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1. Introduction

The objective of this paper is to describe an abstract theory of representing
measures. To do this we consider a compact topological groupoid, i.e., X is
compact Hausdorff and’: X x X X is continuous. (X, .) is commutative
if x.y y. x for every x, y X, and (X, .) is medial if (w. x). (y. z)
(w. y) (x. z) for every w, x, y, z X. Observe that if X is a compact convex
subset of a locally convex topological vector space with as the midpoint
function, then (X, .) is commutative and medial. Throughout this paper we
shall refer to such a set as simply a compact convex set. With this example in
mind define a real valued functionfon a compact groupoid (X, .) to be convex
if for every x, y X, f(x.y) < 1/2f(x) + 1/2f(y). Let C(X) denote the con-
tinuous real valued functions on X and let C denote the continuous convex
functions on X. An element x e X is called an idempotent if x. x x and we
call the set of all idempotents of X the core of X and denote it by core X. A
class of functions K on a set S is said to separate points if for every x, y e S
with x 4: y, there exists fs K such that f(x) 4: f(y). We shall say that K is
totally separating if x, y s S and f(x) > f(y) for every f e K implies that
x y. (X, .) is said to be strongly separated by its convex functions if C
separates the points in X and C is totally separating on core X. If (X, .) is a
compact medial groupoid that is strongly separated by its convex functions, then
(X, .) is called a compact mean space.
When X is a compact Hausdorff space then we shall let f(X) denote the

regular Borel probability measures on X. Since f(X) is exactly those regular
signed Borel measures # in the closed unit ball of C(X)* such that j" d/ 1,
f(X) is weak* compact. If (X, .) is a compact groupoid and p, v (X), then

l(f) ff(x. y)dg(x) x v(y)

defines a norm one linear functional on C(X) such that /(1) 1. Hence
l(f) $fdqb for some b f(X). We shall denote the measure b by/, v.
/t v is called the convex convolution of kt with v. Now define a map S: f(X)
f(X) by S(p) # It for every/ f(X). Since. is continuous, it is easily
verified that S is weak* continuous. If # Q(X) and x X, then we say that #
represents x if for everyf C(X),

lim ff dS"(p) f(x).
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278 JAMES W. ROBERTS

In this paper we shall investigate representing measures in the case when
(X, .) is a compact mean space. It will be shown that every measure in fl(X)
represents some point in core X and that core X is iseomorphic to a compact
convex set. Some applications and examples will be given. Finally, we will
develop a theory of compact groupoid valued integrals based on our notion of
representing measures.

2. Measures representing points

In this section we shall assume that (X, .) is a compact mean space and we
let C denote the continuous convex functions on S. To obtain a theory of
representing measures we must first investigate some of the properties of the
class of functions C.

PROPOSITION 2.1. (i) Iff, g e C, and a >_ 0, then af + g C and max (f, g)
C.

(ii) C C is dense in C(X).
(iii) Iff C andf > O, then f2 C.

(iv) If x, y X and x # y, then there exists fe C such that f(x.y) <
1/2f(x) + 1/2f(y).

Proof (i) is a routine verification and by (i), C C is a vector space. If
fl, f2, gl, g2 C then

max (f -g,f2 -g2) max (f + g2,f2 + g) -(g + 02).

Hence C C is a lattice. Since C C contains constants and separate points,
C- C is dense in C(X) by the Stone-Weierstrass theorem. (iii) is easily
verified. If x, y e X such that x : y, then there exists fe C such that f(x) #
f(y). We may assume f >_ 0 since if c <_ inff(x), then f- c >_ 0. By (iii),
f2 e C. But also, f2(x. y) < 1/2f2(x) + 1/2f2(y) as is easily shown.

If #, v e Q(X), we say # _< v if for every f e C, .ffd# <_ .(fdv. It is clear
that _< is a partial ordering of (X).

LEMMA 2.2. /f #, V Q(X), then # v <_ 1/2# + 1/2v. In particular, S(#) <_ #
for every # D(X).

