NON-CONGRUENCE SUBGROUPS FOR THE HECKE GROUPS $\mathbf{G}(\sqrt{ } 2)$ AND $\mathbf{G}(\sqrt{ } 3)$

BY

L. Alayne Parson

1. Introduction

In [4], Newman exhibited a family of noncongruence subgroups for the modular group. In this note we generalize his construction to the Hecke groups $G(\sqrt{ } 2)$ and $G(\sqrt{ } 3)$.

In [1], Hecke introduced the discontinuous groups $G\left(\lambda_{q}\right)$ which are generated by the two linear fractional transformations $T(z)=-1 / z$ and $S^{\lambda_{q}}(z)=z+\lambda_{q}$. Here $\lambda_{q}=2 \cos (\pi / q)$, where q is an integer, $q \geq 3$. When $q=3$, we have the modular group; when $q=4$ or 6 , the resulting groups are $G(\sqrt{ } 2)$ and $G(\sqrt{ } 3)$.

For notational convenience let m stand for 2 or 3 throughout the remainder of this paper. By identifying the transformation $z^{\prime}=(\alpha z+\beta) /(\gamma z+\delta)$ with the matrix

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

$G(\sqrt{ } m)$ may be regarded as a multiplicative group of 2×2 matrices in which a matrix is identified with its negative. It is known [2], [6], that $G(\sqrt{ } m)$ consists of the entirety of elements of the following two forms:

$$
\begin{align*}
& \left(\begin{array}{cc}
a & b \sqrt{ } m \\
c \sqrt{ } m & d
\end{array}\right), \quad a, b, c, d \in Z, a d-b c m=1 \tag{i}\\
& \left(\begin{array}{cc}
a \sqrt{ } m & b \\
c & d \sqrt{ } m
\end{array}\right), \quad a, b, c, d \in Z, m a d-b c=1 \tag{ii}
\end{align*}
$$

Those of type (i) are called even whereas those of type (ii) are called odd.
For N a positive integer, we define the principal congruence subgroup of level N by

$$
\Gamma_{m}(N)=\left\{M=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in G(\sqrt{ } m): M \equiv \pm I(\bmod N)\right\}
$$

where the congruence is elementwise and takes place in $Z[\sqrt{ } \mathrm{~m}]$. It is easy to verify [5] that the above definition is equivalent to

$$
\begin{align*}
\Gamma_{m}(N)=\left\{M=\left(\begin{array}{cc}
a & b \sqrt{ } m \\
c \sqrt{ } m & d
\end{array}\right): a \equiv d \equiv\right. & \pm 1(\bmod N) \\
& \text { and } b \equiv c \equiv 0(\bmod N)\} \tag{1}
\end{align*}
$$

Received April 3, 1974.

A subgroup Γ of $G(\sqrt{ } m)$ is called a congruence subgroup of level N if $\Gamma_{m}(N) \subset \Gamma$ and N is minimal with respect to this property.

2. Definition of the groups $\Gamma_{4 m n}$

Let $G=\left\langle x_{1}, \ldots, x_{k}\right\rangle$ be the free group of rank k freely generated by x_{1}, \ldots, x_{k}. For every positive integer n, let G_{n} be the subgroup of G consisting of all words of G for which the sum of the exponents of x_{1} is divisible by n. G_{n} is a normal subgroup of G of index n in G. Since G is of rank k, the rank of G_{n} is $1+n(k-1)$ by the Reidemeister-Schreier formula. It is easy to verify that

$$
\begin{equation*}
x_{1}^{n}, x_{1}^{r} x_{j} x_{1}^{-r}, \quad j=2, \ldots, k, r=0, \ldots, n-1 \tag{2}
\end{equation*}
$$

are generators of G_{n}. Since there are exactly $1+n(k-1)$ of them, they are the free generators of G_{n}.

