ON FINITE GROUPS OF COMPONENT TYPE

BY
MICHAEL ASCHBACHER!

In recent years great progress has been made toward the classification of finite
simple groups in terms of local subgroups and in particular the centralizers of
involutions. If this program is to be completed one must show that an arbitrary
simple group G possesses an involution ¢ for which Cg4(¢) is isomorphic to a
centralizer in a known simple group.

This paper concerns itself with that problem for simple groups of component
type; that is groups G such that E(C(t)/O(C(t))) # 1 for some involution ¢ in
G. These include most of the Chevalley groups of odd characteristic, most of the
alternating groups, and many of the sporadic simple groups. D. Gorenstein has
conjectured that in a group of component type, the centralizer of some involu-
tion is usually in a “standard form.” A proof is supplied here of a portion of
that conjecture.

To be more precise, define a subgroup K of a finite group G to be tightly
embedded in G if K has even order while K n K? has odd order for each
g € G-N(K). Define a quasisimple subgroup 4 of G to be standard in G if
[4, 4] #£ 1 for each ge G, K = C4(4) is tightly embedded in G, and
N(4) = N(X).

Let G be a finite simple group of component type in which O, (C(t)) =
O(C(1))E(C(2)) for each involution ¢ in G. Let 4 be a “large component.”
Then it is shown, modulo a certain special case where 4 has 2-rank 1, that A4 is
standard in G in the sense defined above.

Other theorems establish properties of tightly embedded subgroups. They
show that, under the hypothesis of the last paragraph, the centralizer of each
involution centralizing 4 contains at most one component distinct from 4, and
that component must have 2-rank 1 if it exists. Further, it can be shown that
the 2-rank of the centralizer of A4 is bounded by a function of 4, which seems to
be 1 or 2 if A is not of even characteristic.

Proofs of the various theorems utilize properties of the Generalized Fitting
Subgroup F*(G) of a group G, developed by Gorenstein and Walter. These
properties appear in Section 2. Also important to the proof is the classification
of groups with dihedral Sylow 2-groups, Alperin’s fusion theorem, the recent
result on 2-fusion due to Goldschmidt, and Theorem 3.3 in Section 3, which
extends Bender’s classification of groups with a strongly embedded subgroup.

Statements of the major theorems appear in Section 1, along with a brief
explanation of notation.
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Gorenstein [7] and Walter [9] have proved results similar to Theorem 1.
The author would like to thank Professor J. Thompson for suggestions leading
to improvements in this manuscript.

1. Notation, terminology, and statements of the principal theorems

We recall some terminology due to Gorenstein and Walter. A group X is
quasisimple if X = [X, X] and X/Z(X) is a nonabelian simple group. X is
semisimple if X is the central product of quasisimple groups (or if X = 1), in
which case these factors are uniquely determined as the normal quasisimple
subgroups of X and are called the components of X (e.g. Lemma 2.1). Denote
by F(X) the Fitting subgroup of X. Define E(X) to the largest normal semi-
simple subgroup of X. Set F*(X) = F(X)E(X). Let O,/, g(X) be the preimage
in X/O(X) of E(X/O(X)).

Let G be a group. If U and X are subgroups of G with U acting on X define

Iy, o(X) = {Nx(V): 1 # V < U).

E, denotes an elementary 2-group of order 2".

Denote by Z the set of all components of the subgroups E(C(¢)) as ¢ ranges
over all involutions in G. Define a relation <* on & by L <* K if there exists
an involution ¢ with L = E(C(?)), K = [K, t] and L < K. Extend this rela-
tion to a partial order « on £ by defining L « K if there exists a sequence
{L} = £ with L=L,, K= L, and for each i, either L, = L, or L; <*
L;,,. Let £* be the set of maximal elements of % under this partial order.

For X < G and L € & define Ay(X) = (I/: I/ = E(X)).

From time to time we will consider quasisimple groups satisfying the following
hypothesis:

HypotHEsis 1. If « is an automorphism of L of order 2, then either m(L) = 1,
or C (&) — Z(L) contains a 2-element.

The remainder of our notation is standard and can be found in [6]. Now the
statements of the major results:

THEOREM 1. Let G be a finite group, let t be an involution in G, and let A <
E(C®t)), Ae ¥. Assume for each involution ae G that O, g(C(a)) =
O(C(a))E(C(a)). Assume further that if K € & and A is a homomorphic image
of K, then K € &*. Then one of the following hold:

(1) A = AN(A) = AC(a)) for each involution a € C(4). [A4, A°] # 1
for each g € G.

2 D = A N(A4)) = A4*, x € C(05(4)). m(4) =1. A (C(@)= D for
each involution a € C(A). If[A4, A’] = 1 then A° = A*.

(3) There exists K€ £* such that K # Ay(N(K)) = KK*, A = Cig, o(t), and
K satisfies (2). A has dihedral Sylow 2-groups and [A, A?] # 1 for g € G.

4 A= E(G), or A = Cig, 4(t) for some component K # K* of E(G).
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Cases (2) and (3) occur in PSp,(g), g odd, among other examples.

Notice in (1) that @ = C(4) is tightly embedded in G, and then A is standard.
The remaining theorems in this paper give information about tightly embedded
subgroups, hence restricting C(4) and C(¢).

THEOREM 2. Let Q be a tightly embedded subgroup of the finite group G. Let
H = NygQ),9eG— H, TeSyl, (Q° n H),and T < S € Syl, (QT). Then:

(1) IfT# 1thenNy(T) = Tx(N(T)n Q) =T x Tand Tn Q = 1.

) IfT = 1foreachg € G — H then either Q < G or {Q%) n H is strongly
embedded in {Q%).

THEOREM 3. Let T # 1 be a 2-group acting on a group Q with T n Q = 1.
Let T € Syl, (P), P < QT, and assume P is tightly embedded in QT. Let

Assume |T| = |Ng(T): T| and O(Q) = 1. Let W be the weak closure of T in S
with respect to Q. Then one of the following holds :

(1) T is cyclic, S n Q is cyclic, quaternion, or dihedral, and S is dihedral,
semidihedral, or wreathed.

2 T= QT

(3) O0%(TQ) = 0,(QT) x 0*(Q) = E, x L,y(2".

@4 W=Tx T*= Ny(T)=2 QT. T is abelian and if m(S/W) > 1 then
T = Q).

B) WS0OT,|\W|=|T3,ZW)=W =0(W)=T=Q,T). |S: W|=2.

THEOREM 4. Let Q be tightly embedded in G and assume K = O, (Q) #
O(Q). Then one of the following hold:

(1) K= 0y, (0.

) m(K) = 1 and if m(Q) > 1 then N(Q) contains a Sylow 2-group of Q°
whenever Qf n N(Q) is of even order.

3) 0¥(QT)/O(Q) = E, x L,(2") for some geG — N(Q) and Te
Syl, (Q%).

Theorem 4 implies that in Theorem 1, case (1), that if G is simple then
E(C(1)) has at most one component distinct from A, and that component must
have 2-rank 1 if it exists.

Our last theorem is crucial to the proof of Theorem 1 and Theorem 4.

THEOREM 5. Let D < G and set D = D|O(D). Assume D is the central
product of semisimple groups A;, 1 < i < r, permuted by H = Ng(D) under
conjugation. Assume further that:

(@) If t and t° are 2-elements centralizing A; and A;, respectively, and if
t¢ Z(G), then g € H.

(i) If X < H°and A; < XO(D) theng € H.

Then if H # G either:

(1) D= Ay o0r
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2 D= 141A2, m(d) =1, and if a;, i = 1, 2, are commuting involutions
with a; € Z(A;), then either a; = a, or a,a, € Z(G).

2. The generalized Fitting subgroup

LemMMA 2.1. Let H be a group. Then

(1) E(H) is the central product of all the quasisimple subnormal subgroups
of H, known as the components of E(H).

(2) IfLisacomponentof E(H)and X < HthenL < [L, X]or[L, X] = 1.
Further [E(H), X] is the product of those components not centralized by X. If
L < NX)thenL= E(X)or[L, X] = 1.

Proof. See 2.1 of [5].

LeMMA 2.2 Let X 92 F*(H) and Cpg(X) < X. Then
X = E(H)YX n F(H)) and Cpm(F(H) N X) < X.
Moreover Cy(F*(H)) < F*(H).
Proof. See 2.2 of [5].

LemMma 2.3 (Thompson 4 x B lemma). Let A be a p-group, B = O?(B) <
C(A) and assume AB acts on a p-group P with Cp(A) < Cp(B). Then [P, B] = 1.

Proof. See 5.3.4in [6].

LemMA 2.4. Let L be a perfect group and X a group with [X, L, L] = 1.
Then [X, L] = 1.

Proof. By the 3-subgroup lemma, [L, L, X] = 1.

LemMMA 2.5. Let a be an involution in H and L a component of E(H) with
M = LI # L. Then:

(1) J = {xx*: x e L} is a homomorphic image of L contained in C(a) with
Z(J) < Z(M).

(@) If X < N(M) centralizes J then [M, 0*(X)] = 1.

(3) IfxeM — JZ(M) then M = <{x, J).

(4) If Y is a solvable subgroup of H normalized by J then [J, Y] = 1.

Proof. (1) and (2) are Lemmas 2.1 and 2.2 from [8], respectively. Choose x
as in (3). Then x = wv, ueL, vel®’ and x 'uu® = v 'u® = ye I’!. As
x ¢ JZ(M),y ¢ Z(M). Therefore as I? is quasisimple, ¥ = (y*)> = (M) =
<yJ>9 so M = JL' = {J, y) = {J, x).

Nextlet Ybeasin (4). Then W = [Y,J,J] < Y n M and W is normalized
by J. Suppose W £ JZ(M). Thenby (3),M = (W, J) < N(W),soW = M.
Thus W < Z(M). So in any event, W =1 JZ(M), and then, by (1), W <
Z(M). Thus [Y,J,J,J] = [W,J] = 1, and two applications of 2.4 imply
[y,J] =1
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LeMMA 2.6 Let a be an involution in H and X a C(a)-invariant subgroup of H
with X = O(X)E(X). Let K be a component of E(X) and L a component of
E(H). Then:

1 X< NQD.

@ [0XCx(@), Ox(H)] = L.

(3) If[L, a] = 1 then either [L, X] = 1 or L = E(X).

(4) Assume M = LI* # L and define J as in 2.5. Then [O(X), L] = 1 and
either [K, L] = 1, K=2 M,or K = J.

Proof. Let Y = O(X) and Q = O,(H). [Cy(@), X] < Q. Then by 2.1.2,
[Cola), E(X)] = 1, while [Cy(a), Y] < @ nY = 1. Now the Thompson
lemma implies (2).