Proof If.f C, then

fd# * v ff(x y) d#(x) x v(y)

< f(1/2f(x) + 1/2f())d(x) x (y)

1/2 ffd + 1/2 ffd



REPRESENTING MEASURES IN COMPACT GROUPOIDS 279

From this lemma we see that if # fl(X) andfe C, then fdS"# is a mono-
tone decreasing sequence.
The next lemma relies on the notion of the support of a measure. If # is a

regular Borel measure on a compact Hausdorff space Y, then the support of #
is the smallest of the compact sets whose complement has measure zero. The
support of # is denoted supp # and the following facts about supp # are easily
verified.

(i) If O is open in Yand O c supp # # , then #(O) > 0.

(ii) If f, g C(Y), f >_ g, and for some x supp It, f(x) > g(x), then
.[ f dit > g dit.

Now let e: X D(X) be defined by letting e(x) be the point mass measure
at x. We note that for a point mass measure e(x), S(e(x)) e(x. x) and more
generally e(x) e(y) e(x" y).

PROPOSITION 2.3. If # t)(X) and S(it) It, then there exists x core X
such that It e(x).

Proof Suppose It D(X). Then the Baire sets in X x X are It x It
measurable. Thus there exists a measure v in D(X x X) such that for every
f C(X x X), .[ f dv j’ f dIt x It. Now supp v = (supp It) x (supp It). To
see this suppose x, y e supp It. If (x, y) 0 for an open set 0, then there
exists U, V open F, sets in X such that (x, y) U x V and U x V O. But
then

v(o) _> v(u x v) x > 0.

(Actually, supp v (supp It) x (supp It), but we do not require that much.)
Now suppose S(It) #. If a, b supp It and a :/: b, then there existsf C

such that f(a. b) < 1/2f(a) + 1/2f(b). But then

ffdS(#) ff(x y) dit(x) x It(y)

< f(1/2f(x)+ 1/2f(y))dIt(x) x It(y)

=ffd .
This contradiction proves that supp # must consist of a single point, so that

It e(x) for some xX. But then e(x) S(e(x)) e(x. x). Hence x
core X.

PROPOSITION 2.4. If It fl(X), then there exists x core X such that It
represents x.

Proof Iff C, then (fdS"It) is a monotone decreasing sequence of real
numbers bounded below by inff(X). Thus limn-oo fdS"It exists. From this
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we deduce that (j’fdS"#) has a limit forf C C. Since C C is norm
dense in C(X), Stt must weak* converge to a linear functional in the closed
unit ball of the dual of C(X). Since {S#) f(X) and tl(X) is weak* compact,
the limit must be a measure in f(X).

If v lim_.o S#, then by the continuity of S, Sv S lim-.oo S#
lim-.oo S+ tt v. Thus v e(x) for some x core X.
By the above proposition we may define ,: ft(X) -o core X by ,(#) x if

tt represents x. At this point we note that if X is a compact convex set and if. is
the usual midpoint function, then our definition of representing measure agrees
with the usual definition, i.e., if f is a continuous affine function on X then
f C c -C, so that for # e fl(X),

f((#)) lim,_oo ffds’(#)= ffd#.
PROPOSITION 2.5. is continuous.

Proof. We first observe that core X is compact. Hence sets of the form
{x core X: f(x) < a} withf C and a real form a subbase for the topology
ofXsince C is totally separating on core X. If# (X) and forf C, f((#)) <
a, then since lim,-.oo fd(S#) f(k(#)), there exists an integer n such that
fdSn# < . Since S is weak* continuous on f(X), U {v f(X):
fd(Snv) < ) is a weak* open set in f(X). But # e U and if v U, then
f(b(v)) < . Hence $ is continuous.

PROPOSITION 2.6. Iff C(X x X), # f(X),

a,(x) ff(x, y) d(Sn#)(y),

and #(x) f(x, lP(#)), then tin C(X) for every n and tin converges uniformly
to 7.

Proof It is easily seen that each g C(X). We first suppose that f(x, y)
is convex in its second coordinate, i.e., for every x, y, z X, f(x, y. z)<
1/2f(x, y) + 1/2f(x, z).
Then for every x X, #,,(x) is a monotone decreasing sequence converging to

#(x). Since # C(X), the convergence is uniform by Dini’s theorem. Now
let K be the class of allf(x, y) such thatf(x, y) is convex in its second coordinate.
Iff, h e K and _> 0 then it is easily shown that f + h Kand max (f, h) e K.
Furthermore, if hx C(X), ha C, and f(x, y) h,(x) + h2(y), then f K.
Hence K separates points in X x X. Thus by the Stone-Weierstrass theorem
K- K is dense in C(X x X). Since the result is true for each fe K- K,
a routine convergence argument proves the result forf C(X x X).

