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Given a compact manifold M we ask for the least integer k such that M"
immerses into R"+. A great deal is known for special classes of manifolds (see
Gitler [9]). There is a conjecture that (if m > 2) M" immerses in R-’’),
where (m) is the number of ones in the dyadic expansion of m. The original
question can be weakened to read" given M’, find the least integer k such that
there is a manifold M’ cobordant to M and M’ immerses in R"+.
We shall say that Mm immerses into R+ up to cobordism. Brown [4], [5]

has proved that M" immerses in R2m-=(m) up to cobordism. Of course, we have
lost a lot of geometric information by passing to cobordism, since now k(M) is
a function only of the cobordism class of M, and if M is a boundary (M
Rpzn+ x, an odd-dimensional real projective space, for example) then k(M) O.
Even if M is not a boundary, a manifold may immerse up to cobordism into a
lower dimensional Euclidean space than M itself: for example, RP immerses
up to cobordism into R5, as we shall see later, but RP itself immerses into
R 6, and does not immerse into R 5 (see Gitler [9]).
The fact that we have lost geometric information by passing to cobordism

(and reducing the problem to homotopy theory) should not make us sad" the
geometric situation was too complicated, so we would not obtain useful quali-
tative information if we preserved the complexity of the original problem. The
purpose of this note is to convince the reader that even after the reduction there
is a lot of structure (possibly even too much?) remaining.
The usual approximation theorems of Thom [16] give a reduction of the

problem of immersions up to cobordism to a question of homotopy. Let MO
be the Thorn spectrum [16-1 for the orthogonal group, then cobordism classes
of compact m-dimensional manifolds correspond to elements of

rcm(MO) rCn+m(MO(n)).

Let 2k" Zm/k(MO(k)) rcm(MO) be the map into the direct limit, where the
superscript st denotes stable homotopy. Ifx zm(MO) represents the cobordism
class of M, then M is cobordant to an M’ which immerses in R +k if and only if
x is in the image of 2k. The essential point here is the use of the theorem of
Hirsch [10] which reduces the question of immersion in R+k to the geometric
dimension of the stable normal bundle of the manifold.

Stated in another way" we define an increasing filtration of rr,(MO) by setting
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gFn,(M) image of 2,. Let gEn,(M) be the associated graded object,
then our original question is equivalent to the following: given x [Mm] # O,
what is the k so that the class of x is nonzero in Eknm(MO)?
The purpose of this note is to study gEnm(MO).
We recall that n,(MO) is a polynomial algebra over Z2 (Thorn [16]) and the

Hurewicz homomorphism n,(MO) -, H,(MO; Z2) is a monomorphism onto
the primitives under the coaction of the algebra A, (dual of the mod 2 Steenrod
algebra [14]). This, as we shall see, presents us with an algebraically obvious
set ofpolynomial generators for n,(MO). The homology H,(MO; Z2) is filtered
by the images of H,+,(MO(n); Z2) and this filtration induces the algebraic
filtration algF of n,(MO). We shall ask ourselves three questions:

Question 1. Do the algebraically obvious polynomial generators have the
smallest algebraic filtration ?

This question tacitly hopes that "lgEon,(M) has a very simple-minded
structure" namely, take polynomial generators of smallest possible filtration,
then monomials in these generators should project into a Z2-basis of
lgEon,(MO), so if it turns out (as it does) that the algebraically obvious gener-
ators do not have minimal filtration (we shall see that this first happens in
dimension 11), we can still ask"

Question 2. Is agElr,(MO) a polynomial algebra?

The answer is no, and the first departure from a polynomial algebra occurs in
dimension 10.

Since our algebraically obvious generators turn out not to have the minimal
algebraic filtration, we can ask"

Question 3. Do the polynomial generators of Boardman [31, Brown [4],
Dold [8], and Kozma [11] have minimal algebraic filtration?

The answer is no again, unfortunately. Boardman’s generators first fail in
dimension 11, Brown’s in dimension 6, Dold’s in dimension 11, Kozma’s in
dimension 11.
So far we have been talking only about the algebraic filtration of n,(MO).

Since the following diagram commutes (horizontal maps are maps into the
direct limit, vertical maps are the Hurewicz homomorphisms into homology
over Z2)

we have geF c

stnm+,(MO(n)) ; nm(MO)

Im+n(MO(n)) nm(MO),

algFn, SO we ask"

Question 4. Is the algebraic filtration the same as the geometric filtration?