If L < N(X)then by 2.1, either [L, X] = 1l,or L = E(X). As C(e) < N(X)
we get (3). Further in either case (1) and (4) are clear, so we may assume
L £ N(X).

Assume M = LI # L. By2.1,either [K, Cy(a)] = 1orK < [K, Cy(@)] <
E(H) n X. In the first case K normalizes {Cy(@)*®) = M and then by 2.5,
[K, L] = 1. In the second case clearly K normalizes L <= E(H). Thus K <
Mn X. AsL £ N(X), 2.4 implies M n X < Z(M)J. Thus K < N(J), and
K<[K J]<J AsJ< NX), K=, so as K and J are quasisimple,
K = J. This establishes the last part of (4).

As J < N(Y), 2.5 implies [¥,J] = 1. So by 2.5, Y = 0*(Y) < C(M).
This completes (4).

Thus we may take L = [L, a] and it remains to show X < N(L). Set
W = [X, a]. If (L, L,) is a cycle of length 2 under a in L then by (4), W fixes
L,,so ¥ = {L;} = {L}. On the other hand if a fixes L* pointwise then so
does W = [W, a]. So in any event W < N(L). Thus with 2.1.2 we may take
[X,a] = 1.

Then by (2), [Q, X] = 1. Set R = Q<a). Then X =2 O(C(R))E(C(R)).
Let S € Syl, (N(R)). Then S £ Z(L),so L = (SEM®>. By 2.1, either [K, S] =
lor K < [K, S] < E(H). In the first case K normalizes {(SE®) = L. In the
second case K normalizes L <t E(H). Finally [Y, S] has odd order, so
Y < N(L).

LemMa 2.7 Let a be an involution in H, K a component of E(C(a)) and L a
component of E(H). Then:

(1) E(C(a)) < E(H)C(E(H)).

2 K=Lor[K,L] =1orL # L*andK = Cpy @) orL = [L,a] = K.

3) If[K, O(F(H))] = 1then K < E(H).

4 If K= E(C(w)) for each involution u in some 4-group U < H then
K < E(H).

Proof. By 2.6, X = E(C(a)) < N(L) and if L # [L, a] then one of the
alternatives of (2) holds. So assume L = [L, a]. Let S be a maximal {a) K-
invariant 2-group of L. By 2.6.2, [S, K] = 1, so K= E(C(S{(a))). We may
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take H = LK<{a), so maximality of S implies K = E(C(S{a))). Let
T e Syl, (N (S<{a))). Then [T, K] < L n K=1 K, soeither K = [T, K] < L
or [T, K] < Z(K) and hence by 2.4, [T, K] = 1. We wish to show K < L
or K < C(L), so we may assume [7, K] = 1. Then maximality of S implies
S = T e Syl, (L). But now a result of Glauberman [3] implies K < C(L).
This yields (2).

Suppose (1) is false and let M be maximal subject to M @ E(H) and
X < MC(M). Choose L £ M. Then

X < LC(L) n MC(M) = LM(LC(L) ~ C(M))
= LM(C(L) n C(M))

by modularity. But this contradicts the maximality of M and establishes (1).
Assume [K, O(F(H)] = 1. Then by 2.6.2, [K, F(H)] = 1. So

K < E(H)C(E(H)) n C(F(H)) = E(H)C(F*(H)) < F*(H)

by modularity and 2.2. This yields (3).
Finally if K == E(C(u)) for each involution u in some 4-group U, then by 2.1,

[K, Cu) n O(F(H))] =1 foreachue U*.
Hence O(F(H)) = {C(u) n O(F(H)): ue U*) < C(K), and (3) implies (4).

LemMA 2.8. Let U = {u, v) be a 4-group in H and L a component of E(H)
with L' # L. Then L < Ty (L) and if ' = L, L < {C, q(), C1.7(uv)> or
[L,v] = 1.

Proof. As U £ N(L) there exists u e U* with L # L. Set J = C, ),
andletv e U — {u). Suppose Ny(L) = 1 and let x be an element of odd order
in L — Z(L). Then xx*, x™"x™*, x*’x are all in K = I"; y(H), so their product
x?is also in K. Then by 2.5, L < ¢J, x*) < K.

So take v e N(L). Let M = LI*/Z(LL') and I = Cy(vu). If I = J then for
each x € L there exists y € L with Xx* = jy*. Then y 'xeLn L' =1, so
[L, v] = 1. Hence by 2.1, L < C(v) < K. On the other hand if I # J then
by25, M =<1,J) <K

LeMMA 2.9. Let L be quasisimple with m(Z(L)) < 1. Then L satisfies
hypothesis 1.

Proof. Let o be an automorphism of L of order 2 and assume Z(L) = Z
contains a Sylow 2-group of C; (o). We may assume O(L) = 1, so Zis a 2-group.
By hypothesis, Z is cyclic. Z is of index 2 in Z{a) = W, so W is abelian,
dihedral, semidihedral, or modular (e.g. 5.4.4 in [6]). Thus there are at most
two Z-classes of involutions in W-Z.

Set L = L/Z, and let T e Syl, (Cr(®)). For te T, if a' € of, then by a
Frattini argument ¢ € ZCr(¢) = Z. Hence as W — Z has at most two Z-classes
of involutions, |T| < 2. So by the well known lemma of Suzuki, {a)L has
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dihedral or semidihedral Sylow 2-groups. As L is simple of index two in L{«),
L has dihedral Sylow 2-groups. Thus m(L) = 1.

3. Fusion and generation

LeMMA 3.1.  Let V be a vector space of dimension n over GF(2), X = 0*(X)
a group of automorphisms of V, and Y # 1 a cyclic subgroup of odd order in X,
which acts transitively on [Y, V]*. Assume U = Cy(Y) has dimension k > 1,
Un U* = 0for x ¢ Ny(U), and Y == Ny(U). Then one of the following holds:

(1) k=1landn = 3.

(@) X normalizes Y, V] and U.

(3) X normalizes [Y, V], Y acts regularly on UX — U, and V — [V, Y] =
Ux U9*.

Proof. This is essentially 2.11 of [5] with the hypothesis that X acts irre-
ducibly on ¥ removed. Irreducibility of X is used in the proof only to show
X = Y and to show Y does not act regularly on UX — U if X is irreducible.

So assume Y is regular on UX — U, and set C = {ce V*:c ¢ U*, x e X}.
Then C has order 2"~* — 1 and C is X-invariant. As Y acts semiregularly on
V — U, and |C| = |Y|, C is an orbit under Y. One can now check that
[V,Y] =<c+d:c,deC), so [V, Y] is normalized by X. Then U* n
[V, Y] = 0 for each x € X, so if X does not normalize U then a counting argu-
ment yields (3).

THEOREM 3.2. Let z be an involution in the center of a Sylow 2-subgroup of G,
let H < G, and assume:

(i) ze H?ifand onlyifge H.

(ii) If u is an involution with z € C(u) £ H then H n L is strongly embedded
in L = {z% n C(w)>. Then H n {z%) is strongly embedded in {z).

Proof. See [1].

THEOREM 3.3. Let z be an involution in G, H < G, and assume z € H? if and
only if g € H. Then the following are equivalent:

1) Ifz # tez%n C(z) then (zt)° € H if and only if g € H.

(2) z is in the center of a Sylow 2-subgroup of G, and if z # t € z¢ n C(2)
then C(zt) < H.

(3) L = <{z% has 2-rank 1,or L = LIO(L) = <u) x L', lu| <2, HA L
is strongly embedded in L, and z¢ < uL.

Proof. This is an easy corollary of 3.2. As similar corollaries have appeared
elsewhere we only sketch the proof.

Assume (1),letm = |z¢ N H|, Hx # Hacosetof HinG,and D = H n H*,
Arguing as in 4.3 of [1], we find that |z N Hx| = m. Let t € z% n Hx and
E = D{t). Suppose s € E n z% and st has even order, and let u be the involu-
tion in {st). Then ut € z% so by hypothesis u = (ut)t lies in the unique conju-
gate of H containing ¢ and no other. But u € D < H, a contradiction. Thus
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2% n E = zFisof odd order. Thatismis odd. But |z = |G: H| |z® n H| =
|G: H|m with both |G: H| and m odd. Thus (1) implies (2). Also it shows that
(2) is inherited by subgroups. That (3) implies (1) is obvious.

The proof that (2) implies (3) is by induction on the order of G, so let G be a
minimal counter example. Then O(G) = 1. By 3.2 there exists an involution u
centralizing z such that C(u) £ H and H n L is not strongly embedded in
L = {z% n C(uw)). Conjugates of z in distinct conjugates of H are conjugate
in their join, so z¢ N C(u) = z%. Minimality of G implies either L = G, or
L = {u) x L with z < uLl, and H n L strongly embedded in L.

Assume the latter, and suppose v = uf e C(u). Let K = {(z" n C(v)).
Then K £ H, we may take z € K, and either L/O(L) =~ L,(4) and v induces an
outer automorphism on L, or {u) = 0,(K). In the first case vz is conjugate to
vu under L. Now vz is the product of conjugates of z in C(v), so by hypothesis
C(vz) and hence C(u) is contained in H. But K £ H. So {(u) = 0,(K). But
by symmetry <{v) = 0,(K). So u is isolated, and by the Z*-theorem
ue Z*G) = Z(G).

So in any event L = G. Minimality of G implies thatG = G/{u) has 2-rank
1, or G = (&) x G with z¢ < G, and H n G’ is strongly embedded in G'.
In the latter case G’ is a Bender group so G’ is simple, SL,(5), or S2(8). As z
is a 2-central involution acting nontrivially on G’, we conclude G’ % SL,(5)
or S2(8). As G = {z% we conclude G = <u) x G’ with z¢ < uG".

LemMA 3.4. Let A; < S € Syl, (G) such that [4,, A,] = 1 and m(4;) > 1.
Let H be the subgroup of G generated by all g € G with A% N A; # 1, for some
i,je {1, 2}. Assume

(*) A, v A, is strongly closed in H n S with respect to H and in Ng(A;) with
respect to G.

Then one of the following hold:

(1) H=G.

(2) A; < Ay, somei # j, and H 0 (AS) is strongly embedded in {AS).

(3) A, is conjugate to A, under an element fused into Ay, A, is dihedral or
semidihedral, and |4, N A,| = 2.