PROPOSITION 2.7.
(s) (Sv).

If#, v F(X), then for each positive integer n, an(# )
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Proof. We need only show that S(#, v)= S(), S(v) since the result
then follows by induction. Iff C(X),

ffdS(#,v)= ff((w’x).(y’z)) dp(w) x v(x) x l (y) x v(z)

ff((w.y). p(y) x v(x) x v(z)

This proves the equality.

PROPOSITION 2.8. If I, V (X), then (# v) (#) $(v).

Proof Iffe C(X), then

ff dS"(p , v)

fd(s".)(x)ff(x.y)d(S"v)(y).
Now j’f(x’y)dS"v(y) converges uniformly to f(x" O(v)). Hence the limit of
the above sequence equals

lim If(x O(v)) d(S"#)(x) f(O() O(v)).

Thus
At this point we define the map r/:X - core X by r/(x) (e(x)) for every

x 6 X. r/is called the core map and r/is continuous since and e are continuous.

PROPOSITION 2.9. If X, y X, then ti(x y) q(x) ri(y).

Proof.
rl(x" y) (e(x y)) (e(x) , e(y)) (e(x)) (e(y)) l(x) q(y).

PROPOSITION 2.10. Let f 6 C and x core X; define g(y) f(x. y) and
h(y) f(x" q(y)). Then g, h C.

Proof.
g(y" z) f(x" (y" z)) f((x" x) (y" z))

f((x’y)" (x" z)) < 1/2f(x" y) + 1/2f(x" z)

1/29(Y) + 1/2g(z),

h(y z) f(x rl(y z)) f(x (r/(y) r/(z))

<_ 1/2f(x" I(Y)) + 1/2f(x’q(z))

1/2h(y) + 1/2h(z).
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LEMMA 2.11. Iff C, then

(i) frl C
and

(ii) /f/l >- #2 and vl >_ 2,

then

ffdla,v>_ffndp2,v2.
Proof. (i) is obvious. Now forf C

ffrl dlat , vt ff(.(x) rl(y)) d#l(X) X vt(y)

ff(.(x), r/(y))t2(X) X vl(y)

ffnda*v,.
It is similarly shown that

ffld/a2*vl >-ffld#2*v2
PROPOSITION 2.12. /f# f(X), x core X, and # >_ e(x), then (la) x.

Proof Iff C, then

Applying Lemma 2.11 we see that

frl dS’ > f(rl(x)) f(x) for each n.

Hence f(0(#)) > f(x). Since C is strongly separating, 0() x.

PRO’OSTO 2.13. If l, f(X), and # <_ , then 0(#) 0().

Proof. If 0(#) x, then g > e(x). Therefore > e(x). Hence 0(v) x.

PRO’OSTO 2.14. If l, f(X), then

0(1/2 + 1/2v) O()’O(v).



REPRESENTING MEASURES IN COMPACT GROUPOIDS 283

1/2/ 4- 1/2V __> /. V. Since t(#. v) (#)" 0(v),

+ 1/2v)

3. Characterization of core X

If (X, ") and (Y, .) are topological groupoids and V: X Y is a continuous
homomorphism of X onto Y, we say that Y is the homomorphic image of X.
If V is a homeomorphism, then V is called an iseomorphism and X and Y are
said to be iseomorphic. Recall that when we say that (X, .) is a compact convex
set we mean that X is a compact convex subset of a locally convex topological
vector space and x.y 1/2x / 1/2y. The main result of this section is the
following.

THEOREM 3.1. If (X, ") is a compact mean space then (core X, .) is iseo-
morphic to a compact convex set.

First observe that D(X) is a compact convex set and the map @: D(X) -,

core X is a continuous homomorphism. To prove the above theorem we shall
prove that the homomorphic image of a compact convex set is iseomorphic to
a compact convex set and this will be Theorem 3.5. Throughout this section
we assume that (Y, .) is a compact convex set and @: Y X is a continuous
homomorphism of Y onto X. We first prove three lemmas.

