QUOTIENTS OF THE AUGMENTATION IDEAL OF A GROUP RING BY POWERS OF ITSELF

BY
Brian K. Schmidt ${ }^{1}$
\section*{Fundamentals}

Let G be a group under multiplication, and let $\mathbf{Z}(G)$ be its group ring over the ring of integers. $\mathbf{Z}(G)$ may be viewed as the set of formal (finite) linear combinations of the elements of G using integer coefficients. The augmentation mapping $e: \mathbf{Z}(G) \rightarrow \mathbf{Z}$ then takes each element of $\mathbf{Z}(G)$ to the sum of its coefficients. Note that e is a ring homomorphism. The kernel of e is called the augmentation ideal, and is denoted \mathscr{G}. Let $\Theta_{n}(G)=\mathscr{G} / \mathscr{G}^{n+1}$. $\Theta_{n}(\mathscr{G})$ is a nilpotent ring, and may be viewed merely as an abelian group under addition. The aim of this paper is to give a method for determining the additive structure of $\Theta_{n}(G)$, where G is any finitely presented group. Specifically, a presentation for the abelian group $\Theta_{n}(G)$ is derived from the given presentation of G. This may be used to obtain information about the original group G. An example is given where G is the fundamental group of the complement of a simple link.

Recall that, by definition, \mathscr{G} is the set of all formal linear combinations in $\mathbf{Z}(G)$ whose coefficients add up to 0 . Hence, for any $x \in G, x-1$ is an element of \mathscr{G}. So it makes sense to define a mapping $d: G \rightarrow \mathscr{G}$ by $d(x)=x-1$ for all $x \in G$. Let $q_{n}: \mathscr{G} \rightarrow \Theta_{n}(G)$ denote the ring homomorphism which takes each element of \mathscr{G} to its equivalence class in $\Theta_{n}(G)$. And call the composite $q_{n} d=\theta_{n}$. The mapping $\theta_{n}: G \rightarrow \Theta_{n}(G)$ will play an important role in our study of $\Theta_{n}(G)$.

There are two special cases in which $\Theta_{n}(G)$ and the mapping $\theta_{n}: G \rightarrow \Theta_{n}(G)$ are easy to describe; namely, when $n=0$ and when $n=1$. It is obvious that:

For any group $G, \Theta_{0}(G) \cong 0$, and $\theta_{0}(x)=0$ for all $x \in G$.
Next, we will describe $\Theta_{1}(G)$ and θ_{1}.
Lemma 1. For any $x, y \in G, d(x) d(y)=d(x y)-d(x)-d(y)$.
Proof.

$$
\begin{aligned}
d(x) d(y) & =(x-1)(y-1) \\
& =x y-x-y+1 \\
& =(x y-1)-(x-1)-(y-1) \\
& =d(x y)-d(x)-d(y)
\end{aligned}
$$

[^0]Theorem 2. For any group $G, \Theta_{1}(G)$ is isomorphic (as an abelian group) to G made abelian, and θ_{1} corresponds to the canonical epimorphism from G to G made abelian.

Proof. Note that \mathscr{G} is the free abelian group generated by

$$
\{d(x) \mid x \in G-\{1\}\} \quad(d(1)=0)
$$

So \mathscr{G}^{2} is the subgroup of \mathscr{G} generated by all $d(x) d(y)$, where $x, y \in G$. Thus, by Lemma $1, \mathscr{G}^{2}$ is generated by all $d(x y)-d(x)-d(y)$, where $x, y \in G$. So $\Theta_{1}(G)$ is the free abelian group generated by $\{d(x) \mid x \in G-\{1\}\} \bmod$ the subgroup generated by all $d(x y)-d(x)-d(y)$.

The multiplicative structure of $\Theta_{1}(G)$ is not interesting, since the product of any two elements equals 0 .