IMMERSIONS UP TO COBORDISM 151

The answer is no again, a counterexample being furnished by [RPx4] which
is of algebraic filtration 1, but of geometric filtration at least 2.
We refer the reader to Brown [4], [5] for an elegant geometric proof that

g=F,_=(,) rc,(MO)

and to Burlet [7], Salmonsen [15] on the homotopy of MO(n) and MSO(n), to
Wells [17] on cobordism of immersions. I am indebted to all of the above
authors (and to J. F. Adams, T. tom Dieck, R. K. Lashof, and M. Mahowald)
for conversations and letters.
The paper is organized as follows" Section describes the algebraically

obvious generators for zc,(MO), Section 2 describes the structure of algE,/r,(M)
in total degree < 14, Section 3 inspects the generators of Boardman, Brown,
Dold, and Kozma, and Section 4 shows that algF 5k g=F in an infinite number
of dimensions _> 14.

1. Algebraically obvious generators for n,(MO)

We recall (see [13], for example) that H,(MO) (Z2 coefficients here and later)
is a polynomial algebra Z2[bl,..., b,,... ] on generators b, coming from
H,+ I(MO(1)) with coaction of A, (dual of the Steenrod algebra over Z2, see
Milnor [14]) given by #,b, n= +"("+)1 (R) b,, where ") A,,_ satisfy the
relations

+1)= {,. ifs=T- 1,
if s 4:2 1,

where , are the Milnor [14] generators, and the y.) are determined by ,")
and the Cartan relations" for each pair of natural numbers i, j we have

i+j X /J
n=s+t

(see [13]).
Let N, Z2[u2, u,,..., u,,... ], n T and define an isomorphism

of algebras and comodules over A,

f: H,(MO) A, (R) N,
where the coaction in A, (R) N, is b, (R) 1, b," A, A, (R) A, being the
coproduct. The mapf is determined by the algebra homomorphism

f 0/, (R) 1)f: H,(MO)---, N,
where r/," A, Z2 is the augmentation and f(b,)= /l if n # 2- 1,
f(b,) 0 if n T for some r (see Liulevicius [12], as well as correction
in [13]). Of course, the image of zr,(MO) is precisely f-x(1 (R) N,), and we
call the corresponding polynomial generators of n,(MO) algebraically obvious.
Let us simplify notation by identifying H,(MO) with A, (R) N, under f, thus
identifying n,(MO) with (R) N,. Table 1.1 gives the expression for u, in terms
of the polynomial generators b for n < 18.
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TABLE 1.1

Algebraic
Generator degree Expression

u2

2
2

u4
3

us
2
3

2
3
4
5

us
3
5
7

u9
2
3
4
5
6
7

ulo
5

2
3
4

5
6
7
8

u12
3
5

ula
2
3
4
5
6

ul,

hi
bz
ba +

+ blbz
b

+bib2

+ blb + b2ba
+ blb
b
b7

+ bb, + bxb
+ blb2b, + bbs
+ blb2b + bb,
+ bb2
b

+ b2b] + b2b
t,2b3+ , + bb

+ b6bz
b

+ bb + bb7 +
+ b2bab4
+ blb2b,, + blb2bs
+ bb2ba + blb2b, + bb5
+ bab2ba + bib2 + bb,

bSb+ 2

+ b’b6

+ b4b7 + baba + blbo
+ bab, + b]bs + blb,b6 + blb2ba + bb9
+ b2b] + bb]b, + bb2b, + bb4bs +
+ blbab6 + btb2b7 + batba

b /2/2 2+ 2, + blb, + bb2b5
23 32 4/ blbb / bbb / bbbs

4+ bib2 + bb2b3 + bxb2b4
+ bib2

+ bib6 + bblo
+ bb2b6
bl

+ b6b7 + bbo + btb2
+ bb,b6 + bb] + bb2bio
+ bb2b,b6 + bbsb6
+ blb2bb6 + bb,b6
+ blb2b6
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The computations are made easier by the following

LEMMA 1.2. The coefficients ym) satisfy the relations

,(2n) /’q(n))2 ,u(2n) ,.(2n+ 1) ,u(2n)
2s O,ts J 2s+1 ’2s 2s

For example, we have (using f and omitting tensor products)"

U12 b12 + ( + ((d2 + 5)4 + 7)6 + 9)u8 + 11) 10,

(3))2 + , 9) 8) (2))4 0, 11) 10) (5))2 , the
last since

5) ,(4),()
,o +r’)r*) ].+0.=.