We wish to apply the preceding remarks to the group $\Gamma_{m}(2)$. First, however, it is necessary to show that $\Gamma_{m}(2)$ is free of rank $2 m-1$. Since $\Gamma_{m}(2)$ contains only even elements, the $\operatorname{map} f$ defined by

$$
f\left(\left(\begin{array}{cc}
a & b \sqrt{ } m \\
c \sqrt{ } m & d
\end{array}\right)\right)=\left(\begin{array}{cc}
a & b \\
m c & d
\end{array}\right)
$$

is a homomorphism from $\Gamma_{m}(2)$ into the modular group. From (1) we see that

$$
f\left(\Gamma_{2}(2)\right)=\Gamma(2) \cap \Gamma_{0}(4) \quad \text { and } f\left(\Gamma_{3}(2)\right)=\Gamma(2) \cap \Gamma_{0}(3)
$$

Since $\Gamma(2)$ is a free group of rank 2 and since

$$
\left|\Gamma(2): f\left(\Gamma_{2}(2)\right)\right|=2 \quad \text { and } \quad\left|\Gamma(2): f\left(\Gamma_{3}(2)\right)\right|=4
$$

$\Gamma_{2}(2)$ is a free group of rank 3 and $\Gamma_{3}(2)$ is a free group of rank 5. In [3] Knopp shows that $\Gamma_{2}(2)$ is generated by

$$
\begin{array}{ll}
X_{1}=\left(\begin{array}{cc}
1 & 2 \sqrt{ } 2 \\
0 & 1
\end{array}\right), & X_{2}=\left(\begin{array}{cc}
1 & 0 \\
2 \sqrt{ } 2 & 1
\end{array}\right) \\
X_{3} & =\left(\begin{array}{cc}
-3 & 4 \sqrt{ } 2 \\
-2 \sqrt{ } 2 & 5
\end{array}\right),
\end{array}
$$

and that $\Gamma_{3}(2)$ is generated by

$$
\left.\begin{array}{lll}
X_{1} & =\left(\begin{array}{cc}
1 & 2 \sqrt{ } 3 \\
0 & 1
\end{array}\right), & X_{2}=\left(\begin{array}{cc}
1 & 0 \\
2 \sqrt{ } 3 & 1
\end{array}\right),
\end{array} X_{3}=\left(\begin{array}{cc}
-5 & 6 \sqrt{ } 3 \\
-2 \sqrt{ } 3 & 7
\end{array}\right), ~ \begin{array}{cc}
-5 & 2 \sqrt{ } 3 \\
-6 \sqrt{ } 3 & 7
\end{array}\right), ~ X_{5}=\left(\begin{array}{cc}
-11 & 8 \sqrt{ } 3 \\
-6 \sqrt{ } 3 & 13
\end{array}\right), \quad X_{6}=\left(\begin{array}{cc}
-11 & 6 \sqrt{ } 3 \\
-8 \sqrt{ } 3 & 13
\end{array}\right), ~ l
$$

Since $X_{1} X_{2}^{-1} X_{4} X_{3}=I$ in $\Gamma_{2}(2)$ and $X_{5} X_{3} X_{1} X_{2}^{-1} X_{4} X_{6}=\mathrm{I}$ in $\Gamma_{3}(2)$, we may choose X_{1}, X_{2}, and X_{3} as the free generators of $\Gamma_{2}(2)$ and $X_{1}, X_{2}, X_{3}, X_{4}$, and X_{5} as the free generators of $\Gamma_{3}(2)$.

We now define the groups $\Gamma_{4 m n} . \Gamma_{8 n}$ is the subgroup of $\Gamma_{2}(2)$ generated by the $1+2 n$ elements

$$
\begin{gather*}
\left(\begin{array}{cc}
1 & 2 n \sqrt{ } 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1+8 r & -16 r^{2} \sqrt{ } 2 \\
2 \sqrt{ } 2 & 1-8 r
\end{array}\right) \\
\left(\begin{array}{cc}
-3-8 r & \left(4+16 r+16 r^{2}\right) \sqrt{ } 2 \\
-2 \sqrt{ } 2 & 8 r+5
\end{array}\right), \quad r=0, \ldots, n-1 \tag{3}
\end{gather*}
$$

