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In [1] the need arises to calculate the norm of the sum of two operators, one
a unitary operator arising from an ergodic point transformation on a measure
space, the other a projection associated with a subset of the measure space.
The purpose of this note is to show that we can often replace the projection
operator by a more general operator, a multiplication by a simple function, and
still obtain an explicit expression for the norm ofthe sum. The interplay between
the point transformation and the simple function will determine the norm in
question.

Let us fix terminology. Let (X, t) be a measure space where # is a finite,
nonatomic measure normalized so that I(X) 1. Let be an ergodic, measure
preserving, invertible transformation of X onto itself. (It is assumed that and- are measurable. Ergodic means that any measurable subset of X invariant
under has measure 0 or 1.) Lo(X) is the space of all bounded measurable
functions on X. We associate a unitary operator with and a bounded linear
operator with each function g in Lo(X) in the standard way" define U by
U,f fo a-, for eachf e L2(X), and define Lo by Lof ,qf, for each g L(X)
and eachfe L2(X). It is U, + Lol which we wish to calculate. In the event g
is the characteristic function Xr of some measurable subset E of X, we write Pr
in place of Lx. The fact that U, is unitary follows from the assumption that e
is measure preserving.
We prove first a simple lemma.

LEMMA. Let g L(R)(X) and let E be a measurable subset of X such that
y(x) 0 if x E. Let F be a measurable subset of E satisfying (F) c E F
and -I(F) E F. Then Pru=(r) commutes with LoU + L

Proof Of course, it is sufficient to show that Pru=(r) commutes with LoU 1.
To do this we shall show that LoU leaves invariant both the subspace L2(F w
(F)) and its orthogonal complement in L2(X).
Assume that f L2(F (F)). We may assume that f(x)= 0 whenever

x F (F). For every x, (LU lf)(x) y(x)f((x)). To prove that LoU if
lies in L2(F e(F)), we must show that 9(x)f(e(x)) 0 whenever x F w e(F).
This is evidently the case whenever x E so we consider only x e E. Since
e-I(F) c E

_
F and x F we must have x e-(F), and hence e(x) F.

But x F also implies (x) e(F), so e(x) F w e(F) and we havef(e(x)) O.
This proves the invariance of L2(F (F)).
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Now suppose f is orthogonal to L2(F a(F)). Hence, we may assume
f(x) 0 whenever x F a(F). We wish to prove that #(x)f((x))= O,
assuming that x F w (F). Again, this is evident when x 6 E, so we assume
that x E. Then

xEc(Fw(F))_ F;

hence (x) (F)
___
F w a(F) and, consequently, f((x)) 0. Thus LoU f

is orthogonal to L(F (F)) and the lemma is proven.
Our goal is to calculate U / Loll whenever g is a simple function whose

support is less than the whole space X; more precisely, for which/({x I#(x)
0)) > 0. It is advantageous to consider first a special case and then use the
lemma above to reduce the general case to the special one.

Let El, E2, E, be disjoint measurable subsets of X and assume g has the
form g ’=1 azr., where the a are arbitrary complex numbers. Assume
further that (E3 E+ for 1,..., n and that (En) is disjoint from

’= E. Define a real n + by n + 1 matrix B (bj) as follows"

b, [a_ll 2 for 2,..., n +
b+x, b,+x lal for 1,..., n

b, j 0 for all other i, j.

This matrix has the sequence 0, lal 2, la212,..., lal 2 down the main diagonal
and the sequence lal, la21,..., lanl immediately above and below the main
diagonal.

PROPOSITION. IIf / L011- (1 + Ilnll)x/2.

Proof Since IILo / UII- IILoU / III, we need only calculate the latter.
Let E [J’=l E,. By the lemma, Pror) commutes with LoU + I; there-
fore

IILoU-I + I

max {II(LoU2 + I)e)ll, II(LoU2 + I)(I e))ll}.
It is routine to check that LoU 1(1 Pr(r)) 0, and from this we obtain

II(LU: + I)(I- Pn>)il-< 1.

Therefore, we can prove the proposition by showing that

II(LoU + I)PE (E)II (1 / liB II) x/2.

Suppose f L2(E w (E)) and Ilfll 1. Let f fl Ei, for 1,..., n,
and f+ f[ (En). Note that, for each 1,..., n, Ufi+ fi+
lies in L2(Ei). Then

+ I)f= (af+oa +f) +(LoU -1



304 ALAN HOPENWASSER

The terms in this sum are all mutually orthogonal, so

II(LU + /)fll 2

Ila,A+ + f, 2 . ilL+. 2

i=l

la1211f+ 112 + 2 Re i(f, fi+l ) + IIfl12

1 + la,lliA+ll + 2 Re ,(Z.A+o.)
/=1

1 + +
=I =I

(Note that in the above we have made use of the facts that =x IIl[
Ilfll z and I1 11 IIAII, for each i.)
Consider the quadratic form

i=1 i=1

on R+. We claim that (x) Bx, x, where B is the matrix described in
the paragraph preceding the proposition. Indeed, if

then

whence

x (xl,..., x,+l) eR"+1

Bx- (laxlx, laxlxx + lallaxz + lazlx3,..., la.-llxn-1
+ lan-xlZx. + lanlXn+l, la.lx. + lanlZX.+l),

<Bx, x> --[allxzxl + [allxlx2 + lalZxz +""
+ la.lx.+ iXn "t" la.lx.x.+l /l 2 za.I Xn+ Q(x).

