IMMERSIONS UP TO COBORDISM

BY
ARUNAS LiuLevicius!

Given a compact manifold M™ we ask for the least integer k such that M"
immerses into R™**. A great deal is known for special classes of manifolds (see
Gitler [9]). There is a conjecture that (if m > 2) M™ immerses in R*™~*™,
where a(m) is the number of ones in the dyadic expansion of m. The original
question can be weakened to read: given M™, find the least integer k such that
there is a manifold M’ cobordant to M and M’ immerses in R™**,

We shall say that M™ immerses into R™** up to cobordism. Brown [4], [5]
has proved that M™ immerses in R*™~*™ up to cobordism. Of course, we have
lost a lot of geometric information by passing to cobordism, since now k(M) is
a function only of the cobordism class of M, and if M is a boundary (M =
RP?"*1 an odd-dimensional real projective space, for example) then k(M) = 0.
Even if M is not a boundary, a manifold may immerse up to cobordism into a
lower dimensional Euclidean space than M itself: for example, RP'® immerses
up to cobordism into R'3, as we shall see later, but RP' itself immerses into
R'®, and does not immerse into R*3 (see Gitler [9]).

The fact that we have lost geometric information by passing to cobordism
(and reducing the problem to homotopy theory) should not make us sad: the
geometric situation was too complicated, so we would not obtain useful quali-
tative information if we preserved the complexity of the original problem. The
purpose of this note is to convince the reader that even after the reduction there
is a lot of structure (possibly even too much?) remaining.

The usual approximation theorems of Thom [16] give a reduction of the
problem of immersions up to cobordism to a question of homotopy. Let MO
be the Thom spectrum [16] for the orthogonal group, then cobordism classes
of compact m-dimensional manifolds correspond to elements of

1,(MO) = lim =, ,(MO(n)).

Let A: i, (MO(k)) » 7, (MO) be the map into the direct limit, where the
superscript st denotes stable homotopy. If x € x,,(MO) represents the cobordism
class of M, then M is cobordant to an M’ which immerses in R™*¥ if and only if
x is in the image of 4,. The essential point here is the use of the theorem of
Hirsch [10] which reduces the question of immersion in R™** to the geometric
dimension of the stable normal bundle of the manifold.

Stated in another way: we define an increasing filtration of n,(MO) by setting
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e°F (M) = image of A, Let *°E°n,(M) be the associated graded object,
then our original question is equivalent to the following: given x = [M™] # 0,
what is the k so that the class of x is nonzero in E?x,,(MO)?

The purpose of this note is to study #°E°n,(MO).

We recall that 7,(MO) is a polynomial algebra over Z, (Thom [16]) and the
Hurewicz homomorphism 7,(MO) —» H,(MO; Z,) is a monomorphism onto
the primitives under the coaction of the algebra A, (dual of the mod 2 Steenrod
algebra [14]). This, as we shall see, presents us with an algebraically obvious
set of polynomial generators for 7, (MO). The homology H,(MO; Z,) is filtered
by the images of H,.,(MO(n); Z,) and this filtration induces the algebraic
filtration *!#F of m,(MO). We shall ask ourselves three questions:

Question 1. Do the algebraically obvious polynomial generators have the
smallest algebraic filtration?

This question tacitly hopes that *®E,m,(M) has a very simple-minded
structure: namely, take polynomial generators of smallest possible filtration,
then monomials in these generators should project into a Z,-basis of
alep n,(MO), so if it turns out (as it does) that the algebraically obvious gener-
ators do not have minimal filtration (we shall see that this first happens in
dimension 11), we can still ask:

Question 2. Is *#E°n,(MO) a polynomial algebra?

The answer is no, and the first departure from a polynomial algebra occurs in
dimension 10.

Since our algebraically obvious generators turn out not to have the minimal
algebraic filtration, we can ask:

Question 3. Do the polynomial generators of Boardman [3], Brown [4],
Dold [8], and Kozma [11] have minimal algebraic filtration?