We will now consider another important mapping associated with $\Theta_{n}(G)$. Let G^{n} be the product of n copies of G. Then we define $d^{n}: G^{n} \rightarrow \mathscr{G}$ by $d^{n}(v)=$ $d\left(v_{1}\right) d\left(v_{2}\right) \cdots d\left(v_{n}\right)$ for all $v \in G^{n}$.

Hereafter we will use the word "morphism" to mean "group homomorphism".
Theorem 3. Let A be an abelian group under addition, and let $h: \mathscr{G} \rightarrow A$ be a morphism which annihilates \mathscr{G}^{n+1}. Then the mapping $h d^{n}: G^{n} \rightarrow A$ is a morphism in each variable when the other variables are held fixed.

Proof. We will prove the assertion for the first variable.

```
\(h d^{n}\left(x y, v_{2}, \ldots, v_{n}\right)\)
    \(=h\left(d(x y) d\left(v_{2}\right) \cdots d\left(v_{n}\right)\right)\)
    \(=h\left((d(x) d(y)+d(x)+d(y)) d\left(v_{2}\right) \cdots d\left(v_{n}\right)\right) \quad\) (by Lemma 1)
    \(=h\left(d(x) d(y) d\left(v_{2}\right) \cdots d\left(v_{n}\right)\right)+h\left(d(x) d\left(v_{2}\right) \cdots d\left(v_{n}\right)\right)+h\left(d(y) d\left(v_{2}\right) \cdots d\left(v_{n}\right)\right)\)
    \(=h d^{n}\left(x, v_{2}, \ldots, v_{n}\right)+h d^{n}\left(y, v_{2}, \ldots, v_{n}\right)\)
```

since $d(x) d(y) d\left(v_{2}\right) \cdots d\left(v_{n}\right) \in \mathscr{G}^{n+1}$.

Θ_{n} of a free group

Let F be a free group on a finite set of generators X. And denote by \mathscr{F} the augmentation ideal of F.

Theorem 4. $\quad \Theta_{n}(F)$ is generated under addition by

$$
\bigcup_{1 \leq j \leq n}\left\{q_{n} d^{j}(v) \mid v \in X^{j}\right\}
$$

Proof. Let A be an abelian group under addition, and let $g: \Theta_{n}(F) \rightarrow A$ be a morphism which annihilates $\bigcup_{1 \leq j \leq n}\left\{q_{n} d^{j}(v) \mid v \in X^{j}\right\}$. It suffices to prove that g annihilates $\Theta_{n}(F)$.

Observe that:
5. $g q_{n}: \mathscr{F} \rightarrow A$ is a morphism which annihilates \mathscr{F}^{n+1} and

$$
\bigcup_{1 \leq j \leq n}\left\{d^{j}(v) \mid v \in X^{j}\right\} .
$$

Now, by Theorem 3, $g q_{n} d^{n}: F^{n} \rightarrow A$ is a morphism in each variable when the other variables are held fixed. And $g q_{n} d^{n}$ annihilates X^{n}. So $g q_{n} d^{n}$ annihilates F^{n} (since X generates F). That is, $g q_{n}$ annihilates all elements of the form

$$
d\left(v_{1}\right) d\left(v_{2}\right) \cdots d\left(v_{n}\right) \quad \text { where }\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in F^{n}
$$

But these elements generate \mathscr{F}^{n}. So:
6. $g q_{n}: \mathscr{F} \rightarrow A$ is a morphism which annihilates \mathscr{F}^{n} and

$$
\bigcup_{1 \leq j \leq n}\left\{d^{j}(v) \mid v \in X^{j}\right\}
$$

Since we proved 6 from 5 it follows by induction that $g q_{n}$ annihilates \mathscr{F}. And since $q_{n}: \mathscr{F} \rightarrow \Theta_{n}(F)$ is an epimorphism, it follows that g annihilates $\Theta_{n}(F)$.