Since B is a self-adjoint matrix, suPllll= Q(x) IIB II. It follows from the
inequality in (*) that [I(LoU + I)fll z < 1 + I[BII, from which we obtain

IILoU2 + III < (1 + IIBII) x/2.
It remains to show that we actually have equality. Fix

X (X1,. Xn+l)

in R"+ such that Ilxil and Q(x) supllyll Q(y). Such an x exists since
the unit sphere in R"+ is compact. Since replacing each x by Ixl can only
raise the value of Q, we may assume each x > 0. Let fl be any element of
L:Z(EI) such that IIAII xx. We define f/+, 1,..., n, recursively as
follows"

If x = 0, let

ai Xi+l fi Of
-1

lail x
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If xi 0, let fi + be any element of L2(E + x) with [[f + ill x + x.

Therefore, if x # 0 we have

af Xi+f/+l o0 L
lal x

and hence

2 Re ,(f, f+lo a) 2 Re la,I x,+l

Xi

If, on the other hand, x 0 thenf 0 also, and again

2 Re (f,f+ ) 0 2lailxx+
If we now let f = , then f L2(E w (E)), Ilfll 1, and the equalities
in (.) show that

II(ZaU + I)fl12 1 + a(x)= 1 + Ilnll.
Thus IIZf + III (1 + Ilnll) /2,
We turn now to the general case for a simple function # with ({x #(x)

0)) > 0. We may write # = agr,, where the a are distinct, the E are
disjoint and V(O= E)< 1. Let E 7= E. To each finite sequence
p (a,..., a) with values in (ali 1,..., n) we associate a set

Fv {x E Ie-a(x) E, x E,, e(x) Ev..., ek-X(X) E, ek(x) E}.

Let S {p v(F) > 0}. The set S may be finite or infinite. Examples where
S is infinite, even in the case where # is the characteristic function of a set,
may be constructed easily using the "stacking" methods of [2]. Further, since
e is ergodic, for almost every x in E there is some positive integer k such that
e(x) E and some negative integer j such that e(x) E.

Let E F w e(F) w...w e-i(F), where p is a sequence of length k.
Then the comments above say that, up to a set of measure zero, E s E.
Further E satisfies

(E)E E and -a(E)mE E.
Therefore Pc, ,(,) commutes with LoU,-, + L and so we obtain

IILo + UII IILoU,-, + 111 sup II(LoU-

(It will be evident soon that II(LoUX + I)(I- P>)II, which should
properly be among the set of numbers over which we take the sup, is actually
smaller than any of the other numbers and so may be omitted.) For each
sequence p (a,,..., a) define a k + by k + matrix B(p) just as in the
paragraph preceding the proposition, i.e., B(p) has the sequence 0, la,12,...,
lal 2 on the diagonal and the sequence la,l,..., lal immediately above and
below the diagonal. Then the proposition says that for p S,

II(LaU + I)Pn,(n)ll (1 + IIB(p)ll) /2.
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Thus we have proven that, with the notation above,

IlLg / Ull- sup (1 + [IB(p)[I) x/2.

There are various questions which arise if one wishes to drop one or another
of the assumptions made above. For example, suppose we let # be any L-function with #({x #(x) 0}) > 0. Then we may approximate Lg uniformly
by operators of the form Lh where h is a simple function with the same support
as #. Hence the norm IILg / UII is approximated by IILh / UII. This pro-
cedure is not fully satisfactory as it does not yield a tractable expression for

IIL / fll.
Two other interesting questions are: what happens if we drop the requirement

that #({x #(x) 0}) > 0 and, what happens if we drop the assumption of
ergodicity. In either instance we encounter a similar difficulty" points in the
support of # may always remain there under the action of . This means that
we do not obtain a decomposition of the support of# into the easily manageable
sets Ep associated with finite sequences as above. We may, to each point x
associate an infinite sequence of numbers a, determined by the action of on
x, but uncountably many such sequences might well appear and each may be
associated with a set of measure zero. So an approach analogous to what is
done above is impossible.
However, if we go to a far extreme from ergodicity, we can once again

calculate the norm for a sum Lg + U (and with no assumption about the
support of the simple function #). This can be done if has no aperiodic part;
more precisely, if, for almost all x, "(x) x for some n (n may depend on x).
If

E (x[(x)= x and (x) x, forj= 1,...,n- 1)

then X ;= En (up to a null set). Each E is invariant under ; hence
commutes with Lg + U and

IIL / UII sup II(L + U)P,ll.

This reduces the problem of calculating IIL + UII to the special case where
(x) x for all x and some fixed n.
A further reduction is possible. To each x associate the finite sequence

p(x) (#((x)),..., #((x))). Define an equivalence relation on I" by
saying x y ifp(x) is a cyclic permutation of p(y). The set Ex (YlY
is measurable and invariant under ; hence Pe commutes with L + U.
There are only finitely many distinct E and

IlZo + UII max {ll(Z0 / U)PII}.
Thus, the problem reduces to the special case where # ’=t aE, the E

are disjoint, Ek ok-t(E) for k 1,..., n, and Et e(En). (The a are
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not necessarily distinct, but the assumption "(x) x, for all x, remains in
force.) Let B (bj) be the matrix given by

b, lal 2

b,+ b+, [as+[, i= 1,...,n

bl, b,,, [ai[

b, j O otherwise.

Then using the same techniques as before, one can show

ILL,, / Ull- (I + IIBII)/2.
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