The answer is no again, unfortunately. Boardman’s generators first fail in
dimension 11, Brown’s in dimension 6, Dold’s in dimension 11, Kozma’s in
dimension 11.

So far we have been talking only about the algebraic filtration of 7,(MO).
Since the following diagram commutes (horizontal maps are maps into the
direct limit, vertical maps are the Hurewicz homomorphisms into homology
over Z,)

Tom+(MO(n)) —> ,(MO)

h h
Hm +n(MO(n)) ) Hm(M0)9
we have #°F, c *#F 50 we ask:

Question 4. Is the algebraic filtration the same as the geometric filtration?
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The answer is no again, a counterexample being furnished by [RP'#] which
is of algebraic filtration 1, but of geometric filtration at least 2.
We refer the reader to Brown [4], [5] for an elegant geometric proof that

E°F, n—oa(n) = 1'C,,(M 0)

and to Burlet [7], Salmonsen [15] on the homotopy of MO(n) and MSO(n), to
Wells [17] on cobordism of immersions. I am indebted to all of the above
authors (and to J. F. Adams, T. tom Dieck, R. K. Lashof, and M. Mahowald)
for conversations and letters.

The paper is organized as follows: Section 1 describes the algebraically
obvious generators for 7, (MO), Section 2 describes the structure of *#E2m, (M)
in total degree < 14, Section 3 inspects the generators of Boardman, Brown,
Dold, and Kozma, and Section 4 shows that *’8F # £°F in an infinite number
of dimensions > 14.

1. Algebraically obvious generators for 7, (MO)

We recall (see [13], for example) that H,(MO) (Z, coefficients here and later)
is a polynomial algebra Z,[b,,..., b,,...] on generators b, coming from
H, . ,(MO(1)) with coaction of A, (dual of the Steenrod algebra over Z,, see
Milnor [14]) given by usb, = >"_, 7% Y ® b,, where y” € A4,,_, satisfy the
relations

,y(ls+1) — {ﬁr ifs =2" -1,
0 ifs#2"—1,

where &, are the Milnor [14] generators, and the y{ are determined by y{” = 1
and the Cartan relations: for each pair of natural numbers i, j we have
W= X v

n=s+t
(see [13]).
Let No = Zy[up, ttyy -y Uy, ... ), n # 2" — 1 and define an isomorphism
of algebras and comodules over A4,

[ Hy(MO) - Ay ® Ny

where the coaction in A, ® Ny is ¢y ® 1, ¢y: Ay »> Ay ® A, being the
coproduct. The map fis determined by the algebra homomorphism

f= (@« ® 1)f: H(MO) —» N,

where #,: A, — Z, is the augmentation and f(b,) = u, if n # 2" — 1,
f(b,) = 0if n = 2" — 1 for some r (see Liulevicius [12], as well as correction
in [13]). Of course, the image of 74(MO) is precisely f (1 ® N,), and we
call the corresponding polynomial generators of n,(MO) algebraically obvious.
Let us simplify notation by identifying H,(MO) with A, ® N, under f, thus
identifying n,(MO) with 1 ® N,. Table 1.1 gives the expression for u, in terms
of the polynomial generators b; for n < 18.
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TABLE 1.1

