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The riemannian (holomorphic) higher order sectional curvatures are invari-
ants of the riemannian (kaehlerian) structure weaker than the riemannian
(holomorphic) sectional curvature. The study of these invariants is very in-
teresting as can be seen by the abundant bibliography on this subject; for
example, the articles of Thorpe, Gray, Stehney, Hsiung, Levko,

If the riemannian sectional curvature of order two is bounded, Berger [1]
gives an estimation of the curvature tensor components. Later, Karcher [2]
gives an easy proof of this estimation. We shall prove in Section a generaliza-
tion of these results to the higher order riemannian curvature tensor com-
ponents Rp when the sectional curvature of order p is also bounded.
Thorpe [6] gives the characterization of the constancy of the riemannian

sectional curvature of order p and he concludes properties on the Pontrjagin
classes of these manifolds. In an earlier article [4] we give a characterization of
the constancy of the holomorphic sectional curvature of order p and we deduce
properties on the Chern classes of the kaehlerian manifolds with constant hol-
omorphic sectional curvature of order two. We shall generalize in Section 2
some results of Thorpe on riemannian sectional curvatures of order p to the
holomorphic sectional curvatures of order p and we shall conclude some proper-
ties on the Chern classes of the kaehlerian manifolds with constant holomorphic
sectional curvature of order p.

1. Higher order curvature tensor estimates

Let M be a riemannian manifold of even dimension n and let AP(M) denote
the bundle of p-vectors of M. AP(M) is a riemannian vector bundle with inner
product on the fiber AP(m) over m, m M, related to the inner product on the
tangent space Mm of M at m by

g(ul A ""A up, vl A ’"A vp) det {g(u, vj)}, u, vj Mm.
Let R denote the covariant curvature tensor of M. For each even p > 0 we
define the pth curvature tensor Rp ofM to be the covariant tensor field of order
2p given by

Rp(u,,..., up, vl,..., vp)
1

2PlOp! , s
(a)e(fl)R(u ), u , v, vl 2))""

R(U=(p_ ), uo(p), v(p_ ), v#(p))

()
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where ui, vj Mm, Sp denotes the group of permutations of (1,..., p) and,
for Sp, e() is the sign of .

It is evident that the tensor Rp has the following properties’

(i) It is alternating in the first p and in the last p variables.

(ii) It is invariant under the operation of interchanging the first p variables
with the last p.

Hence, at each point rn M, Rp may be regarded as a symmetric bilinear
form on AP(M). By use of the inner product on AP(M), Rp at rn may then be
identified with a self-adjoint linear operator on AP(M). Explicitly, this identifica-
tion is given by

g{Rp(Ul /k A up), v A’"A Vp) Rp(ul,..., Up, vl,... vp). (2)

If {ul,..., u,,} is an orthonormal basis of the tangent space, the sectional
curvature of order p of the section generated by uil,..., up is given by

K(ui, ui,,) Rp(ui,..., ui,, ui,..., ui,).
As is well known [7-1, Rp satisfies the generalized first Bianchi Identity

p+l

(--1)kRp(vl, k,..., Vp+l, Vk, Wl,..., Wp-1) 0. (3)
k=l

Let
6 Min K(ui,,...,ui),

Uij Mm
A Max K(u,..., ui,).

Uij Mm

PROPOSITION 1. If the sectional curvature of order p of a compact orientable
riemannian manifoM satisfies

6 < K(u,..., up) < A
then

2p--1(6 6)IR,(u, u,, u’, u, u,, v)l _< (4)
p-+l

where u (ul,..., u,-l), u’ (u+l,..., up), v (vl,..., vp_,), and
u1,..., up, v1,..., vp_ are orthonormal. The range of is 0 < <_ p 1.

Proof We shall use induction; since

R,(u,..., u,_ , u, + x, u,..., u,_, u, + x)

Rl,(U,..., u,_, u, x, u,..., u,_ , u, x)

4Rp(ul,..., up_l, up, u1,..., up_l, x)

for u (u1,. up_ 1), we have IRp(u, up, u, x)l < 1/2(A 6) for any unit vector
x orthogonal to ul,..., up. Suppose

2p--I(A 6)[g,(u, u=, u’, u, u, v)l <
p-+l
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Since Rp verifies the first Bianchi identity, we have

Rv(u, u + x, u+,..., uv, u, v, u + x)

R,(u, u x, u/ ,..., u,, u, v, u x)

"+" Rp(u, glo ux + + x, Slot + 2,..., Up, u, v, uo + " x)

Rp(u, u, U+l x, u+2,..., up, u, v, U+l x) +
+ Rv(u, u,..., uv_, uv + x, u, v, uv + x)

Rv(u, u,..., Up_l, up x, u, v, up x)

2(p + 2)Rp(u, u, u’, u, v, x).