$\Gamma_{12 n}$ is the subgroup of $\Gamma_{3}(2)$ generated by the $1+4 n$ elements

$$
\begin{gather*}
\left(\begin{array}{cc}
1 & 2 n \sqrt{ } 3 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1+12 r & -24 r^{2} \sqrt{ } 3 \\
2 \sqrt{3} & 1-12 r
\end{array}\right) \\
\left(\begin{array}{cc}
-5-12 r & \left(6+24 r+24 r^{2}\right) \sqrt{ } 3 \\
-2 \sqrt{ } 3 & 12 r+7
\end{array}\right),\left(\begin{array}{cc}
-5-36 r & \left(2+24 r+72 r^{2}\right) \sqrt{ } 3 \\
-6 \sqrt{ } 3 & 7+36 r
\end{array}\right) \tag{4}\\
\left(\begin{array}{cc}
-11-36 r & \left(8+48 r+72 r^{2}\right) \sqrt{ } 3 \\
-6 \sqrt{ } 3 & 13+36 r
\end{array}\right), \quad r=0, \ldots, n-1
\end{gather*}
$$

If we make the correspondence $X_{i} \leftrightarrow x_{i}, i=1, \ldots, 2 m-1$, (2) and our earlier comments on free groups give:

Theorem 1. The group $\Gamma_{4 m n}$ is a normal subgroup of $\Gamma_{m}(2)$ of index n in $\Gamma_{m}(2)$. It is the free group on the $1+2(m-1) n$ generators (3) when $m=2$ or (4) when $m=3$. In addition, $\Gamma_{4 m n}$ consists of those elements of $\Gamma_{m}(2)$ for which the sum of the exponents of

$$
S^{2 \sqrt{ } m}=\left(\begin{array}{cc}
1 & 2 \sqrt{ } m \\
0 & 1
\end{array}\right)
$$

is divisible by n.
Remarks. Since $\Gamma_{m}(2)$ is of index $4 m$ in $G(\sqrt{ } m)$ [3], $\Gamma_{4 m n}$ is of index $4 m n$ in $G(\sqrt{ } m)$. Also, for $n>1, \Gamma_{4 m n}$ is not a normal subgroup $G(\sqrt{ } m)$. For example, $X_{2} \in \Gamma_{4 m n}$ but $T X_{2} T^{-1}=S^{-2 \sqrt{ } m}$ is not in $\Gamma_{4 m n}$ if $n>1$.

$$
\begin{aligned}
& \text { 3. } \Gamma_{4 m n} \text { is not a congruence subgroup if } m=2 \text { and } \\
& n \neq 1,2,4 \text { or if } m=3 \text { and } n \neq 1,2
\end{aligned}
$$

For technical reasons we now introduce the groups

$$
\Gamma_{m}(R \sqrt{ } m)=\{M \in G(\sqrt{ } m): M \equiv \pm I(\bmod R \sqrt{ } m)\}
$$

R a positive integer, where the congruence is elementwise and takes place in $Z[\sqrt{ } m]$. It is easily verified [5] that

$$
\begin{array}{r}
\Gamma_{m}(R \sqrt{ } m)=\left\{M=\left(\begin{array}{cc}
a & b \sqrt{ } m \\
c \sqrt{ } m & d
\end{array}\right) \in G(\sqrt{ } m): a \equiv d \equiv \pm 1(\bmod R m)\right. \\
b \equiv c \equiv 0(\bmod R)\}
\end{array}
$$

Lemma 2. Assume that $\Gamma_{4 m n}$ is a congruence subgroup of $G(\sqrt{ } m)$. Then

$$
\Gamma_{4 m n} \supset \Gamma_{m}(2 n \sqrt{ } m) \text { if } n \not \equiv 0(\bmod m)
$$

and

$$
\Gamma_{4 m n} \supset \Gamma_{m}(2 n) \quad \text { if } n \equiv 0(\bmod m)
$$

Proof. Let l be the level of $\Gamma_{4 m n}$. Then $\Gamma_{m}(l) \subset \Gamma_{4 m n}$. Since $S^{l / m} \in \Gamma_{m}(l)$, $2 n \mid l$.

Consider first the case when $n \not \equiv 0(\bmod m)$. Take

$$
M=\left(\begin{array}{cc}
a & b \sqrt{ } m \\
c \sqrt{ } m & d
\end{array}\right)
$$

in $\Gamma_{m}(2 n \sqrt{ } m)$. Without loss of generality we may assume that $a \equiv d \equiv 1$ $(\bmod 2 m n)$. We must show that $M \in \Gamma_{4 m n}$.