Generator

Algebraic
degree

Expression

1

uz

&2
Uy

Us

Us

s

Us

Ug

U

Us

Uga

A WNFE U= AV PAE W= JUW= WA WN=SWRN = WSRN--—-

—_ AWV EAWN= VW= I W

+ bsby + bibs
+ bibybs + bibs
+ b2bybs + bibs
+ b3b3
bg
+ byb% + bibg
+ b2b3 + bib,
+ b$h,
b
+ bibs + byb; + bibg
+ bybsb,
+ b.b3bs + bibsybs
+ b2b2bs + b3brb, + bibs
+ bibbs + B3B3 + bib,
+ b3b:
bio
+ bibs
byy
+ busbs + bibg + bibio
+ b3b2 + b3bs + bibsbs + bibrbs + bibe
+ b§b§b+ blbgb.; + blbgbﬁ + bibsbs +
+ bibsbs + bibyb; + bibs
+ b.b2b% + b3bZ + bbb,
+ bib3bs + b3b3b, + bibybs
+ bzbz + bib3bs + bibyb,
blZ
+ b3bs + bibso
+ biblbs
bl3
+ b6b7 + b3b10 + b1b12
+ b3bsbs + blbg + bybbio
+ bibybsbs + bibsbe
+ Zgzgzsbs + bibybs
+ bib2bs
b14
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The computations are made easier by the following

LEMMA 1.2. The coefficients y™ satisfy the relations

2 2 2 2n+1 2
YD = ()2, R =0, YD = p@m,

For example, we have (using f = 1 and omitting tensor products):
Uy = by + 99 + YQuy + v us + ¥ us + 9P us + ¥4 Vuy,,
y(l) =0, ')’(3) = y(Z) = (y(l))l =0, y(S) = y(4) — (y(l))4 =0, y(7) — y(6) =
G2 = & + .9 =90 = ) = 094 = 0 = o) = &, the
last since
W = A O = 18+ 001 = ¢,
Substituting for &,, &,, ug, u,9, we have
Uy = byy + (b + bj + bib)bs + bi(byo + bibe)

by, + bibs + bibso + bib3bs,
as given in the table.

It is easy to compute the algebraicfiltration of a given elementin H,(MO; Z,),
since the image of H.(MO(n); Z,) is precisely the subspace spanned by all
monomials b of algebraic degree < n (see [13] for example).

The lemma also shows that in order to solve for u,,, we only have to know the
expression for u,,, n < m and ¢, with 2" — 1 < m since y&"*1 = (y™)?, and
the exponents of monomials in ¢ with nonzero coefficients in (y()? are all even.
This explains why in the following table we have been able to go up to u,,.

TABLE 1.3

Algebraic filtration of polynomial generators

Algebraic Algebraic
Generators  filtration Top term Generators filtration Top term
& 1 by ¢ 12 b1b3
Uy 1 bz Uie 15 bi 4b2
Uyq 15 bi%b}
&2 2 b1b, Ug 13 bizbs
Ug 3 b%bz U0 13 b:obgbs
Us 3 b 1 bg Uz 9 b?b 14
Ug 1 bs Uza 15 b{ ob;be
Uze 11 bgbﬁb“
&3 5 b‘;’bi Uzsg 11 bfb;b“
Ug 7 bsz U3o 1 bgo
Ug 7 bi’b; U3z 31 biobz
Uio 5 b‘ltbs U3a 29 b%sbs
Uit 8 bib; Use 29 bisbgbs
U2 5 bi §b5 Uss 31 bisbgbs
Us 6 bibﬁbs Uso 33 bi‘obgbs
Uia 1 bia Usz 35 bizbgbs
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Remark. By looking at Table 1.3 one is tempted to conjecture that algebraic
filtration of an element in 7,(MO) is detected by

Zz[bl, b2, b6’ b14, b30, e ].

This certainly seems to be the case for &, and u,, but unfortunately breaks down
in 7,,(MO).

2. Structure of *9E%(MO)

The computations in Section 1 are already enough to show that the answer
to Question 1 is “no”, since [RP?"] are known to be indecomposable.

PROPOSITION 2.1.  Given n, let r be the smallest integer such that2n + 1 < 27;
then the algebraic filtration of [RP*"] is 2" — 2n — 1.

Proof. By choice of r, if x € H'(RP?") is the generator, (1 + x)*" = 1, so
1+ x)72 1 = (1 + x)* 21 and the coefficient of x2"~2*"! is 1, and this
power of x is nonzero.

Remark. According to the Proposition 2.1, alg. filt. [RP'?] = 16 — 13 = 3,
but alg. filt. u;, = 5. The discrepancy is even more dramatic later—for
example: alg. filt. [RP?%] = 32 — 29 = 3, but alg. filt. u,; = 11. Notice that
through dimension 10, however, the filtrations of u,, are the same as those of
[RP?"]. Indeed we have Table 2.2.