LEMMA 3.2. /f [0, 1] and xx, x2, yx, Y2 Y such that @(xa) @(x2) and
@(Y) @(Y2), then

(xl 4- (1 -z)yl) ’(zx2 4- (1 -z)y2).

Proof The result is clear in the case that 1/2 since /is a homomorphism.
Similarly the result holds for 1/4 and 1/4. Continuing in this way the
equality is easily established for all dyadic rationals , i.e., ct m/2" where m
and n are nonnegative integers. The proof is by induction on n. Since the dyadic
rationals are dense in [0, 1] and @ is continuous, the equality holds for all

LEMMA 3.3. ff g (0, 1], Xl, X2, Y Y and

@(oxl + (1 -oOy) 9(oxz + (1 -oOy),

then ,(x) (x2).

Proof Let E be the set of numbers a e [0, 1] such that

p(ax + (1 -a)y) O(ax2 + (1 -a)y).

Since is continuous, E is closed. Since E, sup E > 0. To complete the
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proof we shall show that sup E 1. To do this we let fl sup E and we show
that 2fl/(fl + 1) E. Now

Since fl E, @(flx2 + (1 fl)y) @(flxl + (1 fl)y). Applying Lemma 3.2,
the above is equal to

0 (.x + ( )y +
\ /+1

By the same argument

( X1
_

X2Okfl+ fl+
hus 2/( + 1) e e.

fix1 )=O(2flx (1 -fly)fl+ \fl+
+ fl+-

(1 y)= O(2x2 (1 --fl)y)fl+ \fl+
+

fl+

Iff e C(X) such that for every x, y X, f(x y) 1/2f(x) + 1/2f(y), then f is
called a continuous affine function. The following lemma is well known, but
we include it for completeness.

LEMMA 3.4. If (X, ") is a compact groupoid whose class of continuous affine
functions separates points in X, then (X, ") is iseomorphic to a compact convex
set.

Proof. Let A be the class of continuous affine functions on X. If we let D
be the product of the intervals [inff(X), supf(X)] as f ranges over all f A,
then D is a compact set in the product topology. Furthermore D is a convex
set. We define 6" X D by P6(x) f(x) where P is the projection of D into
[inff(X), supf(X)]. It is routinely verified that 6 is continuous. 6 is one-to-
one since A separates points in X. Since X is compact 6 is a homeomorphism
and 6(X) is compact. It is easily verified that 6(x. y) 1/26(x) + 1/26(y). Thus
6(X) is a convex set in D and 8 is an iseomorphism of X onto 6(X).

THEOREM 3.5. If (X, ") is a compact groupoid and X is the homomorphie
image ofa compact convex set Y, then X is iseomorphie to a compact convex set.

Proof. Let A denote all continuous affine functions on Y and let L be the
set off A such that f(x) f(y) for every x, y Y such that ,(x) @(y).
We shall prove the theorem by showing that if @(x) : @(y) for some x, y Y,
then there exists f L such that f(x) f(y). This will complete the proof
since for anyf L, we may define g: X R such that g(@(x)) f(x) for every
x Y. Such a function g is continuous since if E is a closed subset of the reals,
g-(E) @(f-(E)) which is closed. It is routinely verified that g is affine
on X. Hence if we prove the above assertion, then the continuous affine
functions on X will separate points and we may apply Lemma 3.4.
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First we must make some observations about A and Y. Iffe A, let [If
sup Ifl(). With this norm, A is a closed subspace of C(Y) and is therefore a
Banach space. Further define : Y A* by &(x)(f) f(x) for every f A
and x Y. Then & is an affine homeomorphism of Y onto a compact convex
subset of the closed unit ball W of A* in the weak* topology. For the sake of
simplicity we may assume that Y is a compact convex subset of W such that
every continuous affine function on Y is a linear functional in A and iff A,
then Ilfll---sup {[y(f)[: y Y}. We now show that if E {x- (1
)y: r0, 1,], and x, y Y}, then E W. It is clear that E c W, and E is
a compact convex set. If w E, then there exists x e A such that

w(x) > sup {y(x): y e E} sup {ly(x)l: y e Y} Ilxll.
But then Ilwll > so that w W.
Now let H {x y: x, y Y, if(x) if(y), and real}. Now suppose

that x, y e Y such that for some e [0, 1],

x- (1 )yeHc IV.