We may assume that $(d, l)=1$; for, if not, $b c \neq 0$ and, since $a d-m b c=1$, $(d, 2 n m c)=1$. Therefore, there exists an integer f such that $(d+2 n m f c, l)=1$. Now consider

$$
M S^{2 f n \sqrt{ } m}=\left(\begin{array}{cc}
a & (2 a f n+b) \sqrt{ } m \\
c \sqrt{ } m & 2 f c n m+d
\end{array}\right)
$$

$M S^{2 f n \sqrt{ } m} \in \Gamma_{m}(2 n \sqrt{ } m)$ and $M S^{2 f n \sqrt{ } m} \in \Gamma_{4 m n}$ iff $M \in \Gamma_{4 m n}$. Therefore, we may replace M by $M S^{2 f n \sqrt{ } m}$.

We may also assume that $b \equiv 0(\bmod l)$. If not, consider

$$
S^{2 g m \sqrt{ } m} M=\left(\begin{array}{cc}
a+2 g c n m & (b+2 g d n) \sqrt{ } m \\
c \sqrt{ } m & d
\end{array}\right)
$$

for any integer g. Now choose g so that $b+2 g d n \equiv 0(\bmod l)$. This is possible since $(2 d n, l)=2 n$ divides b.

A similar argument shows that we may also assume that $c \equiv 0(\bmod l)$.
The above conditions on M imply that $a d \equiv 1(\bmod m l)$ and that

$$
M \equiv\left(\begin{array}{cc}
a & (1-a d) \sqrt{ } m \\
\frac{a d-1}{m} \sqrt{ } m & d(2-a d)
\end{array}\right)(\bmod l)
$$

Thus there exists $V \in \Gamma_{m}(l)$ such that $M=M^{\prime} V$ where

$$
M^{\prime}=\left(\begin{array}{cc}
a & (1-a d) \sqrt{ } m \\
\frac{a d-1}{m} \sqrt{ } m & d(2-a d)
\end{array}\right)
$$

and it suffices to show that $M^{\prime} \in \Gamma_{4 m n}$. However,

$$
\begin{aligned}
M^{\prime} & =\left(\begin{array}{cc}
1 & 0 \\
\frac{d-1}{m} \sqrt{ } m & 1
\end{array}\right)\left(\begin{array}{cc}
a & (1-a) \sqrt{ } m \\
\frac{a-1}{m} \sqrt{ } m & 2-a
\end{array}\right)\left(\begin{array}{cc}
1 & (1-d) \sqrt{ } m \\
0 & 1
\end{array}\right) \\
& =X_{2}^{(d-1) / 2 m} X_{3}^{(1-a) / 2 m} X_{1}^{(1-d) / 2} ;
\end{aligned}
$$

and $M^{\prime} \in \Gamma_{4 m n}$ because of the congruence conditions on a and d.

Now take $n \equiv 0(\bmod m)$. Let

$$
M=\left(\begin{array}{cc}
a & b \sqrt{ } m \\
c \sqrt{ } m & d
\end{array}\right)
$$

be in $\Gamma_{m}(2 n)$ and assume that $a \equiv d \equiv 1(\bmod 2 n)$. As above, to show that $M \in \Gamma_{4 m n}$ it suffices to show that

$$
M^{\prime}=X_{2}^{(d-1) / 2 m} X_{3}^{(1-a) / 2 m} X_{1}^{(1-d) / 2} \in \Gamma_{4 m n} .
$$

However, since $n \equiv 0(\bmod m), a \equiv d \equiv 1(\bmod 2 m)$; and $M^{\prime} \in \Gamma_{4 m n}$. This completes the proof of the lemma.

THEOREM 3. $\quad \Gamma_{4 m n}$ is not a congruence subgroup if $m=2$ and $n \neq 1,2,4$ or if $m=3$ and $n \neq 1,2$.

Proof. By Lemma 2 it suffices to exhibit an element of $\Gamma_{m}(2 n \sqrt{ } m)$ or $\Gamma_{m}(2 n)$ which is not in $\Gamma_{4 m n}$.

