Thus

[G<x2>" G<x2>,<x_2>l qn-2.
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This implies q"-a [y. But q"-a is exactly the number of points perpendicular
to (xx) but not to (x2), so y q"-a. We illustrate:

qvn- J qn-

Now suppose we have a Siegel elation of type 2, which, without loss of
generality, we may call r(xl, Xz + ox_z) for some K*. We now conjugate
r(xx, xz + x_z) by some in Ho which takes
where w is some nonsingular vector perpendicular to xz, xx, x_ , and x_ z. A
preimage of x in H fixes the vectors xx, xz and sends x_ to x_ + w x.
Thus xr(x, x + x_1)x- is r(x, xz + (x_z + w- x)). We multiply

r(x, xz + x_)r(x, -x x_ w + w) r(x, -w + x).

(We recall p(x, u)p(x, v)= p(x, u + v) and since we are in a finite field,
p(x, u)k p(x, -u), for k p 1, char K p.)
Also by conjugating r(xl, x2 + x-z) by a in Ho which sends (x_2) to

(X-z w xz), and multiplying as above, we get r(xx, w + Xz) in G. The
product

r(xl, ew + ox2)r(xx, -ew + tx2) r(xx, 2ex2),

which is a Siegel elation of type 1.

7. The subgroup of G fixing one point; the proof of the theorem

Let us look at the preimage M in Q,(K) of the stabilizer of a singular point,
G<xl>. Since G is a rank 3 subgroup, q"-2 [G<x,> I. Hence q"-2 [IM I. The
elements of M can be represented in our standard bases as

A’ t/’
0 a-Let N be the subgroup of M with a 1. Since (M:N,q)= 1, then

q-2 INI. There is a homomorphism h from N to 0,_ 2(K) where elements of N
are represented as

and

h" A A.
0
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We also know that AJ,_ 2At Jn- 2, Jn-2 " 2z 0, and AJ,_2 Jr"
0. With this information, we see that any nonidentity element of the kernel is
the Siegel transformation p(xl, ). But A 0,-2, and for n 5, 6, 7, q,-2,1,
10.-21. This proves the theorem.

8. Small dimensions

If the index of the space is smaller than 2, we cannot have the traditional
rank 3 representation, where G is transitive on singular points and the stabilizer
of a point P is transitive on the set of singular points perpendicular to P.

In dimension n 2, there are at most two singular points. For dimensions
3 and 4, index 1, no two singular points are perpendicular to each other and
Lemma 2 of Tamagawa [6] shows that Pf,(K) is doubly transitive on singular
points.

For dimension n 4, index 2, Witt’s theorem implies that PO,(K) is a rank 3
permutation group. However, Pf,(K) is not rank 3. The Siegel elations of
type generate Pf,(K), and have two orbits of singular lines, namely

{(x-i, x-2), (xl + kx_2, x2 kx_l), k F}
and

{<x-i, x2>, (xl + kx2, x-2 kx-1), k F}.
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