Proof. Let G be a minimal counterexample. Set A = A, let Q be the set of
cosets of H in G, and represent G on Q. Then

() X < G fixes the unique point H of Q exactly when N(X) < H and
X°nH=X"

Let X < A4, |X| > 2, and X? < Ng({4, 4,}). Then |X?: X? n Ng(4)| < 2,
50 X " Ny(4) = Y # 1. Then by (*), Y < A, U 4,, so g € H and then (*)
implies X? = A4, U A,. This has several consequences. First

(b) S = Ns({4, 4,}) and |S: Ns(4)| < 2.
Second, with remark (a) it follows that
(©) if X < Aand|X| > 2, then X fixes a unique point of Q.
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Now let u be an involution in A4, and K = Cg(u). Suppose m(C,,(u)) > 1,
C,W) £ 4, i # j, and if C,(u) is conjugate to C,,(u), then C4(u) is not di-
hedral or semidihedral. By (c), C,() fixes a unique point of Q, so H n K
contains a Sylow 2-group of K, which we may take to be S n K. As C,(u) £
Aj, Ng(4; n K) < Ng(4;) by (b). Hence K satisfies our hypothesis, and by
minimality of G,

(d) either K= Gor K < H.

Assume q is an involution in 4 and ¢t = a € S with g ¢ H. By (x), 4* = 4,.
Let B, = A% te B, = B,and T = S°.

Assume first 4;, N 4, = 1. If t* € C(¢) < H? we may assume ¢* € T and
then as [£,t*] =1 and te B — B,, even t*e Ny(B). But then by (x),
t*e BuU B,, so x € H°. Let v be an involution in 4. Then v € 4, < C(A),
so [, t*] = 1. Thus v e H? But then Q,(4) < H?, against (c).

Sod; n A, # 1. By(c),Cy4,(t) = {z)isoforder2,s0 D = (4 n A,){t)
is dihedral or semidihedral. Let ve A — A, with v> € 4,. Then x = w' =
v’t’te C(t) and x> € A N A,, 50 x*> € {z). Wemayassume V = (x,z) < T,
so as B* # B, x? # z. Thus x*> = 1 and ¢ inverts v2.

Suppose Q,(4) < A,. As Disdihedral or semidihedraland 4 n 4, < Z(4),
A N A, is a 4-group. As t inverts v?, v> = z. Also there is an involution
we A n A, with [w, t] = z. Notice (vw)(vw)' = xz. As V acts on {B, B,}
and B* = B,, with the symmetry between x and xz we may choose x € N(B).
Now t*" = tx € N(B), so vw € H?, against (c).

So we may choose v to be an involution. Then [¢, t*] = 1 and as v ¢ H?,
t' ¢ N(B). Hence x ¢ N(B), so xze N(B). By (c) txz¢ B. But (txz)’ = 1z,
and #xz € N(B), so by (%), ¢z is not fused into A. Therefore as D is dihedral or
semidihedral, 4 N 4, = {(z).

A is not dihedral or we are in (3). Also as B # B*, x is not rooted in C(¢),
so v is not rooted in A. Therefore as {aa’: a € A} = A/(z), we may choose
ue A — A, such that U = (x, y) is a 4-group, for y = uu'. We may assume
y € N(B), so as above, u*> # 1. Then u?® = z. If C,(u) is cyclic then 4 is
dihedral or semidihedral (e.g. 5.4.8. in [6]), a contradiction. So y satisfies the
hypothesis in (d) and hence either C(y) < H or y € Z(G). In the first case by
©), |Cs(»| = 2, so B is dihedral, a contradiction. Thus y € Z(G). Set G =
G/{y). Now if A # A, then G satisfies our hypothesis and minimality of G
yields a contradiction. So A = A,. Thus |4] = |4 N A,| |A: A N 4,| = 4,
and A is dihedral, a contradiction. Hence we have shown

(e) A, u A, is strongly closed in S with respect to G.
Together with (a) this implies
(f) Each element of A fixes a unique point of Q.

Let a;, i = 1, 2, be involutions in 4; with u = aja, # 1. Suppose K =
C(u) £ H. If C,(u) = Cy(a,) is a 4-group then 4 is dihedral or semidihedral.
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If C,(u) is nonabelian dihedral or semidihedral then 4 = C,(u). Therefore as
(3) does not hold, the hypothesis of (d) are satisfied, and then u € Z(G). But (¢)
implies G/{(u) satisfies our hypothesis, so again minimality of G leads to a
contradiction. Therefore

(® Cw=<H

Supposet = u? € S,g ¢ H. Then C(t) < HY, so by (f), C,(¢) = 1 and hence
A'=A,and AN A, = 1. So U= Cyy,(t) & A. We may assume U < S°.
Then U has a subgroup ¥ of index 2 normalizing 4¢ and 1 # C,(V) < H by
(g), contradicting (f). Thus u® N H = u, so by (g) and (a) we conclude that u
fixes a unique point of Q. Now 3.3 yields the desired result.

LemMma 3.5. Let L be a quasisimple normal subgroup of H of 2-rank 1 and
U a 4-group in H such that L £ T'y y(H). Then:

(1) L= A4,o0rSLyq),q=5,7,o0r9.

2 U< LCW).

(3) H|C(L) contains no quaternion group X with m(Cycry(X)) > 1.

(4) If A is an abelian subgroup of H of 2-rank 3 then L < T"y ,(L).

Proof. m(L) = 1,50 L & A, or SL,(¢),qo0dd. SetL = L/Z(L). m(L) = 2,
so (2) implies (4). If Lis asin (1), then Aut (L) contains no quaternion subgroup
Q unless L = SL,(q). Further in that case Q contains its centralizer. Therefore
(1) implies (3).

Assume L =~ A,. We may assume u € U”* induces an outer automorphism
on L and then take @& = (1, 2) or @ = (1, 2)(3, 4)(5, 6), representing L on
{1 <£i< 7} = Q. Then Cy(u) is isomorphic to SL,(5) or SL,(3), respectively,
and in the latter case is transitive on Q — {7}. Let v € U* induce an inner
automorphism on L. Then Cy(v) is cyclic of order 24 and has orbits of length
3and 4 on Q. Let X = {(C.(v), Cr(w)). If u is a transposition then the global
stabilizer of {1, 2} is the unique maximal subgroup of L containing C,(u), so
as Cr(v) does not stabilize {1, 2}, L = X. If # is not a transposition then C;(u)
is transitive on @ — {7} and C;(v) moves 7, so X® is 2-transitive. X contains an
element of order 12,50 X =~ 4, and X = L.

So we may take L = SL,(q), g odd. If ue U* induces an outer automor-
phism on L then u induces a field automorphism or an automorphism in
PGL,(q). If u; and u, induce automorphisms of the first and second types,
respectively then u;u, does not induce an involutory automorphism on L, a
contradiction. Hence some v € U* induces an inner automorphism on L.

Then C,(v) is cyclic of order ¢ — &, ¢ = +1 = g mod 4. Further unless
g <9, C(v) is contained in a unique maximal subgroup M of L, which is the
preimage of a dihedral group of order ¢ — ¢in L. (Here, and later in the proof
we use Dickson’s list of the maximal subgroups of L,(q) (p. 285, [2]). Further
M contains the centralizer of no other involutory automorphism, so (1) holds.

Suppose u induces an automorphism in PGL,(gq) on L. Then C () and
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Cy(uv) are cyclic of order g + &. X = {Cy(u), C(uv)) is a subgroup of L and
{u)X contains an abelian subgroup of order 2(g + ¢), so we conclude L = X.

Suppose u induces a field automorphism on L. We may represent {u)L on
Q={l<i<6}asS andtakeui = (1,2). Then C;(u) & Cy(ur) = SL,(3)
and X = {Cy(u), C,(v)) is transitive on Q. As no maximal subgroup of L
containing C,(u) is transitive on Q we conclude L = X. This completes the
proof of (2).

Essentially the same proof shows:

LeMMA 3.6. Lemma 3.5 holds if L is assumed to have dihedral Sylow 2-groups,
and in (1), A, and SL,(q) are replaced by A, and L,(q).

LeMMA 3.7. Let t be an involution acting on the semisimple group A. Assume
a Sylow 2-group of C,(t) is cyclic of order 4. Then m(A) = 1.

Proof. Let R = (x) e Syl, (C,(t)). As R is cyclic, t¢ A. Let R< Se€
Syl, (4<t)). Again as R is cyclic, tr € t4, where r = x%. So Cj(t) is the central
product of <t, tr) = t1 n Cs(t) with R. Let Cg(t) < X < S be maximal
subject to being the central product of a dihedral group D = <{t,d) = {t* n X)
with R. Here we choose d € t4.

Then X n 4 = {#d, x) is abelian of exponent greater than 2, and thus is not
Sylow in the semisimple group 4. So we may choose u € Ng(X) — X with
u? e X. As Cs(t) < X, t* ¢ t%, so we may take t* = d. Set X; = (u)X.

Suppose u € t4. Then {u, t> = D, is dihedral. Let y be an element of order
4 in {ut). If |D| > 4then R = Z(X). If |D| = 4,then R = X n A. So in
any event ¥ normalizes R. Thus u either inverts or centralizes x. If u inverts x
then u centralizes the 4-group {r, yx> < A, impossible as u € t4. So X, is the
central product of D, = {t4 n X, with R, contradicting the maximality of X.

So u¢t4. Thus D = {X; N t4) =2 Ng(X,), so Ns(X,) = X,Cs(t) = X,
and then S = X;. If Q,(S n A) < X n A then either S N 4 is quaternion of
order 8 or |Q,(S N 4)| = 4. In the latter case S N A4 is not isomorphic to a
Sylow 2-group of a semisimple group with that property. If Q,(S n 4) £
X n A we may pick u to be an involution, so S N A4 is dihedral or the central
product of the dihedral group <{u, td) with either R or {yr), where y is an ele-
ment of order 4 in {td). As A is semisimple, S N A is dihedral and then
A =~ A, or L,(q). But none of these groups admit an automorphism ¢ of order 2
such that a Sylow 2-group of C,(¢) is cyclic of order 4.

LeMMA 3.8. Let U be a 4-group acting on a semisimple group A such that
m(ly, y(4)) = 1. Then m(4) = 1.

Proof. Let S be a U-invariant Sylow 2-subgroup of 4. If W is a U-invariant
4-subgroup of S, then Cy(W) # 1, contrary to hypothesis. So every U-invariant
abelian subgroup of S is cyclic. Hence S is the central product of subgroups £
and R where either £ = 1 or E is extra special, and R is cyclic, quaternion,
dihedral, or semidihedral (e.g. 5.4.9, [6]).
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We may assume m(4) > 1. Suppose S is dihedral or semidihedral. By 3.6,
S is semidihedral. Then A4 and its automorphism group are known. Indeed the
outer automorphism group of 4 is cyclic, so some element u € U* induces an
inner automorphism on 4. But then m(C,(u)) > 1.

Therefore S is not dihedral or semidihedral. Let Z = Q,(Z(S)) and
ViZ = Q,(Z(S|Z)).