Thus for any unit vector x orthogonal to u1,.

Rp(u, u,, u’, u, v, x)

p-z+2

+

(/’/7 /p-

By the induction hypothesis, we conclude

Rp u, 21/-----5--, U,+l,..., up, u, v, 2V12

( u- x u- x)Rp u,- u uv,u v,
21/2 +x,..., 21/2

ue + x up + x’
2i/2 u, v,

21/2

U, V,
21/2

UP X

21/2

IR(u, u, u, u, v, x)l _<
p-o+2

2. The Chern classes of kaehlerian manifolds with
constant holomorphic sectional curvature

Let M be a kaehlerian manifold; let (z 1,..., z") be a complex coordinate
system in M, (Z t3/tgz , Zs t3/cqJ) a basis of the complex tangent spaces
of M. Given a hermitian metric # on M, it is well known that there exists a
unique extension to a complex symmetric bilinear form on the complex tangent
space ofM such that

g(Z,, Zs) g(Z, Zs) 0 and g(Z,, Zs)
are the components of a hermitian matrix. That extension permits definition of
a symmetric bilinear form on the fiber A(TC(M)), m e M, where A(TC(M)) is
a complex vector bundle on M, by

g(Za, A ""A Zas, Z, A ""A Zn) det {g(Zak Z)}
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where Ak, B e {1,..., n, i,..., }. Moreover, for each coordinate neighbor-
hood it is possible to take Yu 6ij at a fixed point.

LEMMA 1. Let P be an oriented holomorphic p-plane with a complex basis
(Zx, Zs, ZI,..., Z), p 2s. Then

R.(P) 2’(- 1)/2’’- ) Z ()(fl)R(Z A z) A’" A R(Z A z)
(2s) , s

(5)

Proof Complete (Zx,..., Zs, ZI,..., Z) to a complex basis (Z1,..., Zn,
ZI Z). Since

R(z A zr)= {R(Z A zr), z, A z}z A z
i,j=

(for a kaehlerian manifold

a(R(Z A zr), z, A zj) a(R(Z A zr), z, A z)) o)

it is possible to write the right hand side of (5) as

D 2s(_ 1)(x/2)s(s- x)

(20! .), j) , s,

X g{R(Zo A Z), Zis A Zs}Zi A Zjr A"" A Zi A Zjs

where (i) (ix,..., is), (j) (Jx,...,Js). Hence

g(D, Zl, A Z, A A Zls A

2,(_ 1)a/)- ) Z Z (O()g{R(Z A z),
(2s) <i), (j) , , , Ss

Zi A ZI,} x""

{(z, z), z,, z,),(m(,)a, j, ’, ..-al:o1 kslyl

2(_ 1)/2)- ) ()()s()()
(2s) , , , s

{sz z), z z) ... {sz z),

Z
(--1)(/2)s(s-)(Rn(Z Z Z "’ Zs),

Z A... Z Z ...
{R(Z ... Z Z ... Z3, Z Z ... Z Z}.

This completes the proof, since with respect to any other p-vector spanned by
elements of the complex basis, both sides of (5) have zero component.
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Remark 1.

1
e(oOR(W A W2) A"’A R(W(p ,) AR,(W A’"A W)=

(6)

holds in general, where W1,..., W are arbitrary elements of the complex
tangent space. We show the particular expression of (6) for (s, s)-planes.

COROLLARY l. Suppose s > 0 and s’ >_ 0 are integers with s + s’ < n. Let
P be an oriented holomorphic (2s + 2s’)-plane with an oriented complex basis

and let

1-’ {Zi, A’"A Zis A Z, A’"A Z.,:
<il <’"<i<s+s’,l <Jl <’"<j<s+s’}.

Then
(2s) (2s’) r Rv(Q) A Rp,(Q*) (7)gv+ v’(P)
(2s + 2s’) o.

where p 2s, p’ 2s’ and Q* is the oriented complement of Q in P spanned by
elements of the preferred basis.