Next we must determine the relations among the generators of $\Theta_{n}(F)$. We will do this by means of the free differential calculus [2]. Fox's concept of a derivative is defined as follows:

A derivative on $\mathbf{Z}(F)$ is a mapping $\delta: \mathbf{Z}(F) \rightarrow \mathbf{Z}(F)$ such that
(a) $\delta(p+q)=\delta(p)+\delta(q)$,
(b) $\delta(p q)=\delta(p) e(q)+p \delta(q)$ for all $p, q \in \mathbf{Z}(F)$.

Here e is the augmentation mapping. It is easy to show that:
If δ is a derivative on $\mathbf{Z}(F)$, then $\delta(1)=0$.
Theorem 7. If δ is a derivative on $\mathbf{Z}(F)$, then $\delta\left(\mathscr{F}^{i+1}\right) \subset \mathscr{F}^{i}$ for all positive integers i.

Proof. Given $p \in \mathscr{F}^{i}$ and $q \in \mathscr{F}$,

$$
\delta(p q)=\delta(p) e(q)+p \delta(q)=p \delta(q) \in \mathscr{F}^{i}
$$

And \mathscr{F}^{i+1} is generated under addition by $\left\{p q \mid p \in \mathscr{F}^{i}, q \in \mathscr{F}\right\}$.
Theorem 8. If $\delta_{1}, \delta_{2}, \ldots, \delta_{i}$ are derivatives on $\mathbf{Z}(F)$, then the morphism $e \delta_{1} \delta_{2} \cdots \delta_{i}: \mathbf{Z}(F) \rightarrow \mathbf{Z}$ annihilates \mathscr{F}^{i+1}.

Proof. Applying Theorem 7 repeatedly, we find that

$$
\delta_{1} \delta_{2} \cdots \delta_{i}\left(\mathscr{F}^{i+1}\right) \subset \mathscr{F} .
$$

And e annihilates \mathscr{F}.
Fox has shown in [2] that for each generator $x \in X$ there exists a unique derivative $\partial / \partial x$ on $\mathbf{Z}(F)$ such that $\partial x / \partial x=1$ and $\partial y / \partial x=0$ for every other
generator $y \in X$. In the theorems that follow, we will denote by $u_{1}, u_{2}, \ldots, u_{i}$ the components of an element $u \in X^{i}$.

Theorem 9. If $u \in X^{i}, v \in X^{j}$, and $i<j$, then

$$
e \frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}} d^{j}(v)=0
$$

Proof. Note that $d^{j}(v) \in \mathscr{F}^{j} \subset \mathscr{F}^{i+1}$. And, by Theorem 8,

$$
e \frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}}
$$

annihilates \mathscr{F}^{i+1}.
Theorem 10. If $u \in X^{i}, v \in X^{j}$, and $i \geq j$, then

$$
\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}} d^{j}(v)= \begin{cases}1 & \text { if } u=v \\ 0 & \text { if } u \neq v\end{cases}
$$

Proof. We will proceed by induction on i. Note that for any $x, y \in X$, $(\partial / \partial x) d(y)=\partial y / \partial x$. Hence the assertion is true when $i=1$.

Now we may assume the assertion is true for a given i. Consider $u \in X^{i+1}$ and $v \in X^{j}$, where $i \geq j$. We have

$$
\begin{aligned}
\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial u_{i+1}} d^{j}(v) & =\frac{\partial}{\partial u_{1}}\left(\frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial u_{i+1}} d^{j}(v)\right) \\
& =\frac{\partial}{\partial u_{1}}\left(\begin{array}{lll}
1 & \text { or } & 0
\end{array}\right) \\
& =0 .
\end{aligned}
$$