Consider the element

$$
M=X_{2}^{x} X_{3}^{y} X_{1}^{z}=\left(\begin{array}{cc}
a & b \sqrt{ } m \\
c \sqrt{ } m & d
\end{array}\right)
$$

where

$$
a=1-2 y m, \quad b=2 z-4 z y m+2 y m, \quad c=2 x-4 x y m-2 y,
$$

and

$$
d=4 x z m-8 x y z m^{2}-4 y z m+4 x y m^{2}+2 y m+1 .
$$

Suppose that x, y, and z have been chosen so that $d \equiv 1(\bmod 2 m n)$ if $n \not \equiv 0$ $(\bmod m)$ and $d \equiv 1(\bmod 2 n)$ if $n \equiv 0(\bmod m)$; that is, so that

$$
\begin{equation*}
2 x z-4 x y z m-2 y z+2 x y m+y \equiv 0\left(\bmod \frac{n}{(n, m)}\right) \tag{5}
\end{equation*}
$$

Then

$$
M \equiv\left(\begin{array}{cc}
1+m b c & b \sqrt{ } m \\
c \sqrt{ } m & 1
\end{array}\right) \equiv X_{1}^{b / 2} X_{2}^{c / 2}\left(\bmod \frac{2 m n}{(m, n)}\right)
$$

and $V=X_{2}^{-c / 2} X_{1}^{-b / 2} M \in \Gamma_{m}(2 m n /(m, n))$. Since the sum of the exponents of X_{1} in V is $y m(2 z-1), V$ will belong to $\Gamma_{m}(2 m n /(m, n))$ but not to $\Gamma_{4 m n}$ if (5) is satisfied and, in addition,

$$
\begin{equation*}
y m(2 z-1) \not \equiv 0 \quad(\bmod n) . \tag{6}
\end{equation*}
$$

Suppose first that $n>1,(n, 2 m)=1$. Set $z=0$ and $y=1$. Then (5) becomes $2 x m+1 \equiv 0(\bmod n)$ which has a solution since $(2 m, n)=1$. (6) becomes $-m \not \equiv 0(\bmod n)$ which is satisfied since $(n, m)=1, n>1$; and the theorem is proved in this case. However, since $\Gamma_{4 m d} \supset \Gamma_{4 m n}$ whenever $d \mid n$, the theorem is proved for any n with a positive divisor d such that $(d, 2 m)=1$. When $m=2$, it remains to consider $n=2^{k}, k \geq 3$. If we take $z=1$, $x=2^{k-3}$, and $y=2^{k-2}$, both (5) and (6) are satisfied. When $m=3$ and
$n=2^{k}, k \geq 2$, (5) and (6) are both satisfied if we choose $z=1, x=2^{k-2}$, and $y=2^{k-1}$. Finally, if $m=3$ and $n=3^{k}, k \geq 1$, we note that $X_{1}^{2 \cdot 3^{k-1}} X_{4}^{3^{k-1}}$ belongs to $\Gamma_{3}\left(2 \cdot 3^{k}\right)$ but not to $\Gamma_{12 \cdot 3 k}$. This completes the proof of the theorem.

> 4. $\Gamma_{4 m n}$ is a congruence subgroup if $m=2$ and $n=1,2.4$ or if $m=3$ and $n=1,2$

In this section we prove:
Theorem 4. $\quad \Gamma_{8 n} \supset \Gamma_{2}(2 n)$ if $n=1,2,4 ;$ and $\Gamma_{12 n} \supset \Gamma_{3}(2 n \sqrt{ } 3)$ if $n=1,2$.
Proof. First take $m=2$. By Lemma 2 it suffices to show that $\Gamma_{32} \supset \Gamma_{2}(8)$. Since $\Gamma_{2}(8) \subset \Gamma_{2}(2)$, any element of $\Gamma_{2}(8)$ may be written as

$$
M_{t}=X_{2}^{b_{1}} X_{3}^{c_{1}} X_{1}^{a_{1}} X_{2}^{b_{2}} X_{3}^{c_{2}} X_{1}^{a_{2}} \cdots X_{2}^{b_{t}} X_{3}^{c_{t}} X_{1}^{a_{t}}
$$