We shall show that 1/2 and if(x) if(y). If c is a nonzero constant in A,
then

(1 200"c (0x (1 u)y)(c) 0

since ux-(1 -)ye W. Hence t 1/2. Now assume that for x’,y’eY
with (x’) (y’) and for/ > 0, 1/2x 1/2y /x’ -/y’. But then

Thus (x) (y) by Lemma 3.3. We have thus shown that

WcH= {1/2x-1/2y’x,y Y and (x) (y)}

so that W H is a weak* closed subset of W. We have also shown that if
if(x) -: (y), then x y H. By the Krein-Smulian theorem (see Dunford
and Schwartz [1, p. 429]) H is a weak* closed subspace of A*. Hence if
if(x) :/: (y) for x, y Y, then there exists f A such that f(x) - f(y) where
f annihilates H. Since f annihilates H, f(a) f(b) if (a) (b). This com-
pletes the proof.

4. Applications

In this section we shall investigate some of the consequences of Theorem 3.1.
If S is a set and C is a class of real valued functions on S, then C is preconvex
if for every (w, x, y, z) S4, there is a unique p S such thatf(p) < 1/4(f(w) +
f(x) + f(y) + f(z)), for allf e C. Observe that a preconvex class of functions is
automatically totally separating.
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THEOREM 4.1. IfX is a compact Hausdorff space and C is a preconvex class
of real valued continuous functions on X, then there exists a compact convex set
Y and a homeomorphism qb: Y X such that fdp is convexfor everyf C.

Proof. If x, y X, define x.y to be the unique point z such that 1/2f(x) +
1/2f(y) > f(z) for every f C. This point is obtained by applying the pre-
convexity of C to (x, x, y, y) X*. We first prove that is continuous. If
x, y X, f C, and > 0, then let

U(f, ) {p X: f(p) < 1/2(f(x) + f(y)) + }.

If x and y are fixed, then since C is preconvex

(] {el (U(f, ):f C, a > 0} {x.y}.

Thus sets of the form U(f, ) form a subbase for the neighborhood base at
x.y. Now for any fixed U(f, ), let

W= (a:f(a) <f(x) + } x {b:f(b) <f(y) + }.

Then W is open in X x X, (x, y) W and maps W into U(f, ). Thus is
continuous. Now if (w, x, y, z) X*, then

and
1/4(f(w) + f(x) + f(y) + f(z)) >_ f((w" x)’(y" z))

1/4(f(w) + f(x) + f(y) + f(z)) >_ f((w’y)’(w" z))

for everyf C. Hence (w" x)" (y" z) (w’y). (x. z). The proof that is
commutative is similar. If x X, then f(x. x) < f(x) for everyf C. Hence
x.x x. Thus core X X. Thus (X, .) is a compact mean space such that
core X X. Hence (X, .) is iseomorphic to a compact convex set by Theorem
3.1. It is clear that such an iseomorphism carries the functions in C into con-
vex functions.

LEMMA 4.2. If(X, ") is a compact #roupoid whose continuous convexfunctions
are totally separating, then every element ofX is an idempotent.

Proof If x X andf is convex, then f(x) > f(x" x). Since the continuous
convex functions are totally separating x x. x.
Now if (X, .) is a compact groupoid, then a pseudometric d on X is convex

if for every (x, y, z) X3,

d(x, y" z) < 1/2d(x, y) + 1/2d(x, z).

PROPOSITION 4.3. If (X, ") is a compact commutative medial #roupoid and the
topology of X is given by a family of convex pseudometrics, then (X, .) is
iseomorphic to a compact convex set.

Proof Suppose (x, y) X x X and x q: y. Then there exists d such
that d(x, y) > 0. If we define f(y) d(x, y) then f C and f(x) < f(y).
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Hence C is totally separating. By Theorem 3.1 (X, .) is iseomorphic to a com-
pact convex set.