This agrees with the assertion.
Finally we must consider $u \in X^{i+1}$ and $v \in X^{i+1}$. Let $v^{\prime}=\left(v_{1}, v_{2}, \ldots, v_{i}\right)$. Then

$$
\begin{aligned}
\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots & \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial u_{i+1}} d^{i+1}(v) \\
& =\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}}\left[\frac{\partial}{\partial u_{i+1}}\left(d^{i}\left(v^{\prime}\right) d\left(v_{i+1}\right)\right)\right] \\
& =\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}}\left[\left(\frac{\partial}{\partial u_{i+1}} d^{i}\left(v^{\prime}\right)\right) e d\left(v_{i+1}\right)+d^{i}\left(v^{\prime}\right) \frac{\partial}{\partial u_{i+1}} d\left(v_{i+1}\right)\right] \\
& =\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}}\left[d^{i}\left(v^{\prime}\right) \frac{\partial v_{i+1}}{\partial u_{i+1}}\right]
\end{aligned}
$$

If $u=v$, this expression is clearly equal to 1 . Otherwise it is 0 .
This completes the induction.

Theorem 11. Under addition, $\Theta_{n}(F)$ is the free abelian group generated by

$$
\bigcup_{1 \leq j \leq n}\left\{q_{n} d^{j}(v) \mid v \in X^{j}\right\}
$$

Proof. Consider any $u \in X^{i}$, where $1 \leq i \leq n$. By Theorem 8, the morphism

$$
e \frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}}: \mathbf{Z}(F) \rightarrow \mathbf{Z}
$$

annihilates \mathscr{F}^{i+1}. Hence the restriction

$$
e \frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}}: \mathscr{F} \rightarrow \mathbf{Z}
$$

can be written as $\pi_{u} q_{n}$, where $\pi_{u}: \Theta_{n}(F) \rightarrow \mathbf{Z}$ is a morphism. By 9 and 10 we have

$$
e \frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}} d^{j}(v)= \begin{cases}1 & \text { if } u=v \\ 0 & \text { if } u \neq v\end{cases}
$$

So

$$
\pi_{u}\left(q_{n} d^{j}(v)\right)= \begin{cases}1 & \text { if } u=v \\ 0 & \text { if } u \neq v\end{cases}
$$

Therefore there are no relations among the generators

$$
\bigcup_{1 \leq j \leq n}\left\{q_{n} d^{j}(v) \mid v \in X^{j}\right\}
$$

At this point it is convenient to adopt a new notation. Given $u \in X^{i}$, let $c_{u}=q_{n} d^{i}(u)$. (We assume n is known from context.) Let D_{u} denote the mapping

$$
e \frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}} d: F \rightarrow \mathbf{Z}
$$

And let $\bigcup^{n} X=\bigcup_{1 \leq i \leq n} X^{i}$. Then Theorem 11 may be restated as follows:
Under addition, $\Theta_{n}(F)$ is the free abelian group generated by $\left\{c_{u} \mid u \in \bigcup^{n} X\right\}$.
Looking at the proof of Theorem 11, we see that

$$
D_{u}=e \frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{2}} \cdots \frac{\partial}{\partial u_{i}} d=\pi_{u} q_{n} d=\pi_{u} \theta_{n}
$$

And

$$
\pi_{u}\left(c_{v}\right)= \begin{cases}1 & \text { if } u=v \\ 0 & \text { if } u \neq v\end{cases}
$$

So D_{u} is the u-coordinate of θ_{n}. Therefore:

Corollary 12. $\quad \theta_{n}=\sum_{u \in U^{n} X} c_{u} D_{u}$.

Note that Theorem 11 actually enables us to describe the structure of $\Theta_{n}(F)$ as a ring. Given $u \in X^{i}$ and $v \in X^{j}$, define

$$
u v=\left(u_{1}, \ldots, u_{i}, v_{1}, \ldots, v_{j}\right) \in X^{i+j}
$$

Since q_{n} is a ring homomorphism, the generators of $\Theta_{n}(F)$ multiply by the rule

$$
q_{n} d^{i}(u) q_{n} d^{j}(v)=q_{n} d^{i+j}(u v)
$$

In other words, $c_{u} c_{v}=c_{u v}$.
When $i+j>n$, this product is 0 . Hence $\Theta_{n}(F)$ is the truncated polynomial ring (with height $n+1$, with \mathbf{Z}-coefficients, and with no constant terms) in the noncommuting variables $\left\{c_{x} \mid x \in X\right\}$.

