THE GEOMETRY OF SUBGROUPS OF PSp,(2")

BY
DaviD E. FLESNER!

1. Introduction

The determination of the subgroups of the linear and projective groups over
finite fields in small dimension has been a significant problem for many years.
The subgroups of the two dimensional groups have been fully developed in
Mitchell [12], Dickson [5], and Huppert [10]. The three-dimensional sub-
groups were determined for odd characteristic by Mitchell [12] and for even
characteristic by Hartley [9].

In 1914, H. H. Mitchell [14] determined the maximal subgroups of the four-
dimensional symplectic groups over finite fields of odd characteristic. His
methods were highly geometrical in nature. The purpose of this paper is to set
forth the computational foundation and the geometry of centers and axes of
involutions necessary for determining the maximal subgroups of the four-
dimensional symplectic groups over finite fields of even characteristic. The key-
stone in the development is the outer automorphism of the symplectic group
which is induced by a duality on the incidence structure of points and totally
isotropic lines.

First, we show the existence of a duality on the incidence structure of points
and totally isotropic lines. Then we classify the types of symplectic transforma-
tions according to their configurations of fixed points and fixed lines, summariz-
ing the results in Table 1. In Section 4 we construct Table 2, which shows the
possible types for the product of two involutions from the symplectic group.
The Sylow 2-subgroup Theorem gives a geometric characterization of the Sylow
2-subgroups of a subgroup of the symplectic groups. The Center-Axis Theorem
of Section 6 provides a major tool for determining further centers and axes of
involutions in a symplectic subgroup, given various configurations of known
centers and axes. Finally, the Duality Theorem states that the dual of a super-
primitive subgroup of PSp,(2") is also superprimitive, that is, primitive and
fixing no proper subgeometry and no totally isotropic reguli.

Some basic references for properties of the symplectic and orthogonal groups
are [1], [2], [3], [5], [6], [7], and [10].

For the entire article, let ¥ be a four-dimensional vector space over F = GF(q),
where ¢ = 2", and f'a nondegenerate, alternate, bilinear form on V. We will use
the terminology and notation of [8] for the point and line geometry. Further,
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a flag is a pair (P, t), where P is a point and ¢ a totally isotropic line containing
P. Since the characteristic is two, the linear symplectic group Sp,(q), consisting
of all linear transformations on ¥ which preserve f, and the induced projective
symplectic group PSp,(q) are naturally isomorphic and will be identified.
Matrices representing symplectic transformations will be computed with respect
to a symplectic basis x4, . . . , x,], that is, an ordered basis such that

f(z aixi, 2 bjxj) = a1b4 + azb3 -+ a3b2 + a4b1.

We will use “I” to denote the identity transformation or any identity matrix
of appropriate rank.

2. Types of symplectic transformations

L. E. Dickson [4] has computed the conjugacy classes in PSp,(q). Following
Mitchell and Hartley, however, we are more interested in the types of symplectic
transformations. Since the eigenvalues for any transformation in PSp,(q) all
lie in GF(q*), we say that two transformations in PSp,(q) are of the same type
if their configurations of fixed points and fixed lines are conjugate under
PSp,(g*). By considering the elements in PSp,(¢q) to be transformations in
PSp,(q*), we can apply the first ten cases of the column p = 2 from Dickson’s
table [4, p. 132] to obtain representatives for at most ten types. A slight com-
putational modification is necessary since Dickson works with an ordered basis
[»1 -5 ya] such that

SO ay, X, bjy)) = aby + azb; + azb, + a4b;.

Dickson’s first ten cases in the column p = 2 correspond in order to the nota-
tion of Table 1 as follows: I, ITIb, I1Ia, IIb, IIa, identity, CE, CSE, NCSE, and
FF.

In Table 1, the computation of the configuration of fixed points and lines and
the verification of the remarks is elementary and will be left to the reader. A
comparison of the nature of the fixed configurations indicates that no two of the
nine representatives can be of the same type. Note that the linear transformation
representing a central elation is a transvection.

Remarks on Table 1.

Type FF. The transformation T is called a flag-fixer with center P and
axis u (or at (P, u)). The square of T is of type CSE at (P, u). The rank of
T — Iis 3.

Type CSE. The transformation T is called a centered skew elation with
center P and axis u (or at (P, u)). Through each point on u there is a planar
pencil of fixed lines. All fixed lines through P are totally isotropic. The only
totally isotropic fixed line through any X on u (X # P)isu. Therankof T — I
is 2.

Type NCSE. The transformation T is called a noncentered skew elation with
axis u (or at (P, u) for any point P on u). The fixed lines are exactly u plus the
totally isotropic lines meeting u. The rank of T — I'is 2.
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Type CE. The transformation T is called a central elation with center P (or
at (P, u) for any totally isotropic line u through P). The fixed points are precisely
those points in P*. The fixed lines are precisely the lines either through P or in
P, Therank of T — Iis 1.