Substituting for ,, =, u6, U,o, we have

u,= 5, + (5 + 5 + 55)56 + 5(5o + 55)
5 + 556 + 55o + 5556,

as given in the table.
It i8 easy to compute the algebraic filtration of a given element in H.(MO; Z),

since the image of .(MO(n); Z=) is precisely the subspace spanned by all
monomials b= of algebraic degree n (see [13] for example).
The lemma also shows that in order to solve for u= we only have to know the

expression for u=., n < m and . with 2" < m since m(=.+*) ((.)a* and
the exponents of monomials in with nonzero coeNcients in (7’)) are all even.
This explains why in the following table we have been able to go up to

TABLE 1.3

Algebraic filtration of polynomial generators

Algebraic
Generators filtration

Algebraic
Top term Generators filtration Top term

U b2

2 2 bib2
b,b2u4 3

u5 3 blb
u6 b6

bb2us 7 6

bb2u9 7
Ulo 5 bb6

bib2u** 8
blb2b6u12 5 2

b32b
ux4 bx4

12
u,6 15
u,7 15
u18 13
U2o 13
u22 9
u24 15
u26 11
u28 11
Uao
ua2 31
u34 29
ua6 29
ua8 31
U4o 33
u42 35

9bib2
blab2
blbl

blbb6

blbb6
b621214
bzb2bl,
bo
bb2
beb6
262

b282
b30k2
322
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Remark. By looking at Table 1.3 one is tempted to conjecture that algebraic
filtration of an element in r.(MO) is detected by

Z2[bl, b2, b6, b14, b30,... ].

This certainly seems to be the case for Cr and u,, but unfortunately breaks down
in re1 o(MO).

2. Structure of a=gEn(MO)

The computations in Section are already enough to show that the answer
to Question is "no", since [RP2"] are known to be indecomposable.

PROPOSITION 2.1. Given n, let r be the smallest integer such that 2n + < 2r;
then the algebraic filtration of [RP2"] is 2 2n 1.

Proof. By choice of r, if x HI(RP2") is the generator, (1 + x)2r 1, so
(1 + x)- 2.- (1 + x)2"- 2n- and the coefficient of x2- 2.- is 1, and this
power of x is nonzero.

Remark. According to the Proposition 2.1, alg. flit. [RP 2-1 16 13 3,
but alg. flit. u2 5. The discrepancy is even more dramatic later--for
example" alg. flit. [RP28] 32 29 3, but alg. flit. u28 11. Notice that
through dimension 10, however, the filtrations of u2, are the same as those of
[Rp2"]. Indeed we have Table 2.2.

TABLE 2.2

[RP2n] in terms of u,’s

[Re2] //2,

[RP4] u4 + u2
[Re6] U6,

[Re8] ua + u + uu4 + u"2
[RP1] Ulo + u2,

[RP2] ux2 + u + u] + u2ua + u2us.

Conjecture. The algebraic filtration of [RP2hI is the best possible for a
polynomial generator of n.(MO) in dimension 2n.

The following table exhibits a Z2-basis for algETz(MO) and shows that the
answer to Question 2 is "no," the first counterexample occuring in dimension 10.
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TABLE 2.3

A basis for al*Er,(MO) for k < 14

Dimension Basis" class of Filtration

2
4

5
6

7
8

9

10

11

12

13

U2

//2/,/4.

//6

//2//5

u,
//2//4.

//2//6

//9

2
//2//5
//2//8

//2//24.
//23//4.

//10

//4.//6

o u2// + u
//2//6

//2//9

//2//4//5

//23//5
/311 //2//9 //11

//5//6

//4//8

//2//8

24.