TABLE 2.2

[RP2?"] in terms of u,’s

[RPZ] = Uz,
[RP*] = uy + u3,
[RPG} = Us,

[RP8] = ug + uZ + wius + u3,
[RP'°] = uyo + u3,
[RP'?] = uy, + ug + ui + ulug + usus.

Conjecture. The algebraic filtration of [RP>"] is the best possible for a
polynomial generator of n,(MO) in dimension 2n.

The following table exhibits a Z,-basis for *®*E°n(MO) and shows that the
answer to Question 2 is “‘no,” the first counterexample occuring in dimension 10.
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TABLE 2.3
A basis for '®E°z,(MO) for k < 14

Dimension Basis: class of Filtration

2 Uz
4 Us
u3
5 Us
6 UsUa
u3
Us
7 UsUs
8 Usg
ui
M%Il4
ug
UaUe
9 Ug
UgUs
ujus
10 UaUg
Mzu:
M%lh.
us
Ujo
UgUe
%10 = u§u4 + us
u§u6
11 UzUg
UaUsUs
u3us
Vi1 = UaUg + Uiy
Uslls
12 UglUg 1
M%Ils
udu3
udug
ug
Uzllyo
U0
UzUslUe
uue
@12 = udug + ui + uu? + uyusue 3 (drop of 6)
Uiz + Ualiqlg 3 (drop of 2)
u? 2
13 Uslg 10
M2U5
u%lh;lls
utus
U011

(drop of 2)

(drop of 3)

PO UOAOANIOOOHRARUATITOWLWARUANUNANTOUVNANNRAEUNASIRL = WRWNDW-

Uiz

A N0 \©O
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TABLE 2.3 (continued)

Dimension Basis: class of Filtration

Uslg + Uslly + Uzl 6 (drop of 4)
UaUsUe 5
Bis = uius + udus + udusus 4 (drop of 5)
Vi3 = UsUg + Uslly + UaUyy + U3 3 (drop of 7)
14 U UaUg 11
udug 10
udu}
usug
UelUg
= 3 3,2
O14 = UsUg + Uslg + usuz
u
Uz
Uius

%13

Ualy0

M%Il4115

u3oso

ug‘uﬁ

UzV12

uud + udug + udu? + wyuy,
Usls + Uslio + UUsUs

usu

u%us + u;lho

Uya

Bia

V14

g
oy
»

I

—_ W WA RADPDUAARNTI OO

3. Generators for m,(MO)

In this section we recall the construction of the polynomial generators for
74 (MO) by Boardman [3], Brown [4], [5], Dold [8], Kozma [11] and examine
their algebraic filtration.

Boardman generators for 7,(MO) are defined in terms of the standard
generator @ € MO'(RP*) which under the Boardman homomorphism B (see
Adams [2], for example) have image

B@) =x + byx* + -+ bx"tt 4+ -1,

where b, € H,(MO) are the generators we have used in Section 1 and
x € H'(RP®) is the nonzero element in cohomology. Let

m: RP® x RP® — RP”

be the standard multiplication with m*x = x ® 1 + 1 ® x. Then w is not
primitive under the diagonal in MO*(RP®) induced by MO*(m), but there is a
unique primitive 7 € MO'(RP®) satisfying the condition

B(n) = x + o;x% 4+ ax* + o 4 o x4 -
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(Boardman [3], see also Brocker and tom Dieck [6]); then

=0+ f0’ + f° + -+ Bt 4+
where n # 2" — 1 and B, € n,(MO) are the Boardman polynomial generators.
Table 3.1 lists the Hurewicz images of the Boardman generators.