Type I. The points P, Q, R, S form a tetrahedron. There are exactly four
fixed points and six fixed lines. a = k + l/k; b = m + 1/m; k # m, 1/m;
k,m# 1;a # b;and a, b # 0.

Type Ila. The square of T is of type IIb, and T is of type CE. There are
exactly three fixed points and four fixed lines. The rank of T — I is 3.
b=m+ 1/m;m # 1;and b € F*,

Type IIb. The fixed points of T are Q and R together with the points on w.
The fixed lines are u and u' together with the lines (totally isotropic) from Q
and Rtou. Therank of T — Iis2. b = m + 1/m; m # 1; and b € F*.

Type IIIa. The square of T is of type IIIb, and T* is of type NCSE. There
are exactly two fixed points and three fixed lines (all totally isotropic). Both
T — kIand T — (1/k)Ihaverank 3. a = k + 1/k; k # 1;and ae F*.

Type IIIb. The transformation T is called a skew perspectivity with axes u
and v. The fixed points lie on a pair of skew, totally isotropic lines. The fixed
lines are u and v together with the transversals to ¥ and v. Both T — kI and
T — (1/k)I haverank 2. a = k + 1/k; k # 1; and a € F*,

3. Duality

Associate to the projective symplectic space (V, f) the incidence structure
PT(V, f) whose points are the points in ¥, whose blocks are the totally isotropic
lines in ¥, and whose incidence is given by incidence in V. The projective sym-
plectic space can be recovered from PT(V, f) since a hyperbolic line is the set
of all points orthogonal to a given pair of nonorthogonal points, and since two
points are orthogonal if and only if they are incident with a common totally
isotropic line.

A duality 6 on PT(V, f) consists of an isomorphism ¢ from the points to the
totally isotropic lines and an isomorphism 6 from the totally isotropic lines to
the points such that ¢, ¢, 6, and 0! preserve incidence. We will show the
existence of a special duality y on PT(V, f), construct an induced outer auto-
morphism of PSp,(q), and examine the effect on the geometry of the projective
symplectic space. The following development is based on lectures of J. E.
McLaughlin. See [11] for properties of the exterior algebra.

Let [x,, ..., x,] be a symplectic basis for (¥, f). Consider the ordered basis

[x1 A X2 Xy A X35 X1 A X4y X3 A X3, X3 A Xgy X3 A X4]
for the subspace E%(V) of elements of degree 2 in the exterior algebra of V. A
vector z in E%(V) is decomposable provided z = u A v for some u,ve V.
Define the nontrivial linear functional g: E%(V) — F by setting g(x; A x;) =

f(x;, xj) for 1 < i < j < 4 and extending by linearity. Let W denote the five-
dimensional kernel of g. If z = ¥;.; p;j(x; A Xx;), then g(z) = py4 + P23;
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so z is in W if and only if p;, = p,3. Since a decomposable vector u A visin
W if and only if u L v, the totally isotropic lines {u, v) in V are in one-to-one
correspondence with the decomposable points {u A v) in W.

The function Q: E*(V) — F given by

i<j

Q (Z pij(x; A xj)) = P12P3a + P13P24 + P1aD23

is a nondegenerate quadratic form of maximal index 3. The bilinear form e
associated to the restriction Q| is a degenerate, alternate form on W. The
radical of (W, e) is the one-dimensional subspace {w,», where

Wo = (xl A X4) + (x2 A x3).

Let w, = x4 A X3, Wy = X; A X3, W3 = X3 A X4, and wy = X3 A X,. Then
[#, ..., W] is a symplectic basis for (W, &), where ~: W — W/[{w,) is the
natural homomorphism and é the induced form on W. Each line in W through
w, contains exactly one singular point for Q|y, since the points on any of the
lines {w,, w) in W are {w,» and {aw, + w) (for a in F), and since

Q(awo + w) = 0 if and only if a = \/Q(W).

Thus, the singular points of Q| are in one-to-one correspondence with the
g% + q*> + q + 1 points of W.

There is a bijection from the set of totally isotropic lines in ¥ to the set of
singular points for Q| given by

{u, v) > {u A V)

for any orthogonal vectors u# and v in V, since direct calculation yields
QO(u A v) = 0. Composition with the correspondence (u A v) > {(u A v)™)
of the previous paragraph yields a bijection 6 from the set of totally isotropic
lines of ¥ to the points of W, namely <{u, v) > {(u A v)~) for orthogonal
vectors u, v € V. Identify the two nondegenerate, four-dimensional symplectic
spaces (V, f) and (W, &) by identifying their symplectic bases [x, ..., x,] and
[#Wy,..., Wwy]. Under this identification, if ¥ = ¥ a;x; and v = ¥ b;x; are
distinct orthogonal vectors in ¥, then (4 A v)~ has coordinates

[aib; + a5by, aibs + azby, aby + asb,, azb, + ab]".