//2//10

//2X10

//2//4.//6

//23//6
tZ12 //22//8 -]- U "JI- //2//52 "" //2/’/4//6

/912 /’/12 "l- //2//4//6

//5//8

//4.2//5
//22//4//5
lt42//5

3
2
3
4
3

4
7
6
5
4
2
7
6
5
8
7
6
5
5
4
4 (drop of 2)
3
8
7
6
5 (drop of 3)
4
10
9
8
7
6
6
5
5
4
3 (drop of 6)
3 (drop of 2)
2
10
9
8
7
6
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TABLE 2.3 (continued)

Dimension Basis" class of Filtration

14

usua + u4u9 + u2ull 6
U2//s//6 5
U//5 " //22U9 + U//4U5 4
usua + U,u9 + u2ul + ua 3
//2//4//8 11
u]ua 10
u2u 9
uu 8
//6U8 8

U 8uua + usu9 +
//u2 7
u?u6 7
u4o 7
u]u4u6 6
u2o 6
uu6 5
u2v12 4
u2ua + ua2us + 4U2Us + //2//12

u6u8 + u,uo + u22u4u6 4
u2ug 3
uu6 + uTulo 3
ul,

(drop of 4)

(drop of 5)
(drop of 7)

3. Generators for n,(MO)

In this section we recall the construction of the polynomial generators for
n,(MO) by Boardman [3], Brown [4"1, [5-1, Dold [8-1, Kozma [1 1] and examine
their algebraic filtration.
Boardman generators for n,(MO) are defined in terms of the standard

generator 09 MOI(RP) which under the Boardman homomorphism B (see
Adams [2], for example) have image

B(o9) x + b x2 +.’.+ bnxn+l +...,

where bn Hn(MO) are the generators we have used in Section and
x HI(RP) is the nonzero element in cohomology. Let

m" RP x RP RP

be the standard multiplication with m*x x (R) + (R) x. Then o9 is not
primitive under the diagonal in MO*(RP) induced by MO*(m), but there is a
unique primitive 7r MO(RP) satisfying the condition

B(n) x + (z1 x2 -]- 02X4
_

_t_ (ZnX .._
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(Boardman [3], see also Br6cker and tom Dieck [6]); then

--" (.D-- 20)2 "- 4(.05 -’’"-]" n(.Dn+l "dt-’’"

where n # 2" and fl, 7r,n(gO) are the Boardman polynomial generators.
Table 3.1 lists the Hurewicz images of the Boardman generators.

TABLE 3.1

Algebraic
Generator Block Hurewicz image filtration

/2 b2
/L b4 3

2 + b2
3 + b2b2

,5 b5 3
2 + b2ba + bib,,
3 + blbz

6 b6
fla ba 7

2 + b
3 + b2bZa + b2b,, + bb6
4 + b
5 + bb,

bb6 +
7 + b6xb,_

f19 b9 7
2 + b4bs + bab6 + b2b7 -t- bib8
3 + blb.
4 0
5 + b"ibs
6 + b4ib2ba + bSb4

bSb7 + 12

//10 blo 5
5 + bb6 + b

,81 b 6
2 + bsb6 .-I- b4b7 .-t- bab8 + b2b9 .-b bbo
3 + bab, + bibs + b2b7 + bb9
4 + b2b:] + b2bab, + bb’]b, + blb2b + ba2b

+ bb,b + blb2b6 + bbab6
4b b !’2b25 -I- b2 q- 1,2 + bb.

6 + bbz
1312 b2 3

3 + bat + b2b] + b2ab6 + b2ba + bbo
/la b13 3

2 + b6b7 d- bsbs + bb9 + bablo + b2bl + bb2
3 + blb

We express in Table 3.2 the fl in terms of our generators u, v from Sections
and 2.
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TABLE 3.2

Algebraic Comment
B-generator Expression filtration on filtration

,a2 u2 best
,a, u, + u2 3 best
,as u5 3 best
,a6 u6 best
,as us + u, + u?zu,, + u2* 7 best
,a9 u9 + u,u 7 best
,ao Uo + u2 5 best
fill till + U2U9 + UsU6 + U23tt5 6 off by

v + uu6 + uzu5
,a12 /)12 "t- iX12 l- U 3 best
,a13 U13 + U2Ull + /,/4U9 + US//8 3 best

/313

It turns out that 2n-- [Rp2n], so we conjecture that at least the even-
dimensional Boardman generators have the minimal algebraic filtration. We
now introduce a new set of polynomial generators for H,(MO) (in analogy with
the generators mk for H,(MU; Z), see Adams [2]). Let us identify MO*(RP)
with its image in H,(MO) It*(RP) under the Boardman homomorphism
B, so

09 X + blx2 +"" + bnxn+l +....

Define the elements mke H.(MO) by setting

x 09 + mlo9
2 + + ink09

k+l + "’’;

then mk bk + decomposables, so they form a new set of polynomial gener-
ators of H.(MO). Notice that m2k ak2k- by the Burmann-Lagrange in-
version formula (since 2k + in Z2), so m2k h[RP2k] (compare
Adams [2] for [CPn]). Table 3.3 gives the m in terms of b (notice that the
table also gives b in terms of mi, as well).