TABLE 3.1

Algebraic
Generator  Block Hurewicz image filtration

B2
Ba

b, 1
by
+ b3
+ b3b,
bs 3
+ b2bs + biby
+ byb3
bs
bg
+ b2
+ byb3 + b3b, + bibs
+ b%
+ btb,
+ btb
+ bsb,
bo 7
-+ b4b5 + b3b6 + b2b7 + blbs
+ bb?
0
+ btbs
+ btbybs + b3b,
+ b3b%
blo 5
+ bibs + b3
bll 6
+ bsbe + bib; + bibg + brbg + bibyo
+ b3bi + b3bs + b3b; + bibs
+ byb3 + b3b3b, + bbby + bybyb% + b3bs
+ b3b,bs + b,b3bs + bibsbe
+ b3bs + b,b3b} + bib:
+ bib3
by, 3
+ b} + b2b? + blbs + blbs + b3bso
bys 3
+ bebs + bsbg + babg + b3bio + brbyy + b1y
+ bb?

Bs

Bs
Bs

N -

Bs

BWN=RWUV= IAVMPEWNRIAUNDWN==WN=WN =

ﬂ12

WN= W= W

We express in Table 3.2 the g, in terms of our generators u;, v; from Sections
1 and 2.
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TABLE 3.2
Algebraic  Comment
B-generator Expression filtration  on filtration
ﬂz Uz 1 best
ﬂ4 Us + u% 3 best
Bs us 3 best
ﬂs Ue 1 best
Bs ug + u3 + udus + uf 7 best
ﬂg Ug + UsUs 7 best
ﬂlo Uio + ui 5 best
Bll Uyy + Uslg + Uslg + u§u5 6 offbyl
= vy; + Uusig + Ulus
Blz Uiz + a12 + u?, 3 best
ﬂls Uz + UUyy + UgUg + UsUg 3 best
= Us13

It turns out that B,, = [RP?'], so we conjecture that at least the even-
dimensional Boardman generators have the minimal algebraic filtration. We
now introduce a new set of polynomial generators for H,(MO) (in analogy with
the generators my for H (MU; Z), see Adams [2]). Let us identify MO*(RP*)
with its image in Hy(MO) ® H*(RP®) under the Boardman homomorphism
B, so

O =X+ bx*+ -+ bx" 4o

Define the elements m; € H,(MO) by setting
x=0+mo®+ o+ mott 4oy

then m, = b, + decomposables, so they form a new set of polynomial gener-
ators of H,(MO). Notice that m,, = B3**~! by the Burmann-Lagrange in-
version formula (since 2k + 1 = 1 in Z,), so m,, = h[RP?*] (compare
Adams [2] for [CP"]). Table 3.3 gives the m; in terms of b; (notice that the
table also gives b; in terms of m;, as well).

It is particularly easy to express the Boardman generators in terms of the
polynomial generators m,. By definition

x=w+mlw2+...+mkwk+l +.._’
T=w+ B’ + + B+, n+ 1 # 2,
=X 4 ax” + oapxt +oagx® o+ X+,

so since x2" = 0¥ + m¥0¥" + - + mFo¥**D 4 ... we get Table 3.4 by
equating coefficients.

Remark. Of course, the recursion relations give us immediately that
ﬂ2n = My,
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TABLE 3.3

Algebraic
my Block Expression in b’s filtration

bl 1
b, 1
bs 3

+ biba + bybs

>
o
—

+ bibs + bybs + bybg
+ b3bs + bib3 + b3bs
+ b.b3 + b3bybs + bib,
+ btbs
+ bib,
+ b]
bg 7
+ b2
+ bb% + b3b, + b}bs
+ b}
+ btb,
+ bib3
+ b$b,
bo 6
+ bybs + bsbg + bib; + bibg
0
0
+ bib% + bibs
+ bib,bs + bibs
bio
+ b3 + bibs
by
+ bsbs + bsb7 + bsbg + brbg + bib;o
+ b3b% + bib% + b3bs + bib; + biby
+ byb3 + b3bsbs + byb3bs + byb,b%
+ b3bs + bibsbs + b,b3bs + bibsbe
+ b3b,b; + bibs

mg

BLWNFRFUFROAVMPAEWN=, IOV EAEWVWNEIAUEWNREREDNDEWRN=WRN == -

We wish to show that the Boardman generators are algebraically obvious in
exactly the same sense as our generators u, in Section 1. Let H be the Eilenberg-
Mac Lane spectrum representing cohomology with Z, coefficients, t: MO — H
the Thom class 1 € H°(MO). We have t,b, = 0if n # 2" — 1 and t,b,_, =
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TABLE 3.4

o, B Expression in my

o = my

B2 = m;

ay = mz + m?