Computation of $\Theta_{n}(G)$ from a presentation of G

Let F be a free group on a finite set of generators X. Let R be a finite subset of F, and let E be the smallest normal subgroup of F containing R. Let $G=F / E$. Then G is a finitely presented group, with generators X and relations R. Our aim is to compute the additive structure of $\Theta_{n}(G)$. We will approach the problem by way of $\Theta_{n}(F)$ and $\theta_{n}: F \rightarrow \Theta_{n}(F)$, which are already known.

Throughout this paper, the word "ideal" will always mean a two-sided ideal. Call $M(E)$ the ideal of \mathscr{F} generated by $\{d(r) \mid r \in R\}$.

Theorem 13. $d(y) \in M(E)$ for all $y \in E$.
Proof. Note that $M(E)$ is also an ideal of $\mathbf{Z}(F)$. So $\mathbf{Z}(F) / M(E)$ is a ring, and we have a ring homomorphism

$$
f: \mathbf{Z}(F) \rightarrow \mathbf{Z}(F) / M(E) \quad \text { with } f(1)=1
$$

Now F sits in $\mathbf{Z}(F)$, and f acts as group homomorphism on F. So

$$
\{x \in F \mid f(x)=1\}
$$

is a normal subgroup of F. And $f(r)=1$ for all $r \in R$. Thus $f(y)=1$ for all $y \in E$. That is, $d(y) \in M(E)$ for all $y \in E$.

Call g the ring homomorphism from \mathscr{F} onto \mathscr{G} induced by the canonical morphism from F onto G.

Theorem 14. $\quad M(E)$ is the kernel of g.
Proof. $M(E)$ is clearly contained in the kernel of g. Moreover, given $x \in F$ and $y \in E$, we have

$$
d(x y)-d(x)=d(x) d(y)+d(y)
$$

by Lemma 1. Hence, by Theorem 13, $d(x y)-d(x)$ belongs to $M(E)$. But

$$
\{d(x y)-d(x) \mid x \in F, \quad y \in E\}
$$

generates the kernel of g under addition. So $M(E)$ is the entire kernel.
The morphism from F onto G also induces a ring homomorphism from \mathscr{F}^{n+1} onto \mathscr{G}^{n+1}, and a ring homomorphism h from $\Theta_{n}(F)$ onto $\Theta_{n}(G)$. Call $N_{n}(E)$ the kernel of h.

Theorem 15. $\quad N_{n}(E)$ is the ideal of $\Theta_{n}(F)$ generated by $\left\{\theta_{n}(r) \mid r \in R\right\}$.
Proof. Consider the following diagram:

The three rows and the second and third columns are exact. Hence, by a variation of the Nine Lemma, the first column is exact. Thus $q_{n}: \mathscr{F} \rightarrow \Theta_{n}(F)$ takes $M(E)$ onto $N_{n}(E)$. And, since $M(E)$ is generated by $\{d(r) \mid r \in R\}, N_{n}(E)$ is generated by $\left\{q_{n} d(r) \mid r \in R\right\}$.

Corollary 16. $N_{n}(E)$ is generated under addition by
(i) all $\theta_{n}(r)$, where $r \in R$,
(ii) all $c_{u} \theta_{n}(r)$, where $r \in R$ and $u \in \bigcup^{n-1} X$,
(iii) all $\theta_{n}(r) c_{v}$, where $r \in R$ and $v \in \bigcup^{n-1} X$,
(iv) all $c_{u} \theta_{n}(r) c_{v}$, where $r \in R, u \in X^{i}, v \in X^{j}$, and $i+j<n$.