Claim S is extraspecial. Assume not. Then either R or R’ is cyclic with a
subgroup T of order 4 characteristic in S. Thus replacing S by TV if necessary
we may assume R is cyclic of order 4. Now S is not cyclic, dihedral, or semi-
dihedral so S # R and hence E # 1. So there exists a U-invariant subgroup
Y of S of order 8 containing R. R < Z(S), so Q,(Y) is a U-invariant 4-group.

So S is extraspecial of order at least 2°. Now for each involution x € S,
Z = C¢(X)', so the involution z € Z is isolated. Thus Z < Z(4) and then
A|Z(A) has abelian Sylow 2-groups. As A is semisimple its components have
2-rank 1. By2.8and 3.5,T; y(4U) contains a Sylow 2-group of 4, so m(4) = 1.

LemMa 3.9. Let U = {a, b) be a 4-group acting on a simple group L with
dihedral Sylow 2-groups. Assume Cr(a) and C(b) have cyclic Sylow 2-groups and

L $ <as b9 CL(a)9 CL(b)>
Then [ab, L] = 1.

Proof. L = L,(q),qo0dd,or A,. Asm(Cr(a)) = 1,L = L,(g)and {a)L =
PGL,(g), and inspecting Dickson’s list of maximal subgroups (p. 285, [2]),
{a)Cy(a) is a maximal subgroup of <a)L with {a) = Z({a)Cy(a)). Hence the
result follows.

4. The proof of Theorem 3

In this section we assume T is a nontrivial 2-group acting on a group G with
TN G =1. Let S be a Sylow 2-group of GT containing a Sylow 2-group of
Ngr(T). The proof of the following lemma is straightforward.

LeMMA 4.1. Ny(T) = T x (Ng(T) n G).

Lemma 4.2.  Assume T is weakly closed in S with respect to G, and O(G) = 1.
Then [G, T] = 1.

Proof. Let GT be a counter example of minimal order. As T'is weakly closed
inS,S < N(T). Soby4l,S =T x (Sn G).

Assume first [E(G), T] = 1. Then minimality of G implies E(G) = 1. So
as O(G) = 1, F¥(G) = 0,(G). But T < C(0,(G)), and as 0,(G) = F*(G),
Cs(0,(@) = Z(0,(G)). Thus TZ(0,(G)) = C(0,(G)) = GT. As Tis weakly
closedin S, T=2 GT,so [G, T] = 1.

So [E(G), T] # 1 and then minimality of G implies G = E(G), and Z(G) =
1. Let Z=Z(T)and 1 # Y < (SN G)Z. Then T < N(Y) < G, so mini-
mality of G implies N(Y) = O(N(Y))(N(Y) n N(T)). Thus N(Z) is weakly
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embedded in ZG, so a result of Goldschmidt [4] implies Z <= GZ. Now con-
sidering GT'/Z, minimality of GT yields a contradiction.
For the remainder of this section we operate under the following hypothesis:

Hypotuesis 4.3. Q=2 H < GT, with TeSyl, (Q) and TnT? =1 for
geG — H.

LemMmA 4.4.
(1) Let X be a 2-group containing T with |X: T| < |T|. Then T < X.
Q@ IfT#T°<Sn HthenTT? = T x T? is abelian.

Proof. Choose X as in (1). If T is weakly closed in Ny(T) = X n H with
respect to X, then 7' X. So we may take 7" # T? < X n H. T e Syl, (Q),
soT=XnQ. Thusg¢ H soTn T? = 1. Thus

IX| =2 |X n H| 2 |TT°| = |T|* 2 |T||X: T| = |X|,
so 7T = X = Xn H < N(T). By symmetry, 72 X, so X = T x T,
By 4.1,
X=TxXnG) =T %x(XnG),

s0 X n Gisthecenterof 779 = X. Then T =~ X/T? = X n Gis abelian, so X
is abelian.

LemMMA 4.5. Assume W = T x T? is the weak closure of T in H n S with
respect to G. Then:

(1) Hn S = Cyt) foreacht e T*.

2) Hn S = Cy(TY.

(3) Ifm(Ny(H n S)/(H n S)) > 1 then T is elementary.

@ QW n G) < Z(Q,(Ns(W)).

(5) Let m(T) > 1. If V is a conjugate of Q{(T) in Ng(W), V £ W, then
VA H=1and T = QT). In particular if W is the weak closure of T in S
then Q,(W) is the weak closure of Q,(T) in S.

Proof. By 4.4, Tis abelian. Let t € T#. By 4.3,
C{(t) <HNS=Tx (HnSnNG),
so as T is abelian, H n S = Cg(t). Set Z = Q(W n G). Then
ZNnZHNS)=Zy#1 so 1 £ TZynT? < Z(HNS).
Hence (1) implies (2). Also Z < TT? < Z(H n S).
Let x(H n S) be an involution in Ng(H n S)/(H n S). If T* = T then
xeHn S < C2).

If T* # T then x inverts [x, W] = W n G and hence centralizes Z.
Suppose U/(H n S) is a 4-group in Ng(H n S)/(H n S). We have shown
eachu e U — Hinverts W n G,so W n Giselementary. Thus T'is elementary.
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Finally assume V is a conjugate of Q,(T) contained in S but not in W. If
VA H#1 then by (1) and 2), W < C(V n H) and then V < W. So
Vo H=1. Assume m(T) > 1. Then (3) implies T = Q,(T).

LemMa 4.6. Assume O(G) = 1 and W = TT? is the weak closure of T in S
with respect to G. Then one of the following holds:

1) m((T) = 1.

2) W=dT.

() (T% = 0,(KT®) x [T, Gl with 0,((T®)) = E, and [T, G] = L,(2"),
Sz(2") or U, (2.

Proof. Let GT be a minimal counter example. By 4.4, T is abelian. We may
take m(T) > 1.

Assume G # E(G). Then minimality of G implies either TE(G) is as in (3)
or [T, E(G)] = 1. In the former case

[0,(G), T] < 0,(G) A (W G) < Wn 0,G) n EQG) = 1.

So O,(TE(G)) < C(F*(GT) < 0,(GT) and then TE(G) < F*GT). So
TE(G) = {T¢). In the latter case minimality of G implies E(G) = 1, so
F*(G) = 0,(G). If [T, 0,(G)] = 1 then arguing as in 42, W= GT. So
W A G = [T, 0,(G)] < 0,(G) = P. Thus T/P is weakly closed in S/P with
respect to G/P, so by 4.2, TO,, ,(G) = G. Thus we may take G = O, ,/(G).

As m(T) > 2, 2.6.2 implies O(Q) < C(P) < P, so O(Q) = 1. Thus
W = N(Q). So by 4.5 and induction on |T'| we may assume T = Q,(T).

Also G = (Ng({tDP): te T*) and if G # N4z({t)P), then by induction on
the order of G, W =2 N4({t)>P). Therefore we may assume G = N;({t)P) for
somete T*. Byd5 Wn G < C(t% < C(T for each g € G. We may take
G = (T%,s0 Wn G < Z(G). Then T/(W n G) is weakly closed in S/(W n G)
with respect to G/(W n G),soby 4.2, W/(W n G)O(G/(W n @) = G/(W n G),
and we may assume S = W. So Wn G = F¥G) and then Cs(W N G) =
TC(WnG@ =TWnG) =W SoW=G.

Therefore G = E(G). Let U= Q,T) and Z = Q,(W n G). By 4.5,
Z < Z(Q,(S)) and Q, (W) is the weak closure of U in S with respect to G. Let
zeZ* and assume z9e€ S — Z. Then as z? centralizes Z, we may assume
Z? < S. By Alperin we may choose ZZ? < X < Sandge N(X). AsZ < X,
U < N(X). Thus by minimality of G, UO(N (X)) == N(X) and we may choose
g € N(U), impossible as W n G is Sylow in Ng(U). So Z is strongly closed in S
with respect to G. Therefore by a theorem of Goldschmidt [5], either (Z%) is
a 2-group or E({Z%)) is a product of Goldschmidt groups.

In the first case UZ/Z is weakly closed in S/Z with respect to G/Z, so by 4.2,
UZ = GT,so W= GT. In the second case minimality of G yields G = (Z%).
As |U| = |Z] and G # H, G is a Bender group and 7G = O0,(GT) x G. As
TxWnG<Z(S), T= E,and G = L,(2", Sz(2"), or U3(2").
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LemMma 4.7. Assume |T| = |S n H: T| and let W be the weak closure of T
in S with respect to G. Then one of the following holds:

1 w=T.

(2) Tis cyclic and S is wreathed, dihedral, or semidihedral.

(3 W =T x T9is abelian.

(4) T is elementary, |W| = |T?, Z(W) = W = ®(W) and |S: W| = 2.

Proof. Assume W # T. Then by 4.4, T'is abelianand T x T < Sn H
forsome 77 # T. As|T| > |SnH:T|,Sn H=T x T9 If Tis cyclic and
W = S n H, then |S: W| = 2so Sis wreathed. So take S n H < W. Then
S N H is not the weak closure of T in Ny(S n H), so if m(T) = 1 then
|S n H| = 4. Then by a result of Suzuki, S is dihedral or semidihedral. So
take m(T) > 1.

By 4.5, T'is elementary and if V'is a conjugate of 7'in Ng(S n H) not contained
in Hyithen VA H=1. Hence [V(HN S)| = |T®. Let Z=Hn Sn G,
A=V(HnNS). Byds5 Z = Z(A)and ZV = Ny(V). Asall elements in 4 but
not in ZV or TZ are of order 4, (TZ)® n A = {TZ, VZ}. Thus

INs(4): N(TZ)| < 2.

But Ny(TZ) = AN(T) = ATZ = A. Thus as |T| > 2, if T* < Ny(4) then
T* ~ ZT or T* n ZV are nontrivial and hence T* < ZT or T* < ZV. So
W=A ASZ=[T,V],Z=W = ®&W).

THEOREM 4.8. Assume |T| > |Sn H: T|,0G) = 1 and m(T) > 1. Let W
be the weak closure of T in S with respect to G. Then one of the following holds :

(1) w=oG.

(2) O*(GT) = O,(GT) x [T, G] = E, x L,(2".