where $a_{1}, b_{1}, c_{1}, \ldots, a_{t}, b_{t}, c_{t}$ are integers. Set $\alpha_{t}=\sum_{i=1}^{t} a_{i}$ and $\gamma_{t}=\sum_{i=1}^{t} c_{i}$. To show that $M_{t} \in \Gamma_{32}$ we must prove that $\alpha_{t} \equiv 0(\bmod 4)$. Since

$$
X_{2}^{b} X_{3}^{c} X_{1}^{a}=\left(\begin{array}{cc}
1-4 c & 2(a-4 a c+2 c) \sqrt{ } 2 \\
2(b-4 b c-c) \sqrt{ } 2 & 1+4(2 a b-8 a b c-2 a c+4 b c+c)
\end{array}\right)
$$

an induction argument gives

$$
M_{t}=\left(\begin{array}{cc}
1-4 A_{t} & 2 B_{t} \sqrt{ } 2 \\
2 C_{t} \sqrt{ } 2 & 1+4 D_{t}
\end{array}\right)
$$

In addition, since $M_{t}=M_{t-1} X_{2}^{b_{t}} X_{3}^{c_{t}} X_{1}^{a_{t}}$, the integers A_{t} and B_{t} satisfy the recursion congruences

$$
\begin{align*}
A_{t} & \equiv A_{t-1}+c_{t}(\bmod 2) \tag{7}\\
B_{t} & \equiv B_{t-1}+a_{t}+2 c_{t}(\bmod 4) \tag{8}
\end{align*}
$$

with initial conditions $A_{1}=c_{1}, B_{1} \equiv a_{1}+2 c_{1}(\bmod 4)$. Summing both sides of (7) and then (8), we find that

$$
\begin{align*}
A_{t} & \equiv \gamma_{t}(\bmod 2) \tag{9}\\
B_{t} & \equiv \alpha_{t}+2 \gamma_{t} \quad(\bmod 4) \tag{10}
\end{align*}
$$

However, since $M_{t} \in \Gamma_{2}(8), A_{t} \equiv 0(\bmod 2)$ and $B_{t} \equiv 0(\bmod 4)$; and (9) and (10) imply that $\alpha_{t} \equiv 0(\bmod 4)$. This completes the proof of the theorem when $m=2$.

Now let $m=3$. We need only show that $\Gamma_{24} \supset \Gamma_{3}(4 \sqrt{ } 3)$. Since $\Gamma_{3}(4 \sqrt{ } 3) \subset$ $\Gamma_{3}(2)$, any element of $\Gamma_{3}(4 \sqrt{ } 3)$ may be written as

$$
M_{t}=X_{2}^{b_{1}} X_{3}^{c_{1}} X_{1}^{a_{1}} X_{4}^{d_{1}} X_{5}^{e_{1}} \cdots X_{2}^{b_{t}} X_{3}^{c_{t}} X_{1}^{a_{t}} X_{4}^{d_{t}} X_{5}^{e_{t}}
$$

where the $a_{i}, b_{i}, c_{i}, d_{i}, e_{i}, i=1, \ldots, t$, are integers. Set $\alpha_{t}=\sum_{i=1}^{t} a_{i}$, $\gamma_{t}=\sum_{i=1}^{t} c_{i}$, and $\delta_{t}=\sum_{i=1}^{t} d_{i}$. We must prove that $\alpha_{t} \equiv 0(\bmod 2)$. Since

$$
X_{2}^{b} X_{3}^{c} X_{1}^{a} X_{4}^{d} X_{5}^{e}=\left(\begin{array}{cc}
1-6 A & 2 B \sqrt{ } 3 \\
2 C \sqrt{ } 3 & 1+6 D
\end{array}\right)
$$

with $A \equiv c+d(\bmod 2)$ and $B \equiv a+c+d(\bmod 2)$, an induction argument gives that

$$
M_{t}=\left(\begin{array}{cc}
1-6 A_{t} & 2 B_{t} \sqrt{ } 3 \\
2 C_{t} \sqrt{ } 3 & 1+6 D_{t}
\end{array}\right)
$$