Bs = my

Bs = ms + mm3}

Bs = ms

3 = m; + mymi + mims + mj

Bs = mg

B = mo + mumi

Bio = myo

Bi1 = my1 + mm} + mims + mims

Bi2 = my2

Bis = mys + mumi

Bia = mys

oy = mys + mym} + mim, + mi®m,
+ mim} + mimg + m3 + m}®

B = mys

Bi7 = my7 + mym}

Bis = mys

¢,, by definition of the Milnor generators &, € H (H) = A,, the dual of the
Steenrod algebra over Z,.

LemMma 3.5. Themapt,: H, (MO) - A, isgivenby tym, = 0ifn # 2" — 1,
teMye_ 1 = cx&,, where cy: Ay — Ay is the conjugation homomorphism.

Proof. The following diagram is commutative, where B is the B Boardman
map and A is the Milnor homomorphism [14]:
MO*(RP®) —s H,(MO) & H*(RP®)
t. $®1
H*(RP®) —> 4, ® H*(RP®)

that is,

D= Mtyw) = x + Ex% + o+ EXF + -
(where we omit tensor signs) and

X =& + (tum)@ + - + (Lemp)@* ™ + -0,

but we have x = @ + y,@* + ** - + 9@ + -+, where y, satisfy the recur-
sion relation

G+ &gy + &+ + 9, =0,

that is, y, = c¢,¢&,, and the lemma follows.
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We can now determine the coaction of the m;:
COROLLARY 3.6. Let u,: H (MO) - A, ® H,(MO) be the coaction; then
Hem, = Z cx¢; ® (Mzi)n—b

where M = 1 + mt + myt* + -+,

Proof. Proposition 9.4 of Adams [2] with MU replaced by MO and Lemma
3.5.

We now define (as in Section 1) a map g: Hy(MO) » A, ® N, of comodule
algebras over A4, by letting g: H,(MO) — N, be the algebra homomorphism

defined by setting
g(m,) = u, ifn#2" -1
" 0 ifn=2 —1.

We then have (and we invite the reader to check this) g~ *(u,) = B,, the Board-
man generator, and g~ '(c,&,) = «,, where

B(n) = x 4+ ayx? + 0+ ox¥ 4 -

We now describe the generators of n,(MO) constructed by Ilan Kozma [11].
These are elements T; € n,(MO) satisfying the recursion relation

_ i
ms_ = Z m;_ T4y
id=s

TABLE 3.5

Kozma’s generators

Algebraic

Generator Expression in my filtration Comment
Tz my 1 best
T4 my 3 best
T5 ms + mlm% 3 best
Ts me 1 best
Ts ms + mj 7 best
Ty me + mym3 7 best
TlO Mmjo 5 best
T myy + mims + mimi + mum? 6 off by 1
T, my, 3 best
T13 mys + mlm% 3 best

Remark. Notice that f,,,, = T,,4+, forn < 7, but Ty, # B,.

The Dold generators n,(MO) are described as follows (Satz 3, p. 32 of Dold
[8]—the notation is ours). Let d,, = [RP?"], and if nis odd and n + 1 is not
apower of 2,letn = 2'(2s + 1) — 1 and set d,,,; = [P(2" — 1, 52")], where
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P(a, b) for natural numbers a, b is the smooth manifold of dimension a + 2b
obtained as a quotient of S* x CP® under the action of Z, by T(x, y) =
(—x, y), where x € S° and y represents the homogeneous coordinates of a
point in CP? and bar denotes conjugation.