It is particularly easy to express the Boardman generators in terms of the
polynomial generators mk. By definition

x o + mlo92 +...+ mko9
k+l +...,

717 O) + 2(D3 +’’’+ n(_Dn+l "+’’’’, n + # 2r,
7r X + 0lX

2 + Z2X* + X3x8 +’’" + OrX2" +’’’,

2 ,2r+ vw2r.,t2r(k+ 1)so since x2 o,)2r + /,/,l to + + "’k + we get Table 3.4 by
equating coefficients.

Remark. Of course, the recursion relations give us immediately that
m2n"
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TABLE 3.3

Algebraic
Block Expression in b’s filtration

ml bt
m2 b2
m3 b3 3

2 + bib2
3 +

m, b, 3
2 + b22
3 + bb2

ms b5 2
2 + bib,, + b2b3

m6 b6
m7 b7 7

2 + bab, + b2b5 + bib6
3 + b2ba + bib] + bb5
4 + blb32 + b2xb2ba + bab,
5 + bba
6 + bb2
7 + bl

ms ba 7
2 + b]
3 + b2b] + bb, + bb6
4 + b
5 + bxb

l,b26
7 + b6b2

m9 b9 6
2 + b4bs + bab6 + b2b7 blba
3 0
4 0
5 + blb + bbs
6 + b;b2ba +

mlo
5 + b52 + b’b6

mll bll
2 + bsb6 + b4b7 + baba + b2b9 + biblo
3 + bab2 + blb + bibs + b22b7 + b2b9
4 + b2b + b2bab, + blbb, + blb2b24

b265 + b2b,b5 + blb22b + b2bab6+
+ bb2b7 + bbs

We wish to show that the Boardman generators are algebraically obvious in
exactly the same sense as our generators u. in Section 1. Let H be the Eilenberg-
Mac Lane spectrum representing cohomology with Z2 coefficients, t" MO - Hthe Thom class H(MO). We have t,b, 0 if n 2 and t,b2r_
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TABLE 3.4

Expression in m

,, by definition of the Milnor generators , e H,(H) A,, the dual of the
Steenrod algebra over Z2.

LEMMA 3.5. The map t," H,(MO) A, is given by t,mn 0/fn #: 2’ 1,
t,m2r-1 c,,, where c," A, A, is the conjuyation homomorphism.

Proof. The following diagram is commutative, where B is the B Boardman
map and 2 is the Milnor homomorphism [14]"

that is,

MO,(Rpoo)
n

; H,(MO) ) H*(RP)

H*(RP) , A, H*(RP)

X2 22(t,to)= x + 1 +’"+ ,x +’"

(where we omit tensor signs) and

x + (t,mi)2 +’’’+ (t,mk)k+i +’’’,

but we have x + yl2 + + y2 + ..., where y satisfy the recur-
sion relation

r "+" r2-1’1 + r-2)2 + + )r 0,

that is, y, c,,, and the lemma follows.
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We can now determine the coaction of the mk"

COROLLARY 3.6. Let p," H,(MO) --, A, (R) H,(MO) be the coaction; then

la,m,, c,i (R)

where M + mlt + m2t2 /’".

Proof. Proposition 9.4 of Adams !-2] with MU replaced by MO and Lemma
3.5.
We now define (as in Section 1) a map 9" H,(MO) A, (R) N, of comodule

algebras over A, by letting g" H,(MO) N, be the algebra homomorphism
defined by setting

/(m,,) {;" if n-C-2r- 1
if n= T- 1.

We then have (and we invite the reader to check this) 0-X(u.) ft., the Board-
man generator, and #-l(c.) , where

X
2B(n) x -Jr- (1 +""-t- OrXzr J-’".