Any point {v) in V is the intersection of two distinct, totally isotropic lines
{v, x) and (v, y). Direct computation shows that the images {((v A x)~) and
{(® A y)~> under 0 are orthogonal points. If (v, z) is any totally isotropic line
in ¥V through <v), then z = av + bx + cy for some a,b,ceF, v A z =
bw A X) + cv A y), and {(v A z)”) lies on the totally isotropic line
{ A Xx)",(v A y)~)> Thus, there is a bijection ¢ mapping each point {v)
in ¥ to the unique totally isotropic line spanned by the images under 0 of all the
totally isotropiclines in ¥ through {v) Itis clear that ¢ and 6 provide a concrete
duality y on the incidence structure PT(V, f).
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We will now construct the induced outer automorphism of Sp,(q) We can
identify E2(V) with the 4 x 4 alternate matrices over F by using the vector
space isomorphism which maps ¥;; p;i(x; A x;) to [p;;], where p;; = 0 for
i=1,...,4 and p;; = p;; for i < j. Let H = [h;;] be the matrix for 4 in
Sp4(g) with respect to the symplectic basis [xy,..., x,]. Associate to 4 the
linear transformation i on E*(V) given by A(u A v) = h(u) A h(v). Direct
computation shows that A(P) = HPH' for Pin E*(V).

If u L v, then h(u) L h(v) and h(u A v) is in W. Computation using the
matrix for w, shows that fi(wo) = w,. Thus, h stabilizes W.

For P in E*(V) we have Q(P) = Pf(P), where Pf denotes the Pfaffian
[1, pp. 140-142]. Since Pf(HPH') = Pf(P) for H in Sp,(q), the image h lies
in the orthogonal group GO(W, Q|y) and induces an element (which we also
call h) in Sp(W, &). This yields a map from Sp,(¢) to Sp(W) given by & > h,
where fi(u A v)~ = (W) A h(v))~. Since each point in W is the image under
the duality y of some totally isotropic line <%, v), direct computation shows that
h = yhy~!. Direct computation also verifies that the map 4+ 4’ = h is an
automorphism y of Sp,(q) induced by conjugation by the duality y on PT(V, f).

Let 6 be any duality on PT(V, f). Then §y~! is an automorphism of PT(¥, f)
and induces a collineation (also called dy~!) on the projective space. Thus,
8y~?! is induced by a semi-linear automorphism ag for some « € Aut F and
some g € GL,(q). Since §y~! and « preserve orthogonality, so does g, and we
may suppose, without loss of generality, that g is in Sp,(g). We conclude that
any duality § on PT(V, f) may be written as 6 = agy, where a is in Aut F and
g in Sp,(q), and induces by conjugation an automorphism of Sp,(q).

PROPOSITION 1. Let 6 be any duality on PT(V, f).

(@) Two distinct points are orthogonal if and only if their images under  (or
under 1) are intersecting totally isotropic lines.

(b) The images under & (or under 6~ 1) of the points on a polar pair are the
rulers and directrices of a totally isotropic regulus. The images under & (or under
6™ 1) of the (totally isotropic) transversals to the polar pair are the points of the
regulus.

Proof. The first part is a trivial consequence of the definitions of duality.

Let {k, k*} be a polar pair and P and S distinct points on k*. Then the
images of P and S under § are skew, totally isotropic lines. Since the g + 1
points on k are orthogonal to both P and S, their images are the totally isotropic
transversals to the images of P and S and form the rulers of a totally isotropic
regulus whose directrices are the images of the points on k*.

By analyzing the duals of the fixed configurations for the various types of
symplectic transformations, we can determine the effect of the automorphism
induced by a duality, which must be an outer automorphism since the types are
not preserved. For example, the fixed points for a central elation T consist of all
the points orthogonal to the center P. Hence the fixed totally isotropic lines of
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the image T consist of all the totally isotropic lines meeting the totally isotropic
line 8(P). The only possibility is that 7° is a noncentered skew elation with
axis 6(P). It is similarly easy to verify that  preserves types FF, CSE, and I,
interchanges type CE with NCSE, interchanges type Ila with IIla, and inter-
changes type IIb with IIIb.