TABLE 3.6

Dold’s generators

Algebraic
Generator Expression in u, filtration Comment
d, my; = u, 1 best
d4 My = Uy + u% 3 best
d5 Us 3 best
d5 Me = Ug 1 best
ds mg = ug + ui + udu, + uj 7 best
dg Ug + Uals 7 best
le Mo = U0 + ug 5 best
d; 11 7 off by 2
d12 my2 3 best
d;s 3 best

Brown’s generators are described [4], [5] as follows: if n is even and
n =r; + -+ r.is the binary expansion of n as a sum of distinct powers of 2,
thenlet V" = RP"if k = 1 and for k£ > 1 let V" be a submanifold of

K"*!' = RP™ x -+ x RP™"' x RP™*!

dualto x, + - + x, € H(K"*'; Z,) where x; is the fundamental class of the
ith factor. The cobordism class of V" gives the even-dimensional Brown
generators A, for n,(MO). The odd-dimensional generators are obtained by a
modification of Dold’s construction P(a, b): if N" is an n-manifold, let P(m, N)
be the (m + 2n)-manifold obtained from S™ x N x N by identifying

TABLE 3.7

Brown’s generators

Algebraic
Generator Expression in uy, filtration Comment
Aa Uz 1 best
s Uy + U2 = my 3 best
As = ds Us 3 best
As Ue + UzlUy 4 off by 3
lg mg 7 best
Ao = do Ug + Usls 7 best
Ato 8 off by 3
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(x, ¥1, ¥2) with (—x, y,, y;). The Brown polynomial generators A, are defined
in odd dimensions n by letting n = 2"(2s + 1) — 1, s > 0 and letting V" =
P2 — 1, V*), where V" has been defined before, and A, = [V"] is the
Brown polynomial generator for dimension n. Notice that P(m, RP") =
P(m, n) of Dold.

4. The algebraic and geometric filtrations do not coincide

We shall show that the algebraic and geometric filtrations of #,(MO) are
different by proving that the geometric filtration of b,, = m, = u,, = [RP'*]
is greater than one. We show that this is a consequence of the work of J. F.
Adams on the nonexistence of elements of Hopf invariant one [1]. The argu-
ment was pointed out to me by M. E. Mahowald. Let Y be the fiber of the map
S® - HZ,, then the mod —2 homology of Y is just the augmentation ideal
with a shift down by one in grading: H,(Y) = (A4),—;. Let P be the suspension
spectrum of RP® and let J: P — S° be the stable J-map. Then since J, = 0
in homology, it factors through j: P — Y.

LEMMA 4.1. Let x, be the class in H,(P) dual to x" € H"(P), where x is the
non-zero element of H'(P). Then jy(x,) # O.

COROLLARY 4.2. Ifn = 2" — 1, then ju(x,) = [¢3].

Proof. The element Xx, is primitive for n + 1 = 2" under the coaction of
A,, but the only primitives of A, are elements ¢3° (see [1]).

We now notice that MO(1) is homotopy equivalent to RP® and under this
homotopy equivalence the element b, corresponds to x,.,. We shall show that
b, is not in the image of the stable Hurewicz homomorphism, but for this it is
sufficient to show that j,b,, = [£]°] is not spherical, but this was shown by
Adams [1]. Indeed, if we let i, = class of [¢3°] € Ext} (Z,, Z,), then dy)h, =
hoh?_, which is nonzero if s > 4. We have shown:

COROLLARY 4.3. Ifn = 2" — 2,r > 4, then the geometric filtration of b, is at
least 2.

Of course, we can ask: what is the geometric dimension of b,,._, = [RP* ~2]
for r > 4?7 We shall return to this question in a later note.

Preliminary examination indicates that *8F, = #°F, for n < 10 and there is
reason to suspect that b, , is the lowest-dimensional example for which the two
filtrations are distinct.
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