We now describe the generators of n.(MO) constructed by Ilan Kozma [11].
These are elements T ni(MO) satisfying the recursion relation

ms-1 , m,_lT_.
id=s

TABLE 3.5

Kozma’s generators

Algebraic
Generator Expression in mk filtration Comment

T2 m2 best
Ta ma 3 best
Ts ms + mim22 3 best
T6 m6 best
Ta ms + m 7 best
T9 m9 + mim 7 best
Tao m o 5 best

mama xm] 6 off byTxi mli + m’ms + + m
T12 ml2 3 best
Txa mla + mlm 3 best

Remark. Notice that 2n+ T2n+l for n < 7, but T17 - 17"
The Dold generators zt,(MO) are described as follows (Satz 3, p. 32 of Dold

[8J--the notation is ours). Let d2, [Rp2"], and if n is odd and n + is not
a power of 2, let n T(2s + 1) and set d2,+x [P(2" 1, s2r)], where
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P(a, b) for natural numbers a, b is the smooth manifold of dimension a + 2b
obtained as a quotient of S CPb under the action of Z2 by T(x, y)
(-x, y), where x S and y represents the homogeneous coordinates of a
point in CPb and bar denotes conjugation.

TABLE 3.6

Dold’s generators

Algebraic
Generator Expression in uk filtration Comment

d2 m2 u2 best
d4 m4 u4 + u2 3 best
ds us 3 best
d6 m6 u6 best
ds ms us + u. + uu4 + u2* 7 best
d9 u9 + u4us 7 best
dlo mlo Ulo + u2 5 best
dl 7 off by 2
dl2 m12 3 best
dla 3 best

Brown’s generators are described [4], [5-1 as follows" if n is even and
n rl + + rk is the binary expansion of n as a sum of distinct powers of 2,
then let V RP if k and for k > let V be a submanifold of

K"+ RP" x RP’’- x RP’’+

dual to x + + Xk H(Kn+ Z2) where xi is the fundamental class of the
ith factor. The cobordism class of V gives the even-dimensional Brown
generators 2 for rc,(MO). The odd-dimensional generators are obtained by a
modification of Dold’s construction P(a, b): if N is an n-manifold, let P(m, N)
be the (m + 2n)-manifold obtained from S N x N by identifying

TABLE 3.7

Brown’s generators

Algebraic
Generator Expression in un filtration Comment

,2 u2 best
24 u4 + u22 m4 3 best
2s d5 us 3 best
26 //6 + //2//4 4 off by 3
28 ms 7 best
’’9-- d9 //9 + U4Us 7 best
21o 8 off by 3



IMMERSIONS UP TO COBORDISM 163

(x, Yl, Y2) with (-x, Y2, Yl). The Brown polynomial generators ’’n are defined
in odd dimensions n by letting n 2r(2s 4- 1) 1, s > 0 and letting V"
P(2 1, V2rS), where Veven has been defined before, and 2, [V"] is the
Brown polynomial generator for dimension n. Notice that P(m, RP")=
P(m, n) of Dold.

4. The algebraic and geometric filtrations do not coincide

We shall show that the algebraic and geometric filtrations of n,(MO) are
different by proving that the geometric filtration of b14 m14 ul [RP1]
is greater than one. We show that this is a consequence of the work of J. F.
Adams on the nonexistence of elements of Hopf invariant one [11. The argu-
ment was pointed out to me by M. E. Mahowald. Let Y be the fiber of the map
SO HZ2, then the mod -2 homology of Y is just the augmentation ideal
with a shift down by one in grading: Hk(Y) (’,)k- 1. Let P be the suspension
spectrum of RP and let J: P SO be the stable J-map. Then since J, 0
in homology, it factors through j" P Y.

LEMMA 4.1. Let x, be the class in H,(P) dual to x H"(P), where x is the
non-zero element of Hi(P). Then j,(x,) v O.

COROLLARY 4.2. If n 2 1, then j,(x,)

Proof The element x, is primitive for n + 2" under the coaction of
2s (see [1]).A,, but the only primitives of A, are elements

We now notice that MO(1) is homotopy equivalent to RP and under this
homotopy equivalence the element b, corresponds to x,+ 1. We shall show that

b14 is not in the image of the stable Hurewicz homomorphism, but for this it is
sufficient to show that j,bl, [6] is not spherical, but this was shown by
Adams [1]. Indeed, if we let hs class of [s] Ext (Z2, Z2) then d2h
hoh2_ which is nonzero if s > 4. We have shown"

COROLLARY 4.3. Ifn 2 2, r >_ 4, then the geometricfiltration orb, is at
least 2.

Of course, we can ask" what is the geometric dimension of b2r_ 2 [RP2r- 2]
for r _> 4? We shall return to this question in a later note.

Preliminary examination indicates that algF. geF for n < 10 and there is
reason to suspect that b14 is the lowest-dimensional example for which the two
filtrations are distinct.
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