4. Products of involutions
The set S of matrices
1 a b c
1 d b+ ad
1 a
1

such that a, b, ¢, and d are in F represents a subgroup of PSp,(q) of order g*
and hence is a Sylow 2-subgroup of PSp,(q), whose order is g*(g% — 1)(g* — 1),
where ¢ = 2" [10]. This particular Sylow 2-subgroup fixes the flag ({x,),
{x1, X, ) and, as is easily verified, consists of the following nonidentity elements:

(a) For a and d nonzero,

(b

is a central elation (centered skew elation) with center {(/¢)x; + ({/d)x;)
(and axis {x,, x,») if b* + ¢d = 0 (if b*> + cd # 0).
©
1 a b
10
1

—Q o0

is a noncentered skew elation (centered skew elation) with axis (xy, bx, + ax;)
(and center {x,)) if ¢ = 0 (if ¢ # 0).

Given involutions g and 4 and the configuration of their centers and axes, it
will be useful to know what the possibilities are for the type of the product ga,
which is the same as the type for 4g. The entries in Table 2 can be verified by
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direct computation, using the fact that in dual cases, such as cases 2 and 3, only
one case needs to be verified directly. By way of example, we will verify cases
2 and 8.

For case 2, let {x;)» = Pand {(x,) = Q. Then

1 0 a 11 0 x O 1 0 a+x b
1 0 a 1y x| _ 1 y a+ x

10 1 0] 1 0

1 1 1

where a, b, x, y # 0. If a> + x* + by # 0, then gh is a centered skew elation
with axis {x;, x,) and center {(\/b)x; + (/»)x,), which is different from both
{x{) and {x,)>. If a*> + x*> + by = 0, then gh is a central elation with center
(/)% + (¥)x,), which is on {x;, x,), but different from {x,) and (x,).

For case 8, let (x;) = P, {xy, X0 =k, {x4> = Q, and {x3, x,> = m.
Then

1 0 a b 1 1 + ax + by bx a b
1 0 al]0 1 _ ay l+ax 0 a

1 Of]fx 0 1 - x 0 10

1]Ly x 0 1 y x 01

where a, b, x, y # 0. The determinant of gh — I is (ax)?, which is nonzero.
So 1 is not an eigenvalue for gh, and gh must be of type I, IIla, or IIIb. The
following proposition rules out type Illa.

PROPOSITION 2. If g and h are two centered skew elations in PSp,(q) whose
axes are skew and such that gh is of type 1lla, then their centers are orthogonal,
and the line joining their centers is the axis of the noncentered skew elation (gh)*
Sfor some odd integer d.

Proof. Letg and & be centered skew elations in PSp,(q) at (P, k) and (Q, m),
respectively, such that k and m are skew and gh is of type IIla. So g/ has exactly
two fixed points in V,(¢*), and (gh)® is a noncentered skew elation for some odd
integer d.

If X is a fixed point of gk in V,(q*), then X lies on a totally isotropic line u
fixed by both g and 4. Indeed, since k and m are skew, X is not fixed by both
g and h, and hence is fixed by neither. If X' = A(X), then 4 interchanges X and
X',asdoesg. Sogand A fixu = (X, X'). Thus, (gh)* fixes u, which must then
be totally isotropic. Since the totally isotropic fixed lines of a centered skew
elation all contain the center, # must equal {P, @), and P and Q are orthogonal.

Further, if Y is the second fixed point of gk, then Y also lies on {P, Q). Since
X and Y are distinct fixed points of gh, they are fixed points of the noncentered
skew elation (g/)® and hence span the axis of (gh)’.

COROLLARY 2.1. If g and h are two centered skew elations in PSp,(q) whose
axes are skew, then one of the following is true:
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() g, k) is a dihedral group of order 2 - d, where d is odd, or
(ii) the centers of g and h are orthogonal, and for some odd integer d, (gh)? is
a noncentered skew elation with axis the line joining the centers of g and h.

COROLLARY 2.2. If g and h are two centered skew elations in PSp,(q) whose
centers are nonorthogonal, then one of the following is true:

() <g, h) is a dihedral group of order 2 - d, where d is odd, or

(i) the axes of g and h intersect in a point R, and for some odd integer d, (gh)*
is a central elation with center R.

Corollary 2.1 follows from Proposition 2 and Table 2, and Corollary 2.2 is the
dual of Corollary 2.1.

ProOPOSITION 3. If g is a centered skew elation and h a noncentered skew ela-
tion in PSp,(q) whose axes are skew, then the product gh is of type 1lla, and the
axis of the noncentered skew elation (gh)® (for some odd d) is the unique totally
isotropic line from the center of g to the axis of h.

Proof. Let g be a centered skew elation at (P, k) and 4 a noncentered skew
elation with axis m such that k and m are skew. Let R = m n P+, By Table 2,
the product g# is of type IlIa and fixes exactly two points X and Yin V,(g*). As
in the proof of Proposition 2, g and 4 each fix the line 4 = (X, X'), where
X' = h(X). Since the fixed lines of a noncentered skew elation meet the axis
and are all totally isotropic, # meets m and is totally isotropic. Since the totally
isotropic fixed lines of a centered skew elation all contain the center, # contains
P. Thus, u = (P, R). Similarly, Y lies on {P, R). Since X and Y are fixed by
(gh)%, the axis of (gh)?is (X, YD = (P, R).