Proof. Suppose (T%y = 0,({T°)) x [T, G] with [T, G] a Bender group.
If se€ S — W, then s centralizes an element u of 0,({T°)»)* and an element v
of S n [T, G]. Further we may takeuve T,soby4.5,se Hn S = W < (T%.
Hence 0% (GT) = {T%). Therefore by 4.2, 4.6, and 4.7, we may take W as in
4.7.4. Let GT be a minimal counterexample. Define Z = Z(W) and let V be
a conjugate of Tin S — H. Then ZT and ZV contain all involutions in W, so
Z = Q,(R) where R = W n G. Minimality of G implies R is not Sylow in a
normal subgroup of G. As usual either G = E(G) or F*(G) is a 2-group. Let
ueSnG-—R

Assume Z < 0,(G). Claim Z == GT. This is clear if Z = Q,(0,(G)), so
we may assume u is an involution in 0,(G) — Z. Then R = [u, T] < 0,(G)
and therefore S N G = 0,(G). Now G = {(Ng({t)(S N G)):te T*) so by
induction on the order of G we may take G = Ng(P), where P = {t)(S n G),
for some t € T#. But

|P: Cp(Z)| < 2 > |P: Cpu),

so Z is characteristic in P and hence normal in GT.
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Suppose 0,(G) = F*(G). Then by 2.6.2, O(Q) < C(0,(G)) and by 2.2,
O(Q) = 1. Therefore H n S <= H and then (H n S)/Z serves in the role of T
in G/Z for Lemma 4.6. Hence 4.6 implies R is Sylow in a normal subgroup of
G, a contradiction.

So G = E(G). Now G/Z has abelian Sylow 2-groups, so as Z < Z(G), G
is the central product of copies of SL,(5). As T centralizes a hyperplane of
(S n G)/Z, T fixes each component of G, so G is quasisimple. Then |Z| = 2, a
contradiction.

Arguing as in the last paragraph, G is quasisimple. By Corollary 4 in [5]
there exists an element of Z* fused to ue S — W, and [[Z, 4]| < 2. Hence
A = Cy(u) = Z(S)is of index at most 2 in Z. Notice as R’ and [R, u] are con-
tained in Z(R), (SN G) < <R, [R,u]) < A. Thus if 4 < Z(G), then
(S N G)/A is abelian of order at least 8, so G/A has a trivial multiplier, a contra-
diction.

So 4 £ Z(G). Now W < N(A), so minimality of G implies O(N(A))W <
N(4)and hence Z < O,, ,(N(A4)). Therefore by Corollary 2 in [5], there exists
AP < S, A £ W.

By Alperin’s fusion theorem we may take 44 < X < S and g € N(X).
A < Z(S),s0 A? < Z(X). Hence 4 = Z n X and 44° = Q,(Z(X)), so we
may take X = A4°. (SNG) < A < X, so Sn GeSyl, (N(X)). Then we
may take

geY={8nG, S nG).
Notice Y centralizes B = 4 n A° and then acts on X/B. As |X/B| = 4,
|0%(Y): O*(Y) n C(X)| < 3,

so S N G has a subgroup D of index 2 with DC(X) == Y. We may take
g € N(D) by a Frattini argument. But 4 = Z(D), or D n R is quaternion and
A = D', a contradiction.

Lemma 4.5, Lemma 4.7, and Theorem 4.8 immediately yield Theorem 3.

LemMMA 4.9. Let Q be a solvable, G semisimple, and A a component of G.
Assume m(Q) > 1, A £ H, and m(T) = m(Cy4)(T)). Then C,(T) — Z(A4)
contains a 2-element.

Proof. Assume GQ is a counterexample. By 2.8 we may take G = 4. Let
R=SnGandU = Cx(T). U < Z(G),som(T) = m(U). Letr € No(TU) —
Uwithr?e U. Thenrinverts TT" "G = [T,r] =Z = T. AsZ < Z(G) it
follows that ®(Z) = 1, so ®(T) = 1. Therefore as m(T) > m(U), TZ =
Q,(TU) is the weak closure of T in S n H with respect to G.

Set O(T) = O({C4(t): t e T*D). As®(T) = 1and Q is solvable we may take
Q = O(T)T. Let te T* and t* e TU. Then t* = tz, some z € Z < Z(GT),
so0 Cgr(t) = Cgr(t¥). Thus [T, T*] = 1, so as TU € Syl, (H), TU = T*U.
Also O(T) = 0(T*). Thus (QU)* = &(T*)T*U = QU. Hence Q is tightly
embedded in GT = GT/U. Further Cx(T) = N{(TZ) and |[Nx(TZ): U| <
|T|,s0|Cg(T)| < |T|. Hence.by4.8,either [T, G] = 1orGT = E, x L,(2".
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In the first case [7, G] = 1 by 2.1. In the second case G has a cyclic multiplier.
So in any event we have a contradiction.

5. The proof of Theorem 2

Assume the hypothesis of Theorem 2. If T' = 1 for each g € G — H, then
Theorem 3.3 implies that {Q%) n H is strongly embedded in {Q°> or Q0 = G.

Therefore assume T # 1. By symmetry between Q and Q¢ we may assume
|T| = |No(T)l,. Now, with suitable change of notation, Hypothesis 4.3 is
satisfied with respect to the action of T on Q, so by 4.4, either T2 S or
Ns(T) = T x (Ns(T) n Q) = T x T. Inthe former case as |T| > |[Ny(T)|, =
9L, =T, S=Tx (SNnQ)=Tx T

6. The proof of Theorem 5

In this section we assume the following hypothesis.

HypotHesis 6.1. G is a group, D < G, D = D/O(D). D is the central
product of semisimple subgroups A;, 1 < i < r, permuted by H = Ng(D) under
conjugation. Further:

(1) Iftandt’ are 2-elements centralizing A; and A; respectively, and t ¢ Z(G),
then g € H.

() IfX < H? with XO(D) > A, theng € H.

We wish to prove the following theorem:

THEOREM 5. Assume Hypothesis 6.1 with H # G. Then either

(1) D= A,,or

2 D= A,4,, m(4)) = 1, and if a;, i = 1, 2, are commuting involutions
with a; € Z(A4,), then either a;, = a, or a,a, € Z(G).

Throughout this section and until the proof of Theorem 5 is complete, we
assume G is a counter example to Theorem 5. Set 4 = 4,.

Lemma 6.2. Z(G) = 1.

Proof. Let ge N(DZ(G)). Then D’ < DZ(G) < H, so by 6.1.2, ge H.
That is, N(DZ(G)) = N(D). Similarly if ¢ is a 2-element centralizing
A Z(G)|Z(G)O(D) then A! < A,Z(G) < H, so t € H and hence ¢ centralizes
A;. Therefore DZ(G)/Z(G) satisfies Hypothesis 6.1 in G/Z(G). Assume Z(G) #
1. Then minimality of G implies (1) or (2) of Theorem 5 holds in G/Z(G), and
as G does not satisfy (1), it must be (2). Choose a; as in (2) and let a = a,a,.
Then aZ(G) is in the center of G/Z(G) and we may assume a ¢ Z(G). Now for
g € G, & € aZ(G) centralizes 4, as above, so by 6.1.1, G < H, a contradiction.

LemMaA 6.3. H acts transitively on the groups A,.

Proof. Assume not and let B be the product of all those 4; conjugate to A
in H. By Theorem 2 there exists g € G — H such that a Sylow 2-group T of
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B? n H is nontrivial. By 6.1.2, [T, A] # 1, so by 2.1, T £ O,(BT). Hence
Theorems 2 and 3 imply either T is cyclic and B has dihedral or quaternion
Sylow 2-groups, or BT =~ E, x L,(2"). Hence A = Bis quasisimple. Similarly
setting L = E(Cp(A)), L has cyclic or dihedral Sylow 2-groups, or L =~ L,(2™).
Choose m(A4) = m(L).

Assume TA =~ E, x L,(2"). Let T < V e Syl, (T4), and let Y be a cyclic
subgroup of order 2" — 1in N,(¥). Let U = Cy(d4). Then Y is transitive on
[V, Y]* = (V n A)*. Let Y, be a similar subgroup in 4? normalizing ¥ and
set X = (Y, Y,). Now for x € X, U n U” centralizes 4 and 4%, so by 6.1.1,
either x e H n X or U n U* = 1. Therefore the action of X on V satisfies the
Hypothesis of 3.1, and that lemma implies that either |V| = 8 or X normalizes
[Y,V]. Inanycaseas T =[Y, V] # VnAd=[Y,V]and T[Y, V] =V,
we have a contradiction.

So T'is cyclic and 4 has quaternion or dihedral Sylow 2-groups. If m(L) = 1
and Z*(L) £ A then we can apply Theorems 2 and 3 with Z(L)A4 in the role of
0 and obtain a contradiction. Hence we may assume 4 and L have dihedral
Sylow 2-groups. Let ¢ be the involution in 7 and let @ and b be involutions in
A and L, respectively, centralized by t. Let K = A4?. {C(a), C(b)) < H, so by
6.1.2, K £ (Cg(a), Cg(b)). Further Cx(a) and Cy(b) have cyclic Sylow 2-groups,
so by 3.9, ab centralizes K. Hence by 6.1.1, C(ab) < H?. But ab centralizes a
4-group in A whereas m(4 n H?) = 1, a contradiction.

Given a conjugate H? of H define U(H?) = Uyx(H?) to be the set of 4-groups
U contained in H such that C4(u) < H? for each u € U*. Define A(H) to be
the set of conjugates H? distinct from H such that U(H?) is nonempty.

THEOREM 6.4. A(H) is empty.

For the remainder of this section assume Theorem 6.4 to be false and let
H°ec A(H). Let L, = A% and L = L,. Let T e Syl, (N, (4)) and S a T-
invariant Sylow 2-group of 4 with S n H? € Syl, (A n H?. In the next two
lemmas let U € U(H?).

LeEMMA 6.5.
() U< NA4A.
2 Ifm(A) = 1then A n H* — Z*(A) contains a 2-element.

Proof. A £ T, (H) < Hsoby28, U< N(4). If the components of 4
satisfy Hypothesis I, then (2) is obvious. Hence by 2.9 we may assume
m(Z*(A4)) > 1. In this case we will apply 4.9. Now m(I';, ;((Z*(4)) > 1, so
Z*(A) contains a member V of Uys(H). Considering the action of ¥ on Z*(D?),
Q = Z*(D% n H has 2-rank at least 2. Notice Z*(D) is tightly embedded in G.
Hence by Theorem 2,

m(Q) = m(Z*(D) n HY).
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Further if X e Syl, (Q) then by (1), Q,(X) < N(4). Hence
m(Nx(4)) = m(Z*(4) n C(Nx(4)).
Now (2) follows from 4.9.
LEMMA 6.6. m(A4) > 1.

Proof. Assume m(4) =1. A4 <T, y(N(4)), so by 3.5, U< AC(A),
Autg (A) contains no 2-subgroup W such that W contains a quaternion group
and m(Z(W)) = 2, and if V is a 2-group in N(4) with m(V) > 2, then
A < T, y(N()).

As U < AC(A), Ty, y(N(4) < H? contains a Sylow 2-group Q of A.
Similarly 4; n H? contains a Sylow 2-group Q; of 4, for each i. Now X =
Q'+ 0,_y is a 2-group in H? with I'; x(G) < H. Suppose r > 2. Then
m(X) >2andasm(X) < 2,r=3,and 9, n @, = 1. Butasr = 3is odd,
we may assume X acts faithfully on L, contradicting 3.5.3.