Since $\Theta_{n}(G) \cong \Theta_{n}(F) / N_{n}(E)$, Corollary 16 gives a presentation for $\Theta_{n}(G)$. The generators of $\Theta_{n}(G)$ are the generators of $\Theta_{n}(F)$; the relations of $\Theta_{n}(G)$ are the generators of $N_{n}(E)$. Since the presentation is finite, standard methods may be used to determine the structure of $\Theta_{n}(G)$ as an abelian group.

In principle, the ring structure of $\Theta_{n}(G)$ can also be found from this presentation. But less is known about the structure of nilpotent rings than is known about abelian groups. This appears to be a more difficult problem.

Example 17. Let $X=\{x\}$ and let $R=\left\{x^{9}\right\}$. Then F is isomorphic to the group of integers \mathbf{Z}, and G is isomorphic to \mathbf{Z}_{9}. We will compute $\Theta_{4}\left(\mathbf{Z}_{9}\right)$ as an abelian group. It turns out that

$$
D_{(x, x, \ldots, x)}\left(x^{n}\right)(s \text { entries })=C(n, s) .
$$

Using Corollary 12, we obtain

$$
\theta_{4}\left(x^{9}\right)=9 c_{x}+36 c_{(x, x)}+84 c_{(x, x, x)}+126 c_{(x, x, x, x)} .
$$

Since $\Theta_{4}(F)$ is a commutative ring in this case, the generators listed in 16 boil
down to $\theta_{4}\left(x^{9}\right), c_{x} \theta_{4}\left(x^{9}\right), c_{(x, x)} \theta_{4}\left(x^{9}\right)$, and $c_{(x, x, x)} \theta_{4}\left(x^{9}\right)$. Thus $N_{4}(E)$ is generated by

$$
\begin{gathered}
9 c_{x}+36 c_{(x, x)}+84 c_{(x, x, x)}+126 c_{(x, x, x, x)} \\
9 c_{(x, x)}+36 c_{(x, x, x)}+84 c_{(x, x, x, x)} \\
9 c_{(x, x, x)}+36 c_{(x, x, x, x)} \text { and } 9 c_{(x, x, x, x)}
\end{gathered}
$$

To find the canonical form of $\Theta_{4}\left(\mathbf{Z}_{9}\right)$, form the matrix

$$
\left[\begin{array}{rrrr}
9 & 36 & 84 & 126 \\
0 & 9 & 36 & 84 \\
0 & 0 & 9 & 36 \\
0 & 0 & 0 & 9
\end{array}\right] .
$$

By performing elementary row and column operations (using integer coefficients only), we obtain

$$
\left[\begin{array}{rrrr}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 27 & 0 \\
0 & 0 & 0 & 27
\end{array}\right] .
$$

Thus $\Theta_{4}\left(\mathbf{Z}_{9}\right) \cong \mathbf{Z}_{3}+\mathbf{Z}_{3}+\mathbf{Z}_{27}+\mathbf{Z}_{27}$.
Example 18. Let $X=\{x, y, z\}$ and let $R=\left\{r_{1}, r_{2}\right\}$, where

$$
r_{1}=y z y^{-1} x y z^{-1} y^{-1} z x^{-1} z^{-1} \quad \text { and } \quad r_{2}=z x z^{-1} y z x^{-1} z^{-1} x y^{-1} x^{-1}
$$

Then F is a free group on three generators, and G is isomorphic to the fundamental group of the complement of the link in the figure. We will compute $\Theta_{3}(G)$. Using Corollary 12, we obtain

$$
\begin{aligned}
& \theta_{3}\left(r_{1}\right)=-c_{(x, y, z)}+c_{(y, z, x)}-c_{(z, y, x)}+c_{(x, z, y)} \\
& \theta_{3}\left(r_{2}\right)=c_{(z, x, y)}-c_{(y, z, x)}-c_{(x, z, y)}+c_{(y, x, z)}
\end{aligned}
$$