5. Sylow 2-subgroups

If G is a subgroup of PSp,(q) and (P, k) a flag in V, then define the subsets
X =P, k,G)for¥ = A, %B,¥,...,F asfollows:

o = {all FF’s in G at (P, k)},

# = {all CSE’s in G at (P, k)},

{all CSE’s in G at (Q, k) for all Q # P on k},

{all CSE’s in G at (P, m) for all m # k through P},
{all NCSFE’s in G with axis k},

{all NCSE’s in G with axis m # k through P},

{all CE’s in G with center P},

{all CE’s in G with center Q # P on k}, and

S = {1}.

If G = PSp,(q), we may write (P, k) for Z(P, k, G).

It is trivial to verify that the sets &7, 4, ..., and £ are closed under taking
inverses, and that for y in PSp,(q) the set Z(P, k, G)’ of y-conjugates of ele-
ments in Z(P, k, G) is equal to the set Z(y(P), y(k), G*). Further, if H is also

YRS 9«Q
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a subgroup of PSp,(q), then Hn #(P, k,G) = (P, k, HN G) for ¥ =
A, B,..., L.

Let G be a subgroup of PSp,(q). A point P is called a central center (for G)
provided G has a central elation with center P and a skew center (for G) pro-
vided G has a centered skew elation with center P; in either case P is a center.
A totally isotropic line k is called a centered axis (for G) provided G has a cen-
tered skew elation with axis k and a noncentered axis (for G) provided G has a
noncentered skew elation with axis k; in either case & is an axis. A flag (P, k)
is a skew flag (for G) provided G has a centered skew elation at (P, k). A skew
flag (P, k) for G is special provided either G has a flag-fixer at (P, k) or G has
no flag-fixers. If G is transitive on its skew flags, then all skew flags are special
and we drop the label.

SyLow 2-SUBGROUP THEOREM. Let G be a subgroup of PSp,(q) containing
centered skew elations. If (P, k) is a special skew flag for G, then ) Z(P, k, G)
is a Sylow 2-subgroup of G. Conversely, if S is a Sylow 2-subgroup of G, then
S = |J (P, k, G) for some special skew flag (P, k) for G.

Proof. Whenever U Z (P, k, G) appears, the union is assumed to be over
X =u,%,...,F. The theorem is trivial if G = PSp,(q).

Let (P, k) be a special skew flag for Gand S = |J (P, k, G). Itis clear that
S is a 2-subgroup of PSp,(q). Suppose S is not a Sylow 2-subgroup of G. Then
there is a 2-element 4 in G, but not in S, such that {S, ) is a 2-group.

Suppose G contains flag-fixers. Hence &/ (P, k, G) # 0, since (P, k) is special.
The 2-subgroup <S, &) of G lies in a Sylow 2-subgroup S’ = {J %(Q, m) of
PSp,(q) for some flag (Q, m). Since the flag-fixers in S fix only (P, k) and those
in S’ fix only (Q, m), we conclude that (Q, m) = (P, k), and so 4 lies in S,
contrary to assumption.

Suppose G contains no flag-fixers. Since (P, k) is a skew flag for G, there is a
centered skew elation g in #(P, k, G). Since <S, ) is a 2-group, gh is a 2-
element, but not a flag-fixer. This limits the possible configurations for centers
and axes of the pair g, 4. Itis easily verified that each of the possible cases from
Table 2 leads to a contradiction of the assumption that 4 is not in S.

Thus, S = U Z(P, k, G) is a Sylow 2-subgroup of G.

Conversely, given a special skew flag (P, k) and S as above, any Sylow 2-
subgroup of G can be expressed as a conjugate S* = () Z(Q, m, G) for some
y in G, where (Q, m) = y(P, k) is clearly special.

Let G be a subgroup of PSp,(q) which contains centered skew elations and is
transitive on its skew flags. So for each & = &, 4, ..., o, the order of
Z(P, k, G) is independent of the particular skew flag (P, k). We can catalog
such subgroups G according to the pattern of emptiness or nonemptiness of the
sets of, B,..., #. The pattern for G (or for a Sylow 2-subgroup of G) is
labeled according to the following scheme:
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(a) The basic label is according to the configuration of skew flags for a
Sylow 2-subgroup of G:
(1) if € and 2 are both empty,
(2) if € is nonempty and 2 empty,
(3) if ¥ is empty and 2 nonempty, and
(4) if € and 2 are both nonempty.

(b) To the basic label is added:
F if G contains flag-fixers,
C if G contains central elations, and
N if G contains noncentered skew elations.