5. Extensions of the groupoid (X, .)

There are four fairly straightforward ways of extending a compact medial
groupoid (X, .) to another such groupoid (Y, .). By an extension we shall
mean a map K: X Y such that K is an iseomorphism onto its image in Y.
The first of these which we call a type one extension occurs if Y is any compact
Hausdorff space, K: X- Y is a homeomorphism onto its image, and there
exists y: Y Y such that 2 ]) and y(Y) K(X). In that case we define" on
K(X) in the obvious way so that K is an iseomorphism onto K(X). is then
extended to Y by x.y y(x). y(y). It is not difficult to show that by this
definition (Y, .) is a medial groupoid.

PROPOSITION 5.1. If (X, ") and Y, ") are as above, then core Y ,(core X)
and if (X, .) is a compact mean space, then (Y, .) is a compact mean space.

Proof Core Y y(core X) is obvious. It is clear that the family of con-
tinuous convex functions on K(X) is strongly separating. If g is a continuous
convex function on K(X), then the function h defined by h(x) #(y(x)) makes
h a continuous convex function on Y. Also iff C(Y) such thatf(Y) c [-0, 1]
and f(K(X)) {0}, then f is convex. Using functions of these two types it is
clear that the continuous convex functions strongly separate points in Y.
A type two extension is the extension from (X, .) to (f(X), .). Recall that

e: X K(X) where e(x) is the point mass measure at x. We have already
observed that e is an iseomorphism of X into f(X). Furthermore, it is easily
verified that is medial. Also we have already shown that core Q(X)=
e(core X) in Proposition 2.3.

PROPOSITION 5.2. If (X, ") is a compact mean space, then ((X), ,) is also a
compact mean space.

Proof If we let C denote the continuous convex functions on X, then
C C is dense in C(X). Now iff C, we may define g on f(X) by g(/)
j" f d# for each # f(X). # is convex by Lemma 2.2. The class of such functions
separates points in f(X) since C C is dense in C(X) and is totally separating
on e(X). Hence the continuous convex functions strongly separate points in
n(X).
A type three extension ofXextends X to the hyperspace ofXwhich is denoted

by 2x. The hyperspace of X is the set of closed subsets of X. The hyperspace
topology on 2x is the weakest topology on 2x such that (sup f) is continuous
for every f C(X). With this topology 2x is a compact Hausdorff space. If
E, F 2x, then we define

E, F= {x’y:xE and yeF}.
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A straightforward argument using nets and applying the compactness of X
shows that E F 2x and that is continuous. It is also clear that is medial.
We define K: X 2x by K(x) {x}, and we see that K is an iseomorphism
of X into 2x. Now if E e core 2x, then E E E. If we define a set E to be
convex if E E E, then core 2x is the set of all closed convex subsets of X.

PROPOSITION 5.3.
mean space.

If X is a compact convex set, then (2x, .) is a compact

Proof. We first observe that iffe C(X), then inff -sup (-f) so that
inffis also continuous on 2x. Now if E, F e 2x and x E, but x F, then there
exists a continuous convex function f such that f(x)< inff(F). But then
inff separates E and F. It is easily verified that inff and supf are convex on
2x iffis convex on X. Hence the class of convex functions on 2x is separating.
If E, F core 2x then E and F are convex. Suppose E c F and E # F. Then
there exists a continuous affine function on X such that supf(E) < sup f(F).
The case when E F is handled above so that the continuous convex functions
on 2x are strongly separating. This completes the proof since (2x, .) is medial.

If {X=: I} is an indexed family of compact groupoids, then the product
X of these is also a compact groupoid where is defined on X coordinate-wise.
If each X= is medial, then X is medial.

Furthermore, iff is a continuous convex function on X, then the function g
defined on X, by g(x) f(x) where x is the th coordinate of x makes g a
continuous convex function on X. Since it is clear that core X zr{core X:

1}, it is easily seen that the class of continuous convex functions on X is
strongly separating if this is true for each X=.
Now suppose that (X, .) and (Y, .) are compact medial groupoids whose

continuous convex functions are strongly separating. If Yo core Y, then we
may define : X X x Y by (x) (x, Yo). We shall call such an extension
a type four extension. We note that if (Yo} core Y, then V(core X)=
core (X x Y).