Moreover, since $M_{t}=M_{t-1} X_{2}^{b_{t}} X_{3}^{c_{t}} X_{1}^{a_{t}} X_{4}^{d_{t}} X_{5}^{e_{t}}$, the integers A_{t} and B_{t} satisfy the recursion congruences

$$
\begin{align*}
& A_{t} \equiv A_{t-1}+c_{t}+d_{t}(\bmod 2) \tag{11}\\
& B_{t} \equiv B_{t-1}+a_{t}+c_{t}+d_{t}(\bmod 2) \tag{12}
\end{align*}
$$

with the initial conditions $A_{1} \equiv c_{1}+d_{1}(\bmod 2)$ and $B_{1} \equiv a_{1}+c_{1}+d_{1}$ (mod 2). Summing both sides of (11) and then (12), we find that

$$
\begin{align*}
A_{t} & \equiv \gamma_{t}+\delta_{t}(\bmod 2) \tag{13}\\
B_{t} & \equiv \alpha_{t}+\gamma_{t}+\delta_{t}(\bmod 2) \tag{14}
\end{align*}
$$

However, since $M_{t} \in \Gamma_{3}(4 \sqrt{ } 3), A_{t} \equiv 0(\bmod 2)$ and $B_{t} \equiv 0(\bmod 2)$. It follows from (13) and (14) that $\alpha_{t}=0(\bmod 2)$; and the proof of the theorem is complete.

5. Conclusion

The groups $\Gamma_{4 m n}$ are an important example of a family of noncongruence subgroups of $G(\sqrt{ } m)$ of strictly increasing index but of genus 0 . In addition, they are related to λ_{m}, the invariant of $\Gamma_{m}(2)$, which is given in [6] when $m=2$ and [2] when $m=3$ as a quotient of theta-null series. When $m=2, \Gamma_{8 n}$ is the invariance group of $\lambda_{2}^{1 / n}$. When $m=3$, the invariance group of $\lambda_{3}^{1 / n}$ is the subgroup Γ of $\Gamma_{12 n}$ consisting of all words for which the sum of the exponents of X_{3} and the sum of the exponents of X_{4} are both divisible by $n . \Gamma$ is of index n^{2} in $\Gamma_{12 n}$ and, by Theorem 3 , is not a congruence subgroup of $G(\sqrt{ } 3)$ whenever $n \geq 3$. When $n=2$, the argument in Lemma 2 shows that Γ is a congruence subgroup iff $\Gamma \supset \Gamma_{3}(4 \sqrt{ } 3)$. However, since

$$
\begin{equation*}
\left|G(\sqrt{ } 3): \Gamma_{3}(4 \sqrt{ } 3)\right|=|G(\sqrt{ } 3): \Gamma|=96 \tag{5}
\end{equation*}
$$

Γ is a congruence subgroup iff $\Gamma=\Gamma_{3}(4 \sqrt{ } 3)$. Since $X_{2} \in \Gamma$ but $X_{2} \notin \Gamma_{3}(4 \sqrt{ } 3)$, Γ is not a congruence subgroup; and the invariance group of $\lambda_{3}^{1 / n}$ is a congruence subgroup only when $n=1$.

References

1. E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., vol. 112 (1936), pp. 664-699.
2. J. I. Hutchinson, On a class of automorphic functions, Trans. Amer. Math. Soc., vol. 3 (1902), pp. 1-11.
3. M. I. Knopp, Determination of certain roots of unity in the theory of automorphic forms of dimension zero, Duke Math. J., vol. 32 (1960), pp. 497-506.
4. M. Newman, On a problem of G. Sansone, Ann. Mat. Pura Appl. (4), vol. 65 (1964), pp. 27-33.
5. L. A. Parson, Generalized Kloosterman sums and the Fourier coefficients of cusp forms, Doctoral dissertation, University of Illinois, 1973.
6. J. Young, On the group belonging to the sign $(0,3 ; 2,4, \infty)$ and the functions belonging to it, Trans. Amer. Math. Soc., vol. 5 (1904), pp. 81-104.

Ohio State University
Columbus, Ohio