If € and 2 are both nonempty, then Table 2 shows that G contains flag-fixers.
Thus, patterns (4), (4C), (4N), and (4CN) are impossible.

Consider now a subgroup G of PSp,(q) which contains no centered skew
elations. Trivially, G is transitive on its skew flags and contains no flag-fixers.
If L has odd order, we label with pattern (0). If G has even order, then Table 2
indicates that G' can have either central elations (pattern (0C)) or noncentered
skew elations (pattern (ON)), but not both. If G has pattern (0C), then a
Sylow 2-subgroup of G is elementary abelian and consists of all the central
elations in G with a given center. A similar remark holds if G has pattern (ON).

The outer automorphism induced by a duality on PT(V, f) effects the pattern
scheme by fixing labels (0), (1), (4), and F, interchanging (2) with (3), and
interchanging C with N.

6. Center-axis geometry

The Center-Axis Theorem below gives some techniques for studying the
geometric configuration of centers and axes for a subgroup of PSp,(g). A
subgroup G of PSp,(q) is irreducible provided G does not fix any point, line, or
plane in V, and primitive provided (a) G is irreducible, (b) G does not fix a pair
of skew lines in ¥, and (c) G does not fix a tetrahedron in V.

CENTER-AXIS THEOREM. Let G be a subgroup of PSp,(q) and 6 a duality on
the incidence structure PT(V, f) of points and totally isotropic lines.

(1) If a skew center P lies on a centered axis m, then (P, m) is a skew flag.

(ii) Two distinct, intersecting axes, at least one of which is a noncentered axis,
meet in a skew center.

(ii*)  The line joining two distinct, orthogonal centers, at least one of which is
a central center, is a centered axis.

(iii) If a centered axis u ind a noncentered axis v are skew, then each totally
isotropic transversal to u and v meeting u in a skew center is a noncentered axis.

(iii*) If a skew center Q is not orthogonal to a central center P, then every
centered axis through Q meets P* in a central center.

(iv) A noncentered axis meets the polar of a nonincident center in a skew
center.
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(iv*) The unique totally isotropic line from a central center P to an axis not
containing P is a centered axis.

V) If G is primitive, then all central elations in G are conjugate, and G is
transitive on its central centers and on its skew flags.

v*) If G is primitive, then all noncentered skew elations in G are conjugate,
and G is transitive on its noncentered axes.

(vi) Suppose G is primitive and contains both centered skew elations and non-
centered skew elations. If P and Q are distinct, orthogonal skew centers, then
(P, Q) is an axis. Further, if G does not have pattern (2FN) or (2FCN), then
{P, Q) is a noncentered axis. If G does have pattern (2FN) or (2FCN), then
(P, Q) is either a noncentered axis or the unique centered axis through P (or
through Q).

(vi*) Suppose that G contains centered skew elations and central elations, and
that the dual G° of G is primitive. If k and m are distinct, intersecting centered
axes, then k. m is a center. Further, if G does not have pattern (3FC) or
(3FCN), then k © m is a central center. If G does have pattern (3FC) or (3FCN),
then k 0 m is either a central center or the unique skew center on k (or on m).

Proof. 1t suffices to prove only one part of each dual pair of statements.

For part (i), let g and 4 be centered skew elations in G at (P, k) and (Q, m),
respectively, such that (P, m) is a flag. Using Table 2 to analyze each case, it is
trivial to show that (P, m) is a skew flag.

Part (ii) is a trivial consequence of Table 2.

Part (iii) is a corollary of Proposition 3.

For part (iv), let P be a center and m a noncentered axis not containing P.
If P is a central center, then Table 2 yields the result. So suppose P is a skew
center. Let k be a centered axis containing P and let R = mn PL, If
k = {P, R), then part (ii) implies that R is a skew center. If k # (P, R), then
k and m are skew, and parts (iii) and (ii) imply that & is a skew center.

For part (v), let G be a primitive subgroup of PSp,(¢) and M a G-orbit of
central centers. Suppose there is a central center P not in M. Then M is con-
tained in the polar of P, contrary to G being primitive, since by Table 2 central
elations with nonorthogonal centers generate a dihedral group in which all the
involutions are conjugate. Thus, G is transitive on its central centers.

To show that all central elations in G are conjugate, it suffices to show the
conjugacy of any two central elations g and 4 in G with a common center P.
Since G is primitive, there is a central elation y in G whose center R is not in the
polar of P. Again g and y are conjugate in the dihedral group they generate,
as are 4 and y. Hence g and % are conjugate in G.

The proof of the last claim in part (v) is made easier by the following lemma.