Using these four types of extensions initially applied to compact convex sets
and using products as well it is possible to construct a rather large variety of
examples of compact mean spaces other than compact convex sets. However,
it is probable that there are many compact mean spaces which are not con-
structible in this way.

6. Compact groupoid valued integrals

In this section we assume that (X, .) is a compact commutative medial
groupoid whose continuous convex functions are strongly separating. We
further suppose that (Y, B, #) is a probability measure space. A function f
from Y into X is measurable iff- 1(O) B for every open F, set O in X. There
are a number of definitions equivalent to this. In particular, any one of the
following three conditions is equivalent to the measurability off:
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(i) f-I(E) B for every Baire set E.

(ii) The real valued function #(f(x)) is measurable for every g C(X).
(iii) For every O open and E closed with E c O, there exists F B such that

f-l(E) F c f-l(O). Now for every measurable f let pf-1 denote the
Baire measure on X defined by (pf-1)(E) p(f-l(E)). It should be noted
that every Baire measure has a unique extension to a regular Borel measure, so
that #f-1 can be identified with a regular Borel measure on X. It is further
noted that if# is a real valued Baire measurable function on X, then j" # dpf-
g(f(x)) dp(x). Now iff is a Baire measurable function from Y to X, then we

define J" f d# k(uf- 1).

PROPOSITION 6.1. If f and g are measurable, then f.# is measurable and
f g d# f dp g d#.

Proof Suppose O is open and E is closed with E = O. Then there exists
U1,..., U, and V1,..., V, all open F, sets such that

and

Thus

{(x,y)’x.ysE} = 0 Us x V
i=1

0 Us x V {(x,y)’x’yeO}.
i=1

(f" 9)-1(E) = I,J f-’(U,) c O-’(V) = (f. 9)-1(O)
i=1

This shows that there exists W e B such that

(f. g)- (E) = W = (f" g)-l(O).

Now suppose h is a continuous convex function on X. Then

fh d(f. 9)-1= fh(f(x).g(x))+

Thus

But also

Thus

1/2/4f- + 1/2#g- > #(f. g)- .
1/2f- + 1/2#- >_ (f-). (-).

qt(#(f g)- 1) O(#f- #q- 1) O(Pf- 1). t(p#- 1).
This establishes the equality.
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PROPOSITION 6.2. (Jensen’s Inequality). If f is a measurable function from
Y to X and g is a continuous convexfunction on X, then

Proof.
fg(f(x)) d#(x) >_ g (ffd#).

PROPOSITION 6.3. If (f) is a sequence of measurable functions converging
pointwise to f, thenf is measurable and

limff, cl#=ffcl#.
Proof Suppose g C(X). Then gfn is B-measurable for each n and

lim O(f,(x))= o(f(x))

Hence gf is B-measurable. Thus f is measurable. Also, iffor every x e X.
g C(X), then

lim fg d(#f-) lim fgf d#= fgfd#= fg a,f-
by the bounded convergence theorem.
But then f converges weak* to f-. Since 0 is continuous,

lim ff. d# lim O(/f-a)= O(pf-x)= ffd..
7. Open questions

There are a number of questions that I have been unable to resolve. These
are some of them:

(i) If X is a compact convex set, can one characterize all extensions
: X Y where (Y, .) is a compact mean space and core Y (X)? What if
X is a single point?

(ii) If (X, .) is a compact mean space such that X X X, does it follow
that X core X?

(iii) If (X, .) is a compact mean space and x 6 core X, does there exist a
continuous convex function f such that f(x) > sup f(core X)? Is this true in
the case when X fl(Y) for Y a compact convex set?

(iv) If (X, .) is a compact mean space, under what conditions on X is
(X, .) iseomorphic to fl(Y) or 2r for some compact convex set Y?

(v) If (X, .) is a compact mean space, is (2x, .) a compact mean space?
Can Proposition 5.2 be generalized at all?
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(vi) Is there a reasonable theory of representing measures when (X, .) is
not a compact mean space? What if we drop the condition that C be totally
separating on core X?

(vii) O.H. Keller [3] proved that if X is a metrizable infinite dimensional
compact convex set, then X is homeomorphic to the Hilbert cube. Is it possible
to apply the results of Section 4 to obtain a topological Characterization of the
Hilbert cube?
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