So r = 2. We may assume Z*(4,) # Z*(4,), so @, n Q, = 1. Now
Y = Q,0, has a subgroup W of index at most 2 fixing L. As C(z) < H for
each ze Z(Y) = Q,(Y), Cy(L) = 1, so W is isomorphic to a subgroup of
Autg (L). But as Q; n Q, = 1, W contains a quaternion subgroup, and
m(Z(W)) = 2, a contradiction.

LemMMA 6.7. m(L n H) = 2 < m(4A n H?), so UH®) n L is nonempty.
Proof. This follows from 6.5, 6.6, and 3.8.

LemMa 6.8. If |T| = |N4(L)|, then there exists x € A — N(L) such that
T n T* is of even order, and thus Z*(L) n Z*(L) # 1.

Proof. 1If not, apply Theorem 3 to the action of T on 4. By 6.7, m(T) > 1.
If TA =~ E, x L,(2") the argument in the second paragraph of the proof of 6.3
can be repeated verbatim.

LEMMA 6.9. D = A,4,.

Proof. Assumer > 2. Let P be a 2-group in L n H containing T and max-
imal with respect to {4*> # D. By 6.5and 6.7, P # 1. Let Q be a P-invariant
Sylow 2-group of (4%) N H? and R = Ny(P). Claim R = Q. Assume not
and let x € No(RP) — R. Then P < PP* < PR. As xe H? LL* n {4") is
of odd order. But this is impossible as P < PP* < {4, P). So R = Q.
[P,O] =1 by 41. By 65, Qn A £ Z(4), so P < N(4). Hence P =
T e Syl, (L n H).

Nextlet T, € Syl, (L, n H)and V = TT,. WehaveshownR = S n H? =
Ng(V). Claim R = S. Assume not and let x € Ns(RV) — R, x*e R. If
Vn V* # 1 then

xeN(FV V)< SnH =R,
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a contradiction. So V' n V* = 1, and thus |R| > |V|. But by symmetry be-
tween H and H? we may choose |T| = |R], so V=T < L. But by 6.5,
T, £ Z(L,), so V £ L. Thus R = S and then by 4.4.1, T e Syl, (L).

Let T;eSyl, (L), T; < H, X = T\T, - - T,_, and Y = XT,. By 4.2 there
exists a € 4 such that ¥ # Y* < YS. Then

2
X118 > XS] > (XX > X
X n X9

Thus |X n X° > |X|/|IS| = |X: T|. Also a¢ HY% so by 6.1, no element of
(X%)* centralizes L. Hence |X n X° = 1. It follows that T = X, a contra-
diction.

LemMA 6.10. If A n H? £ N(L) and T £ Z*(L) there exists ae€ S n H?
with LY = L,. Further R=TT*°n S # 1, R < Z(TT%), RT = TT* and
TT¢ is abelian.

Proof. By hypothesis there exists a € 4 with L{ = L,. By 6.9 we may pick
a to be a 2-element and hence pick a € S n H?. By hypothesis T £ Z*(L), so
T # T° Thus TT*n S = R # 1. R is centralized by T and 7% so R <
Z(TT*. T n T* < Z*(L), so R projects on T/Z(L). Thus as R < Z(TT"),
T and then TT* is abelian.

LEMMA 6.11. There exists H? € A(H) such that W = Ng(L) is of maximal
order and W £ Z*(A).

Proof. Choose H? € A(H) so that W has maximal order. Let P be a WT-
invariant Sylow 2-group of L containing a Sylow 2-group of L n H. By
hypothesis |W| = |T|, so by 6.8 there exists y € P n H with 4 # A4°.

Assume W < Z*(A). [W, L] # 1, by 6.7 we have m(W) > 1,and Z(L) # 1,
so by 4.8 applied to the action of W on L, |W| < |Np(W)| < 2|T| < 2|W|.
Therefore |T| = |W| and there exists a € S with L, = [!. Thus T < Z*(L),
or else we could replace H? by H?"!. Suppose W* n WTy is nonempty for
some W* < WT<y) and xe L. Then W* < N(W) < H and W* moves 4,
so substituting H* for H? we are done, since T = Z*(L) n T<{y) fixes A.
Thus we may assume WT is the weak closure of Win W(P n H).

Againas[W, L] # 1,m(W) > 1,and Z(L) # 1, 4.6 applied to the action of
W on L implies WT is not the weak closure of Win WP,soby4.5.5, W = Q,;(W)
and there is a conjugate W, of W under L acting regularly on A — {T'}, where
A = WS A WT. Similarly there is a conjugate T, of T under A4 acting regularly
on A — {W}. Set X = (TW, T,, W,;>. Then (W,TW)* = Np(A)* is regular
on A — {T} and Sylow in Cx(T)* = Nyx(T)*, so by 3.3, X2 = L,(g) in its
doubly transitive representation on g + 1 letters, where ¢ = |W|. In par-
ticular the stabilizer of W and T in X is transitive on T#. As {(ydTe
Syl, (C(TW)), a Frattini argument implies this fusion takes place in N({y)>T).

Now y* € Tand as y moves 4, 6.5.1 implies 2 € T#. Thus {(y?) = ®(T{p)),
impossible as N({y)»T) is transitive on T#.
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LemMA 6.12. Let U = Q(T). Then:

(1) m(T) = m(Ns(L)).

(2) Either {U, U*} = U4~ SU, someae A n H% and if L n H £ N(A)
then Q,(S) is abelian, or there exists be A — HY with UU® = U x U®.

Proof. Assume {U, U°} = U4~ SU,someae A n H% By4.2, U # U°
UU®= SU, so |S: Ng(U)| = 2. By 6.5, Q,(S) < Ns(L) = Ng(U), so m(T) <
m(Ng(L)). Also Ng(L) £ Z*(A), so if L n H £ N(A), then by 6.10, Ny(L) >
Q,(S) is abelian.

So we may assume there exists be 4 — H? with U® < SU N H? As
b¢ H, Un UP = 1. By 6.5, Ub = Q,(U% < N(L),so by 4.1, UU® = U x
U®. Thus m(T) < m(Ns(L)). Soin any event m(T) < m(Ns(L)). By symmetry,
m(T) = m(Ns(L)).

LEMMA 6.13. Choose H? € A(H) such that W = Ng(L) £ Z*(A) and W is of
maximal order. Set U = Q(T) and V = Q(W). Then

(1) Q,(S) = Vis abelian, and

(2) UV contains the weak closure of U in SU with respect to A.

Proof. Maximality of (W) and 6.8 implies there exists y € L n H with
A # A¥. By 6.12 we may assume there exists be 4 — H? with UU® = U x U®.
Also by 6.12, m(U) = m(V), so UU® = UV.

If UV is the weak closure of U in US then it remains to show only that
V = Q,(S), so we may choose b to be an involution. If UV is not the weak
closure of Uin US then let U* < Ngy(UV), U* £ UV. If U* n UV # 1 then
U< CWU*n UV) < H*and then U = Q,(U) < N(I¥), so that U centralizes
U*. Hence U™ = Q,(U*) < Ngy(U), so U* < Q,(Ngy(L)) = UV, a contra-
diction. Thus U* n UV = 1, so there exists an involutioni € U* — (S n H9)U.
i=du deS,uecU Theni’=1andd=iu"'eNWUV), so 1 = (du)® =
d*u’u e d*UV. Thus d? € UV. In this case set b = d, so that in any event,
b* e UV.

Then b centralizes V = [UV, b]. By 6.10, WW? = W’R,R= WW” n L # 1.
Hence w € W is of the form wir. As[b, A”] = 1 and Cy(b) = 1, [w, b] = 1if
and onlyif w = w}and we Z*(4). SoV < Z*(4)and [V, y] = 1.

Let P be a T<y)W-invariant Sylow 2-group of L. By 4.2 there is x € L with
VV* = VxV* = K < PV. V < Z*(4) and Z*(A4) is tightly embedded in G.
Also by 6.12, m(W) = m(V), so K is the weak closure of ¥ in VP n H. Thus
we can apply 4.6 to the action of ¥ on L and conclude there is a conjugate V;
of Vin PV actingon Kwith V, £ K. If Vi n K # 1thenV < C(V; n K) <
CV,), so V,nK=1. V; acts on WT{y) = C(V% for each V* < K.
Further Cy(y) = W 4 = W Z*¥(4), so unless |W: W n Z*(4)| = 2,
WT is the unique abelian subgroup of index 2 in WT'(y), and then V; acts on
WT. As |W| is maximal, |W| > |T|,soas Wn W* = 1forde V{, WT =
W x W® Thus [d, WT'] = T is inverted by d, so as m(Vy) > 1, T = W is
elementary abelian. Therefore W = V < Z*(4), contrary to hypothesis.
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So |W: W Z¥(A)| = 2 and |WT: Cyr(y)| = 2. Indeed the same argument
shows [Ny (WT)| < 2. Now Z = Cyy(y) = Z(TW y) is of index 4 in
TW{y>, so |Vy: Ny (WT)| < 2. Therefore |V;| = 4 and TW = W x W*
where {d) = Ny (WT).

Let X = ViWT{(p). Vin®X) =1 # V n ®&X), so V; is not conjugate
to Vin N(X). Thus Npy(X) = XNpp(UV) = X. Therefore PW = X. Then
P/U =~ X|UYV is the split extension of a 4-group VT (Y »/UV by the 4-group
VV,U/UV and thus is abelian or order 16 or isomorphic to Z, x Dg. P/U is
Sylow in the semisimple group 4/Z*(A4), so A/Z*(4) = L,(16) or L,(q,) X
L,(q,), g; = +3 mod 8. In the first case 4/Z*(A4) has a trivial multiplier, a
contradiction. In the second case we must have 4 = SL,(g,) x SL,(q,). But
then A does not admit the action of a 4-group U tightly embedded in UA.

We are now in a position to derive a contradiction and establish Theorem 6.4.
Choose H? € A(H) with W = Ng(L) of maximal order and W £ Z*(4). This
is possible by 6.11. By 6.13, Q,(S) = ¥V is abelian and setting U = Q,(T),
UV contains the weak closure of U in US with respect to A. Now as V is abelian
and ¥V n Z*(4) # 1, Goldschmidt’s fusion theorem [5] implies either 4/Z*(A4)
has a component X isomorphic to Sz(8), or V < Z*(4). In the first case V
centralizes each involution in a Sylow 2-group of X? and the other automorphism
group of X is of odd order. So U < XC(X) and |U| > |V| so Cy(X) # 1.
Let B be the product of all such components. Then BUV/BV is weakly closed
in BUS/BV with respect to 4/BV, so by 4.2, [U, A/BV] = 1. Thus 4 <
O(D)(A n H?Y), a contradiction.