Proof. By Lemma 1,

2s+s,(_ 1)(1/2)(s+s,)(s+s,- 1)

R+,,(P) ,
(2s + 2s’)! ,,,Ss+s,

e(7)e()R(Zrl A Z) A""

A R(Z(+,)A Zo(,+,))-).
For each pair (i) (il <"" < ix), (j) (Jl <"" < .L), we choose a pair
(i/ i+,), (j,/ ,..., j+,) such that (i,..., i+,) and (ja,..., j/,) are
even permutations of (1,..., s + s’). Then

2s+s,(_ 1)(1/2)(s+s’)O+’- 1)

Rp+p,(P)
(2s + 2s’)!

x (o,u) { ,pss e(a)e()R(Z’’ AZJ’)A"’AR(Z’A Z’)1
p, Ss,

A R(Z,
(2s) (2s’) ., R(O) A n,(O*).
(2s + 2s’)! er

The statements of Lemma and Corollary have an equivalent formulation
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..s regarding these forms as thethrough higher order curvature forms . .
components of a tensorial form R on M with values in the bundle of complex
p-vectors as follows" If W1,..., W2s are vectors in the complex tangent space
and z (m, Z1,..., Z,, ZI,..., Z;) is a complex frame, if W],..., Ws are
complex tangent vectors on the bundle of complex frames such that dHW
W, < j < 2s, then

(i),(j)

A Zs A ZI A"" A Z,
where < il <"" < is < n, < Jl <"" <L < n. (5), (7)take the form

(2s)! ,s
js+s,

(2s)’ (2s’)’ (- 1)ss’

(s !)2(s !)=(2s + 2s’)! , s,

J#(s 1)

(9)

As we know, the holomorphic sectional curvature of order 2s in a kaehlerian
manifold M of the holomorphic 2s-plane generated by

is given by
(X1,. Xs, JX1,. JXs)

Kn(P) Rn(X1,. Xs, JX1,. JXs, Xl,. Xs, JXl,. JZs).

If 0 (OX,..., 02) is the canonical form on the bundle of unitary frames,
set b 0 + iO+; we have the following Proposition I-4] that characterizes
the constant holomorphic sectional curvatures.

PROPOSITION 2. Let M be a kaehlerian manifoM with constant holomorphic
sectional curvature of order p, Kn. Then the curvatureform of order p is given by

tp,,’.. .,s 1
(s + 1)!

+ (s- 1)! fij $1 A... A $-1 A Sx (10)

;tt 2s
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Remark 2. In Proposition 2, we suppose, without loss of generality, that if
#(il,..., is) (jl,...,js) r, then i j,..., i, Jr, 0 < r < s.

PROPOSITION 3. Let M be a kaehlerian manifold ofdimension n. Assume that
M has constant pth holomorphic sectional curvature Kp and constant qth hol-
omorphic sectional curvature Kfor some evenp and q withp + q 2s + 2s’ < n.
Then M has constant (p + q)th holomorphic sectional curvature cKpK, where c
is given by

{(s + s’)!}3 (s + s’ + 1)(2s)! (2s’)!
C-"

(s)! (2s + 2s’)! (s + 1)! (s’ + 1)t

Proof By Proposition 2, it suffices to show that

tij" "is+s, C
.j/., :(s+s’+ 1)!

(s + s’)! ’, A’" ^ "/" ;J’ ’" A

+ (s + s’- 1) E ] E " A... n ’-’ n

+,

but that is a consequence of (9) and (10).

(11)

PROPOSITION 4. Let M be a kaehlerian manifoM with pth holomorphic sec-
tional curvature K identically zerofor some even p. Then M has qth holomorphie
sectional curvature identically zero for all q > p.

The proof follows from Proposition 2 and (9).

PROPOSITION 5. Let M be a kaehlerian manifold with pth holomorphic sec-
tional curvature constant K. Then the Chern classes e2s(M), e3s(M),...are
generated by cs(M).

Proof Since cs(M) is represented, up to a constant factor, by (see [3])
WI""" sis where summation is over all s-tuples (i,..., is), _< ij _< n, it suffices

..ms is a multiple ofto show that Y’. i’ ,,

Indeed, by Proposition 3, M has mpth holomorphic sectional curvature constant
for all integers m > 1. It is possible to verify the following by inspection of the
formula in Proposition 2" If the kth holomorphic sectional curvature is constant,
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is inde-then the coefficient of bJ’ A A bJk A ;J’ A A k in Wix
pendent of the choice j < < Jk. It follows that I’" " is a multiple of

Setting k mp and k p here, we quickly obtain the claim of the preceding
paragraph.
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