LeMMA. Let G be a subgroup of PSp,(q). If (P, k), (P, m), (R, u), and
(R, v) are distinct skew flags with P not orthogonal to R, then there is an element
g in G which maps (P, k) to (P, m).
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Proof of Lemma. Let g, h, x, and y be centered skew elations in G at the
distinct flags (P, k), (P, m), (R, u), and (R, v), respectively. Applying Corollary
2.2 to each of the pairs {g, x} and {4, x}, we may assume, without loss of gener-
ality, that & meets u in a central center .S, or m meets u in a central center S’,
otherwise (P, k) and (P, m) are conjugate through a chain of dihedral groups
generated by the given centered skew elations. Both cases cannot occur since
P L R. Similarly, we may assume that k meets v in a central center 7', or m
meets v in a central center T, but not both. Further, neither k¥ nor m can meet
both u and v. Two cases are possible, and by symmetry we may assume the case
occurs in which k meets u in the central center S and m meets v in the central
center 7. If s and ¢ are central elations in G with the nonorthogonal centers S
and T, respectively, then by Tables 1 and 2, the dihedral group s, ¢) fixes P
and contains an element z mapping S to 7. Thus, z sends (P, k) to (P, m).

Returning to part (v), we now prove that the primitive group G is transitive
on its skew flags. Suppose G has centered skew elations, otherwise the result is
trivial, and let S be a Sylow 2-subgroup of G. By the Sylow 2-Subgroup The-
orem, there is a special skew flag (P, k) for G such that S = |J Z(P, k, G).
Clearly, #(P, k, G) # 0.

Let (Q, m) be any skew flag and 4 a centered skew elation in G at (Q, m). We
will show that (Q, m) is conjugate in G to (P, k). Since Sylow’s Theorem implies
that a conjugate of 4 lies in S, we may assume that 4 itself is in #(P, k, G),
%(P, k, G), or 2(P, k, G). In the first case (Q, m) = (P, k) and we are done.

Suppose 4 is in 2(P, k, G). Then P = Q and k # m. Since G is primitive,
the G-orbit of P contains a skew center R not orthogonal to P. Since P lies on
two distinct centered axes, namely £ and m, so does its G-conjugate R. The
lemma implies that (P, k) and (Q, m) are conjugate.

Suppose, finally, that 4 is in €(P, k, G). Then P # Q and k = m. The G-
orbit G(k) containing the totally isotropic line k£ must also contain a line r not
meeting k; if not, then k is the only line in the orbit G(k) which intersects every
other line in G(k) in a point, contrary to G being primitive. Since k contains
two distinct skew centers (P and Q), so does its G-conjugate r. Then we may
apply the lemma to the dual group G, since r and k skew implies that 6(r) and
d(k) are nonorthogonal, to conclude that (§(k), 6(P)) and (6(k), (Q)) are con-
jugate in G°. Thus, (P, k) and (Q, k) are conjugate in G, and the proof of part
(v) is completed.

For part (vi), let k = {P, Q). The hypothesis, together with part (v) and the
Sylow 2-Subgroup Theorem, implies that each skew center lies on a noncentered
axis. Let P and Q be distinct, orthogonal skew centers. If there is a centered
axis (different from k) through P, then part (iii) implies that the unique totally
isotropic line (namely k) joining P to any noncentered axis (different from k)
through Q must be a noncentered axis. Suppose there is no centered axis
through P different from (P, @>. Then (P, k) and (Q, k) are skew flags,
BP,k,G) #0,4(P, k,G) # 0,and (P, k, G) = 0. If g is a centered skew
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elation in G at (P, k) and 4 a noncentered skew elation in G with axis different
from k and containing Q, then Table 2 shows that g is a flag-fixer at (Q, k), and
so (P, k, G) # 0. Since G is assumed to have noncentered skew elations, we
conclude that either & is a noncentered axis, or G has pattern (2FN) or 2FCN).

7. Subgeometries

Let F’ = GF(q’) be a subfield of F = GF(q), where g = 2". A subgeometry
of V over F’' is a subset U = {Y a;x; | a; € F'}, where [xy, ..., x4] is a sym-
plectic basis for (¥, ). Note that a set of vectors in U is independent over F’
if and only if it is independent over F. The vectors in U are called rational
vectors. The proper F-subspaces of ¥ spanned by rational vectors are rational
points, lines, and planes. Let PT(U) denote the substructure of PT(V, f) con-
sisting of rational points and rational totally isotropic lines. It is easy to verify
the following: (i) two distinct rational points span a rational line; (ii) the inter-
section of rational subspaces is rational; and (iii) the polar of a rational subspace
is rational.

Let [xy,..., x,] be a symplectic basis, y the special duality on PT(V, f)
given in Section 3, and U’ the subgeometry {3 a,x; | a; € F'}. Since Sp,(q) is
transitive on symplectic bases, and hence on subgeometries over F’, and since
conjugation by y induces an automorphism on Sp,(g), it is easy to verify that
y maps PT(U) for any subgeometry U over F’' to PT(U*) for some sub-
geometry U* over F'. We conclude that any duality 6 on PT(V, f) does the
same, since 6 = ogy for some a in Aut F and some g in Sp,(q).