7. More Theorem 5

In this section G continues to be a counterexample to Theorem 5. In addition
we assume the following hypothesis:

HypoTHESIS 7.1. ¢t is an involution in H with C(t) < H? # H. Set L, = AY,
L = Ll'

By 6.4, H? contains no 4-group U with C(u) < H, allu € U* and of course
the same holds with the roles of H and H? reversed.

LemMMA 7.2. m(Cp(AA") n C()) < 1 < m(Cx(2)).
Proof. This follows from our initial remark and 6.1.
LemMA 7.3. Assume A # A*'. Then D = AA* and m(4) > 1.

Proof. Let B = Cy, o(f)°. If D # AA', then by 7.2, m(B) = 1. Thus
m(A) = 1 and Z*(4) # Z*(A").

So we may assume m(4) = 1 and 0,(4) # 0,(A4"), and it remains to exhibit
a contradiction. Now 4 £ HY so B = E(D n H?~. Let z be an involution
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with z € Z*(B). Then by 2.7, either B = L, [B,L] = 1, or B = Cig, 4(2)'.
In any case [L, z] = 1, a contradiction.
LeMMA 7.4. Assume A® = A. Then D = A;A, and A{t) = PGL,(q), q odd.

Proof. By 7.3, t fixes each 4;. If m(4) = 1 then as m(C(¢t) n Z*(D)) < 1,
Z*(A) = Z*(A,) for each i. Further ¢ inverts elements x; € 4;,i = 1, 2, of
order 4, so U = {xx,, x?) is a 4-group in C(¢). Hence by 7.2, D = A,A4,.

Som(A4) > 1. Let R € Syl, (C,(?)). Then m(R) = 1. Let r be the involution
in R. Similarly let R, € Syl, (C4,(¢)), and suppose D # A;4,. Then m(RR,) =
1, so r is the unique involution in RR,. Hence R = R, = {r), so A{t) has
dihedral or semidihedral Sylow 2-groups. This is impossible as m(4) > 1 and
re Z*(A). Thus D = 4. 4,.

Suppose 4 has dihedral Sylow 2-groups. Then A = L,(q) or A,, so as
m(C(t)) = 1, A(t) = PGL,(q). Hence we may assume this is not the case.
So |R| > 2, and r is in the subgroup R,, of index at most 2 in R, fixing L. Let
te T e Syl, (C(r)) and T, = Np(A). Let RT, < S € Syl, (T, A4).

Suppose ¢ induces an inner automorphism on A. Then ¢t = ab, a € R,
be C(A) and as m(R) = 1, |a| > 2, a* € Z*(A), and R is cyclic Sylow 2-group
of C,(a). Then by 5.4.8 in [6], either S n 4 is dihedral or semidihedral or
R = {a). The former is impossible as 4 is semisimple and |Z*(4)|, # 1. In
the latter case

ICis n aycay(@| = 4,

so (S N A)/<{a*) is dihedral or semidihedral, yielding the same contradiction.

So ¢ induces an outer automorphism on 4. By 4.2 there exists T3 # T, <
ToR. If a e H? then we may choose r € T,T§ N R, and r induces an inner
automorphism on L. So T n T, = 1, |R| = |T,l|, and by 4.4, T, is abelian.
If |R| = |T,| then by Theorem 3, A has dihedral Sylow 2-groups. So |T,| < |R|
and then by symmetry between H and HY |T| = |R|, and for xe T — T,
R} = Ry < A n A* < Z*(4). Hence R is cyclic. Also R and T, normalize
each other so RT, = R x T,.

Let RT, be of index 2in X < S. If |T,| > 2 then RT, is the unique abelian
subgroup of index 2 in X, so Ng(X) = XCs(¢) = X and X = S. But then
|S N 4: Ry| = 4, a contradiction as above. Hence T, = {¢) and R is cyclic
of order 4. Now 3.7 yields the desired conclusion.

LEMMA 7.5. A' # A.

Proof. Assume A' = A. By 7.4, A has dihedral Sylow 2-groups. ¢ cen-
tralizes involutions @ and b in 4 and 4,. Suppose neither a or b acts on L.
Then by 2.8, ab centralizes L, so C(ab) < H. But ab centralizes a 4-group in 4,
against 7.2. Thus we may assume a acts on L, and ¢t € Cy(a). As[b,t] = 1,
b acts on L. Now we repeat the arguments in the last paragraph of the proof
of 6.3 to reach a contradiction.
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8. Still more Theorem 5
In this section G continues to be a counterexample to Theorem 5.
LemMA 8.1. Let a be an involution with C(a) < H. Then either

(1) ae Hlifandonlyifge H; or
2 D= AA,,andift =a’e H,g¢ H, then A} = A, and m(4) > 1.

Proof. This is a direct consequence of 7.3, 7.4, and 7.5.

LemMa 8.2. D = A,4,.

Proof. Assume D # A,A,, and let a be an involution in 4. By 8.1, a € H?
ifand only if g € H. Thusifa # a’ € C(a)thenge Hsoa’ € A’ = A;, some i.

Further b = aa? centralizes some A;, so by 6.1 and 8.1, b € H* if and only if
x € H. Thus 3.3 yields a contradiction.

LemMma 8.3. m(4) > 1.

Proof. Assume m(A) = 1. Then we may assume Z*(4,) # Z*(4,). Thus
Z*(D) = UO(D) where U is a 4-group. Further by 8.1, for each ue U¥,
u € H? if and only if g € H. Hence 3.3 again yields a contradiction as U* is
not fused in H.

LemMMA 8.4. Let T, e Syl, (4;) and T\ T, < SeSyl, (G). Then T, v T, is
strongly closed in H n S with respect to H and in Ng(T;) with respect to G.
Proof. See 8.1 and 8.2.

Now 8.3, 8.4, and 3.4 yield a contradiction. This completes the proof of
Theorem 5.

9. Groups of component type

In this section we operate under the following hypothesis:

HyproTtHESIS 9.1. G is a finite group. For each involution t € G,

05, 6(C(1)) = O(C)E(C()).

Recall & is the set of components of the groups E(C(t)) as ¢ ranges over all
involutions in G, and #* is the set of maximal elements of % under the partial
order defined in Section 1.

LemMMA 9.2. Let t be an involution in G, A = E(C(t)), Ae £*, and X < G.
Assumet € X, A < E(X) and u is an involution centralizing t and [E(X), A] = B.
Then:

(1) B < E(C(w).

(2) Either A= E(X) or A = Cy, o) for some component L # L' of
E(X) and of E(C(u)).
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Proof. By 2.7, A < Oy, g(C(u)), so by 9.1, A < E(C(u)). Then B =
[B, A] < E(C(w)). If A =2 E(C(u)) we are done, so assume A ﬁ E(C(u)).
Then by 2.7 there is a component L of E(C(u)) such that either L = [L, ¢t] and
A<LorL # Land 4 = C 4t). As A e £*, the first case is impossible.
Now 4 < B = [B, A] < LL and by 2.5, either 4 = B2 E(X) or LL =
B < E(X).

LemMMA 9.3. Let t be an involution in G and A = E(C(t)) where A € £*.
Let a be an involution centralizing {t YA with A = E(C(a)). Let

te SeSyl, (CKadAd)) and S < T e Syl, (C(A)).

Then:

(1) There is a component K # K' of E(C(a)) with A = Cig, ().

(2) S has a subgroup R of index 2 centralizing K and [K, t] < E(C(r)) for
eachr e R*. [K, t] = E(C(r)) if r € Cx(2).

(3) IfyeS — Rwithte C(y) and |Cs(y)| = 8 then A = E(C(y)).

(4) Either there exists an involution b in the center of T with [K, t] =2 E(C(b))
or T is dihedral or semidihedral.

S) If <ad> = Q,(0,(K, t])) and K € L* then either a € Z*(C(A)) or T is
dihedral or semidihedral, and a* moves K for each a* # a in a““? n C(a).

(6) Either m(Cr(t)) = 2 or there exists a 4-group U < C(A) with KK' =
E(C(u)) for eachue U*.

Proof. (1) follows from 9.2. Now S acts on [E(C(a)), 4] = [K, ¢] and then
has a subgroup R of index 2 fixing K. If R # Cy(K) let x € R — C(K) with
x*> € C(K), and let X = {(x)>0,(K). Then by 2.5, K < {Ng(X), 4) < N(X),
so [X, K] = 1, a contradiction. Now by 9.2, [K, t] < E(C(r)), each r € R*
and if [#, 7] = 1 then even [K, t] = E(C(r)).

Suppose y € S — R with [#, y] = 1 and Cg(y) = Y has order at least 8.
Assume 4 == E(C(»)). By (1) there is a component L # L' of E(C(y)) with
A = Cy 4@). If[L,t] = [K, t] then t € {yt, y) centralizes K, a contradic-
tion. By (2) there is a subgroup Y, of index 2 in Y with [L, 1] < C(Y,). As
| Yol > 4, ¢ centralizes an element 1 # ze R n Y,. By (2) [L, #] and [K, ¢]
are normal in E(C(z)), a contradiction.

Assume (@) = Q,(0,([K, t])) and K € &*, but a ¢ Z*(C(4)). Then there
existsa # a*€ S, x € C(4). Letre R. By (2), [K, t] < E(C(r)). As Ke ¥*
and a € Z(K), 9.2 implies [K, t] =2 E(C(r)). Thus [K, t] = {4FCy  As
a # a*,

[K, t] # [K, t]* = (4EC@Dy,

so Cr([K, t]*) = 1. Hence (2) implies |Cs(a*)| = 4. Thus either S = Cg(a®) is
of order 4 and T is dihedral or semidihedral, or S is nonabelian dihedral or
semidihedral and {a) is characteristic in S, so that T = S.

Notice thatif b € Z(T) with 4 =2 E(C(b)) and |R| > 4, then (2) and (3) imply
[K, t] = E(C(b)). So assume (4) is false and choose a with S maximal subject
to A = E(C(a)). Let b e N(S) — S with b> € S. Then Z = (a, a*) < Z(S)
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and by maximality of S, 4 <= E(C(aa®)), so a> € S — R. As T is not dihedral
or semidihedral, |S| > 4, so (3) implies 4 <= E(C(a®)). As b e C(4), this is
impossible.

Finally assume m(Cy(¢)) > 3. Then by (2), KK'=s E(C(u)) for each
u € Cg(?). By (4) S = T, so Cg(t) contains a 4-group.

HyPOTHESIS 9.4. ¢ is an involution in G and A < E(C(t)) where A € ¥*.
Further one of the following holds :

(1) teZ(A).

(2) tis contained in a 4-group U with A = E(C(u)), eachu e U*.

(3) s is an involution in A with A = [A, 5], and A = {A°®).