Note that the generators listed in parts (ii), (iii), and (iv) of 16 are 0 . Hence $N_{3}(E)$ is generated by $\theta_{3}\left(r_{1}\right)$ and $\theta_{3}\left(r_{2}\right)$. Only six of the thirty-nine generators of

$\Theta_{3}(F)$ occur in $\theta_{3}\left(r_{1}\right)$ or $\theta_{3}\left(r_{2}\right)$. So $\Theta_{3}(G)$ is isomorphic to 33 Z plus 6 Z mod the subgroup generated by $\theta_{3}\left(r_{1}\right)$ and $\theta_{3}\left(r_{2}\right)$. In matrix form, this is

$$
\left[\begin{array}{rrrrrr}
-1 & 0 & 1 & -1 & 1 & 0 \\
0 & 1 & -1 & 0 & -1 & 1
\end{array}\right]
$$

which becomes

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus $\Theta_{3}(G) \cong 33 Z+4 Z \cong 37 Z$.
Remark on links. Suppose G is the fundamental group of the complement of a link in Euclidean 3-space. Call G_{n} the nth lower central subgroup of G. ($G_{1}=G, G_{n}=\left[G, G_{n-1}\right]$ for all $n>1$.) It is shown in [7] that G / G_{n} is an isotopy invariant of the given link. Let $G \cong F / E$, where F, E, X, and R are as before. We may then obtain a presentation for G / G_{n} by combining the relations of G with all of the elements of F_{n}. It is shown in [2] that $D_{u}(r)=0$ for all $r \in F_{n}, u \in \bigcup^{n-1} X$. Hence, by 12, $\theta_{n-1}(r)=0$ for all $r \in F_{n}$. So by 16, $\Theta_{n-1}\left(G / G_{n}\right) \cong \Theta_{n-1}(G)$. Therefore $\Theta_{n-1}(G)$ is an isotopy invariant of the link, for all positive integers n.

In Example 18, we found that $\Theta_{3}(G) \cong 37 \mathbf{Z}$. But the fundamental group of the complement of a trivial link with 3 components is a free group F on 3 generators. And $\Theta_{3}(F) \cong 39 \mathrm{Z}$. So the link in this example is not isotopically trivial. Moreover, deeper information about this link may be obtained by computing $\Theta_{n}(G)$ for larger n. It is our hope that this approach will be fruitful in studying the isotopy properties of more difficult links.

References

1. S. Ellenberg and S. MacLane, On the groups $H(\pi, n)$, II, Ann. of Math. (2), vol. 60 (1954), pp. 49-138.
2. R. H. Fox, Free differential calculus I, Ann. of Math. (2), vol. 57 (1953), pp. 547-560.
3. -_, Free differential calculus II, Ann. of Math. (2), vol. 59 (1954), pp. 196-210.
4. K. T. Chen, R. H. Fox, and R. C. Lyndon, Free differential calculus IV, Ann. of Math. (2), vol. 68 (1958), pp. 81-95.
5. R. Holmes and N. Smythe, Algebraic invariants of isotopy of links, Amer. J. Math., vol. 88 (1966), pp. 646-654.
6. W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math, Ann., vol. 111 (1935), pp. 259-280.
7. J. Milnor, "Isotopy of links", Lefschetz symposium, Princeton Mathematical Series, vol. 12, pp. 280-306.
8. B. K. Sснmidt, Mappings of degree n from groups to abelian groups, Doctoral Dissertation, Princeton University, 1972.

Southern Illinois University
Carbondale, Illinois

[^0]: Received December 7, 1973.
 ${ }^{1}$ This paper contains portions of the author's doctoral dissertation written at Princeton University. The author wishes to thank the National Science Foundation for supporting him during part of this work.