PROPOSITION 4. Let U be a subgeometry of (V, f) over F' and G a subgroup
of PSp,(q). Then G fixes the set of rational points (for U) if and only if G fixes U.

Proof. The reverse implication is trivial.

Suppose G fixes the set of rational points (for U). Let [uy,...,u,] be a
symplectic basis for ¥ such that U = {3 a;x; | a; € F'}, and let g be in G. Then
g(u;) = kv, for some k; in F* and v;in U, fori = 1,..., 4, and [v,, ..., v4]
is a basis (over F’) for U. Since x equal to »; + u, + u3 + u, spans a rational
vector, g(x) = ry for some r in F* and some y = Y qo; in U. Computation
shows that k; = ra; fori = 1,..., 4. Using the nonsingular matrix B = [b;;]
over F’ such that v; = ¥ b;u;, we compute that the transformation g has
matrix M equal to [ra;b;;] with respect to the symplectic basis [u;, ..., u,].
Since M has determinant 1, and hence 1/r* = det [a;b,;], we conclude that r
is in F’'. Thus, g fixes U.

COROLLARY 4.1. Let G be a subgroup of PSp,(q) and é a duality on PT(V, f).
If G stabilizes a subgeometry over F', then the dual G° stabilizes a subgeometry
over F'.

8. Superprimitive subgroups

PROPOSITION 5. Let Q be a quadratic form on (V, f) with quadric K of singular
points. The stabilizer in PSp,(q) of K is the orthogonal group GO(Q).
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Proof. Let T be an element of PSp,(q) which stabilizes K. If u is a singular
vector, then Q(Tu) = 0 = Q(u). Let v be any nonsingular vector and a = Q(v).
Since K does not lie entirely in {v)*, there is a vector r such that »r £ v and
Sf(v, r) = a. Since Q(v + r) = 0, we conclude that Q(T(v + r)) is also zero.

Hence Q(T(v)) = a = Q(v) and T is in GO(Q).

As a result of Proposition 5, the stabilizer in PSp,(q) of a totally isotropic
regulus is the maximal index orthogonal group whose quadric is that regulus
[8, Theorem 1]. Furthermore, Proposition 1 implies that for any duality é on
PT(V, f), the dual GO(Q)? of a maximal index orthogonal group is the stabilizer
in PSp,(q) of a pair of polar hyperbolic lines.

PROPOSITION 6. Let 0 be a duality on PT(V, f) and G a primitive subgroup of
PSp,(q). Then one of the following is true:

() the dual G° of G is primitive, or

(ii) G is a subgroup of the orthogonal group GO(Q) for some maximal index
quadratic form Q on (V, f).

Proof. If G fixes a point, a totally isotropic line, or a pair of totally isotropic
lines, then G fixes a totally isotropic line, a point, or a pair of points, respectively,
contrary to G being primitive. If G° fixes a polar pair, then G fixes a totally
isotropic regulus, and Proposition 5 implies case (ii). If G° stabilizes a pair of
distinct nonpolar hyperbolic lines, then Theorem 2 in [8] implies that G° also
fixes the unique totally isotropic line associated to the pair, and hence G fixes a
point.

Suppose G° acts transitively on the vertices of a tetrahedron 7. Since the
vertices of a tetrahedron span V, there are at most four totally isotropic sides
to T. So T can have no totally isotropic sides, otherwise G would act on a set
of four or fewer points, contrary to G being primitive. Each of the three pairs
of opposite sides to 7" must be a pair of distinct, nonpolar hyperbolic lines, to
which Theorem 2 in [8] associates a unique totally isotropic line. Hence G acts
on a set of three points, contrary to G being primitive. Thus, G° fixes no tetra-
hedron, and we have examined all the cases.

If we define a subgroup G of PSp,(g) to be superprimitive provided G is
primitive, (d) G does not fix any subgeometry over a proper subfield of GF(q),
and (e) G does not fix any totally isotropic regulus, then we obtain the Duality
Theorem.

DuALiTY THEOREM. Let & be a duality on the incidence structure PT(V, f)
and G a subgroup of PSp,(q). Then G is superprimitive if and only if its dual G° is
superprimitive.

Proof. Since 67! is also a duality on PT(V, f), it suffices to prove only one
of the implications. Suppose G is superprimitive. By Proposition 6, the group
G° is primitive, since G fixes no totally isotropic regulus. Corollary 4.1, applied
using 87!, shows that G’ fixes no subgeometry over a proper subfield of F.
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Finally, since G is primitive, G fixes no polar pair, and so G° fixes no totally
isotropic regulus. Thus, G° is superprimitive.
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