LEMMA 9.5. Assume hypothesis 9.4. Let a be an involution centralizing A{t>
and in case 9.4.2 assume a centralizes U. Then A 2 E(C(a)).

Proof. Assume A =2 E(C(a)). By 9.3 there is a component K # K' of
E(C(a)) with A = Cig, 4(t)'. Then Z(4) < Z(KK'), soin 9.4.1, ¢ centralizes K,
a contradiction. Further in 9.4.2, U acts on KK* = [4, E(C(a))], so some
ue U* fixes K. But we could have chosen ¢t = u. Finally in 9.4.3, C(s) nor-
malizes the semisimple group (4°®) = X, while by 2.5, KK* = {Cg(s), 4) <
N(X), contradicting 2.1.

LemMaA 9.6. Assume hypothesis 9.4. Let a be an involution centralizing A.
Then either A @ E(C(a)), or we are in 9.4.2, C(A) has dihedral Sylow 2-groups,
and a ¢ 0*(C(A4)).

Proof. Letae T e Syl, (C(4)). We may choose ¢ € T, and in 9.4.2, choose
U < T. By 9.5 we may take t € Z(T). Then another application of 9.5 implies
we are in 9.4.2. As U intersects any subgroup of T of index 2 nontrivially, 9.3.2
and 9.3.4 imply T'is dihedral. As a is not conjugate to ¢ in C(A4), a ¢ O*(C(4)).

THEOREM 9.7. Assume Hypothesis 9.4.

Then one of the following holds :

1) 4 = AN(A) = A,(C(a)) for each involution a € C(A), and [ A, A%] #
1 for each g € G.

Q) D= A,N)) = A4*, x € C(0,(4)). m(4) = 1. D = A (C(a)), each
involution a € C(A) and if [A, A°] = 1 then A* = 4.

(B) 4 =A,N(A) and [A4, A%] # 1 for ge G. C(A) has dihedral Sylow
2-groups, 0,(4) = 1, and A = A ,(C(a)) for each involution a in O*(C(A)).

4 A= E®WG.

Proof. Set D = A (N(A)). Suppose [4, A’] = 1. By 9.6, 4 = E(C(a)) for
each involution ae€ 4%. By 9.2, 4 = E(N(D?). By symmetry 4* <2 D for
each A* <1 D?. Hence D? = D.

Therefore if 4 2@ E(C(a)), A* =2 E(C(a’)), and 4* <= D, then x e N(D)
and 4" = E(C(a)), so xg~! and then g normalizes D.
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Assume D # A. By 9.6, A? = E(C(a)), each involution a € 4, so that
A= (A°®) < D. Hence 9.4.1 or 9.4.3 holds, and by 9.6, 4 <= E(C(b)) for
each involution b in C(4).

Suppose A normalizes D?. Either m(4) = 1 and we pick t e Z(4), or 4
contains a 4-group U with C(u) < N(D), each u € U*. Then by 2.8 and 3.8
there is a 4-group V' < T'; (49) and by symmetry a 4-group Win I'y ,(Cp(4)).
Now by 2.7 either A = A? or [4, A?] = 1. Hence g € N(D).

Therefore we can apply Theorem 5 to D and conclude 9.7.2 or 9.7.4 holds.
On the other hand if D = A then 9.7.1. or 9.7.3 holds by 9.6.

10. The proof of Theorem 1

Assume the hypothesis of Theorem 1 and assume further that none of the
conclusions hold. Then m(C(4)) = 2 and by 9.7, there is an involution
a e C(A) with A == E(C(a)). By 9.3 there is a component K # K* of E(C(a))
with 4 = Cig, 4(t)'. Ais a homomorphic image of K, so by hypothesis K € £*.

Suppose K has 9.4. Then by 9.7, K satisfies 9.7.2. So we may choose a € Z(K)
and A has dihedral Sylow 2-groups. By 9.3.5 either a € Z*(C(A4)) or C(4) has
dihedral or semidihedral Sylow 2-groups. Assume [4, 47] = 1. Ifae Z*(C(A4))
we may assume a centralizes a subgroup B = B® covering 4? modulo O(C(4)).
By 2.5, B < C(KK?"), so C(b) < N(KK?") for each involution b in B. We may
take a Sylow 2-group T of Bin 4?. Then v = a’ € C(T) < N(KK"), so v acts
on KK' n C(4%) > A. Asv e Z*(C(4%), [v, A] = 1. Now C(u) < N(KK")
for each involution u in 4, so K = {4, Cx(u)> < N(K?K"), a contradiction.
So assume C(A4) has dihedral Sylow 2-groups. 4? < C(A4) and A4? has dihedral
Sylow 2-groups, so C(A4) has 2 classes of involutions, one in 4?0(C(4)), and
one outside. Moreover 4? contains a 4-group U fused in 4? while by 9.7, 4 is
not normal in E(C(u)) for some u € U*. So t ¢ A°0O(C(4)). Hence a €
A?0(C(A)) and conjugating in C(4) we may assume a € 4. Let S € Syl, (C(4))
with € S and ae Z(S). Let a # a*€ S, x e C(4). By 9.3.5, a moves K,
so b = ta* fixes K and then centralizes KK* by 2.5. Asac A% d =a° '€ A <
KK*. Then d = kk' where k and & are elements of order 4 in K. Letu = b,k
and U = (u, a), where b, is an element of order 4 in {b). Then U is a 4-group
centralizing K* and by 9.7, I'; ((G) < N(KK'). Moreover u centralizes d and
then acts on D = K 'K"™". By 9.7, D does not act on KK*, so by 2.8 and 3.5,
U < DC(D). As a Sylow 2-group of C(D) is cyclic, even U < D. But
D — Z(D) has one class of involutions (4 ")° < a%, so u € a®. So by 9.7, u
is fused to a in N(KK?"), a contradiction. Therefore [4, 4] # 1 and conclu-
sion (3) of Theorem 1 holds.

Therefore K does not satisfy 9.4. Thus by 9.3.6,

m(C(4) n C(t)) = 2.

If m(C(K) n C(a)) > 2 then arguing on K in place of 4 as above, since
[K, K] = 1 we conclude K satisfies (4) of Theorem 1. Then 4 < [K, t] <
E(G). By 2.7 there is a component L of E(G) such that either 4 = Cp ,(¢)" or
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A < L, and as 4 € ¥* it must be the former. So this is not the case and
m(C(K) n C(@)) < 2. Ifae Z([K, t]) then 9.2 implies K == E(C(u)) for each
involution u € Z(K), impossible as K does not satisfy 9.4. Further if 0,(K) # 1
then by 9.3.2 we may pick a € Z([K, t]). So 0,(K) = 1. But now {a)K* <
C(K) and m(C(a) n K*<a)) > 2, a contradiction.

11. The proof of Theorem 4

Assume Theorem 4 to be false and let G be a counterexample of minimal order.
Let 1 # T be a Sylow 2-group of Q¢ n N(Q) acting on a Sylow 2-group R of Q.
T exists by Theorem 2. If R is not cyclic, quaternion, or dihedral, then by
Theorem 3, m(T) > 1 and T < 0,,,(QT), so that by 2.1, [K, ] < O(Q).
Asm(T) > 1, K = C(T)0(Q) = I'y, ((K) < N(Q9. In particular if m(Q) >
1 = m(K), then by 2.7, K <2 O, ¢(KQ’) and then by 2.1, K centralizes a Sylow
2-group of Q. Thus we are in (2). So we may assume m(K) > 1.

For X < G define X ~ K" if K" < (K" n C(X))O(K"). Minimality of G
implies:

(11.1) IfX ~ Qand C(X) # G, then Cx(X) = O, x(C(X)) or

O (CQXDP g« L)
0(Co(X))
for suitable P.

Assume X is a 2-group in 11.1. Let U be a Sylow 2-group of Cx(X) and V' a
Sylow 2-group of Q containing U. Then in the second case of 11.1, X =
Cxu(K/O(K)) < Nxy(XU),s0if V # Uthen Ny(X) > U. Henceif N(X) < G,
then as Cx(X) = O,/ x(C(X)), U = Np(X), so U = V, and (3) is satisfied,
contrary to the choice of G. Therefore:

(11.2) If X is a 2-group with G # N(X) and X ~ K, then
Cx(X) = 0y, ((N(X)).

(11.3) IfK ~ K" then K =2 O,/ g(N(K").
(11.4) ~ is an equivalence relation on K©.

Let ¥(K) be the equivalence class under ~ containing K. If ¢(K) = K¢
then (K% = 0,/ g(N(K)), and then K <= 0,/ ((G). So ¥(K) # K% Set
D = (¥(K)>. If t is a 2-element in G — Z(G) with ¢t ~ K, then by 11.2,
{K": t ~ K"} € 4(K). So if t* ~ K9 € 4(K) then x € N(D). Also if K =
Ng(DY)O(K) then similar arguments show D = D*’. Therefore applying
Theorem 5, with the members of €(K) in the role of the A4,’s, we conclude
%(K) = {K}. Then remarks in the initial paragraph imply Q has a dihedral
Sylow 2-group R and a Sylow 2-group T of H n Qf is cyclic for suitable
ae G — Hand H = N(Q). We conclude R < K and K{¢t) = K{t)|O(K) =
PGL,(q), where T = (t) is of order 2. We may take K = Q.
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Set P = R{t) and let P < S € Syl, (G). Suppose s is a conjugate of ¢ in
S — P. Then {5)Q =~ PGL,(g), so we may assume st € C(Q) and [s, ] = 1.
Let z € Cg(t). Then ¢z is conjugate to ¢ under Q, so st € t% impossible as
{Q} = 4(Q). Thus P = {t® n S). It follows that S e Syl, (G). Further
PQ =1 H, so P is strongly closed in S with respect to G.

As P is strongly closed in S with respect to G, G/Z(G) satisfies the hypothesis
of Theorem 4, so minimality of G implies Z(G) = 1. As {Q} = %(Q),
N(X) < H for each X with Co(X)O(Q) = Q. Suppose a is an involution
centralizing PQ. Let {z) = Z(P). z induces an automorphism in PGL,(q)
on L = Q% so Cr(z) is maximal in L. But L £ {Cy(z), Cr(a)) < H, so az
centralizes L. Hence P < C(az) < HY, a contradiction. Thus C(Q) has odd
order.

Therefore S < Aut (L,(g)), so S/P is cyclic. Minimality of G implies
G = (P%). Suppose a is an involution in S — P. As P is strongly closed in
S and S/P is cyclic, a® n S = Pa. But now considering the transfer of G to
S/P, P is Sylow in a proper normal subgroup of G, a contradiction. Thus as
PQ =~ PGL,(q) and S < Aut (PQ), S = P is dihedral. But this contradicts
3.6, since I'; x(G) is not solvable.
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