ON THE HIERARCHY OF W. KRIEGER

BY

A. CONNES

In his paper "On ergodic flows and the isomorphism of factors" W. Krieger introduces a hierarchy $\Delta(n)$, $n \in \mathbb{N}$, labelling different weak equivalence classes of ergodic transformations of type III₀. The aim of the present paper is to answer a question of W. Krieger, namely to prove the existence of a weak equivalence class of type III₀ not in the above hierarchy. There is a close link between this hierarchy and the discrete decomposition $M = W^*(\theta, N)$ of factors of type III₀ [2, part V]. In fact in such a decomposition the restriction of θ to the center of N is unique, up to an induction on a non-zero projection in the sense of Kakutani [2, Theorem 5.4.2]. In particular the weak equivalence class of this restriction is uniquely associated to M. Starting from a weak equivalence class τ we get a factor M by the group measure space construction, hence if τ is of type III₀ we can associate to it the derived weak equivalence class τ' corresponding to discrete decompositions of M. A weak equivalence class τ belongs to the hierarchy if and only if $\tau^{(n)}$ fails to be of type III₀ for some n.

We compute the discrete decomposition of a large class of infinite tensor product of type I factors. In fact we show that any of the automorphisms T_p of W. Krieger [9, p. 87] which are strictly ergodic, appear as θ /Center of N in the discrete decomposition of some infinite tensor product of type I factors. Also we produce a weak equivalence class τ of transformation T_p of type III₀ such that $\tau' = \tau$ and hence not belonging to the above hierarchy.

We shall need some standard notations:

(1) Let $(k_i)_{i=1,2...}$ be a sequence of integers, $X_i = \{n, 1 \le n \le k_i\}$ a totally ordered set with k_i elements for each $i \in \mathbb{N}$, and $p = (p_i)_{i \in \mathbb{N}}$ a sequence of probability measures, p_i on X_i for each $i \in \mathbb{N}$. Then, as in [9, p. 87] we define an automorphism T_p of the measure space $X = \prod_{i=1}^{\infty} (X_i, p_i)$ by setting, for $x = (x_i)_{i \in \mathbb{N}} \in X$,

$$I(x) = \min \{i \in \mathbb{N}, x_i < k_i\},$$

$$(T_p(x))_i = 1 \qquad \text{if} \quad i < I(x)$$

$$= x_i + 1 \quad \text{if} \quad i = I(x)$$

$$= x_i \qquad \text{if} \quad i > I(x).$$

(2) Let $\{\lambda_{v,j}\}_{j=1,\ldots,n_v,v\in\mathbb{N}}$, be an eigenvalue list, i.e., for each v, λ_v is a probability measure on a set E_v with n_v elements. Then for each v we let M_v be

Received September 24, 1974.

the algebra of $n_v \times n_v$ matrices over C, with its canonical system of matrix units $(e_{i,j}^v)_{i,j \in E_v}$ and the state $\phi_v = \text{Tr}\left((\sum \lambda_{v,j} e_{jj})\right)$. For any finite subset *I* of N we put $E(I) = \prod_{v \in I} E_v$, $\lambda_I = \prod_{v \in I} \lambda_v$ and we let $(e_{r,s}^I)_{r,s \in E(I)}$ be the canonical system of matrix units in $M(I) = \bigotimes_{v \in I} M_v$. Finally r(I) is the ratio set

$$r(I) = \left\{ \frac{\lambda_{I,p}}{\lambda_{I,q}}, \, p, \, q \in E(I) \right\}$$

and |r(I)| the largest element of r(I).

THEOREM 1. Let $\{\lambda_{v,j}\}_{j=1,\ldots,n_{v,v}\in\mathbb{N}}$ be an eigenvalue list such that for each $v \in \mathbb{N}$ the ratio set $r(\{v\})$ intersects the interval $[|r(\{1,\ldots,v-1\})|^{-2},$ $|r(\{1,\ldots,v-1\})|^2]$ in the point 1 only. Let $M = \bigotimes_v (M_v, \phi_v)$ be the infinite tensor product corresponding to λ . For each v let X_v be the totally ordered set of values of λ_v , and p_v be the image on X_v of the measure λ_v .

Then if $X = \prod_{\nu=1}^{\infty} (X_{\nu}, p_{\nu})$ is a Lebesgue measure space, M is a factor of type III_0 which admits a discrete decomposition $M = W^*(\theta, N)$ in which the restriction of θ to the center of N is equal to T_p acting on $L^{\infty}(X)$.

COROLLARY 2. Let $(X_v, p_v)_{v \in \mathbb{N}}$ be a sequence of finite totally ordered probability spaces such that $(X, p) = \prod_{v=1}^{\infty} (X_v, p_v)_{v \in \mathbb{N}}$ is a Lebesgue measure space. Then T_p acting on $L^{\infty}(X, p)$ is the restriction of θ to the center of N in a discrete decomposition $M = W^*(\theta, N)$ of an infinite tensor product M of type I factors, $(M \text{ of type III}_0)$.

Proof. One has to produce probability spaces E_v , λ_v satisfying the condition of Theorem 1, and such that X_v , p_v is the range of λ_v . Replace each point, say *i*, of X_v , with measure $p_v(i)$ by sufficiently many points i_1, \ldots, i_{l_i} with $\lambda_v(i) = (1/l_i)p_v(i)$. Clearly if l_i increases sufficiently fast when *i* decreases, the image of λ_v is isomorphic to X_v , p_v as an ordered probability space, and the smallest ratio > 1 in $r(\{v\})$ is as large as desired.

COROLLARY 3. There exists a weak equivalence class τ of ergodic transformations, which is of type III₀ and satisfies $\tau' = \tau$.

Proof. We just have to construct an eigenvalue list $\{\lambda_{v,j}\}_{j=1,\ldots,n_v}$ such that the condition of Theorem 1 is fulfilled and the derived list $\{p_{v,l}\}_{l=1,\ldots,k_v}$ gives a transformation T_p weakly equivalent to T_{λ} and not of type I. Those conditions will be fulfilled if we require that E_v , λ_v is the same probability space as the range X_{v+1} , p_{v+1} of λ_{v+1} and that the largest element in the range of λ_v is smaller than 1/2, for all v. (See [1, p. 61]). Construct E_v , λ_v by induction, E_{v+1} , λ_{v+1} being obtained by replacing each point, say i, of E_v by l_i points $i_{l'}$, $1 \leq l' \leq l_i$, $\lambda_{v+1}(i_{l'}) = (1/l_i)\lambda_v(i)$.

COROLLARY 4. There exists a weak equivalence class τ of ergodic transformation of type III₀ which does not belong to the hierarchy $\bigcup_{n \in \mathbb{N}} \Delta(n)$ [5, part 7]. **Proof.** By [3, part 2], for an arbitrary factor of type III₀, M, the flow arising as the restriction to the center of M_0 of the one parameter group of automorphisms $(\theta_t^0)_{t \in \mathbb{R}}$ of M_0 in an arbitrary continuous decomposition [6] of M is one of the flows built on the restriction to the center of N of the automorphism θ^{-1} , in an arbitrary discrete decomposition $M = W^*(\theta, N)$ of M. With the notations of [5] this means that for each ergodic transformation of type III₀ the flow W(T) is built on an ergodic transformation belonging to the weak equivalence class τ' derived from the weak equivalence class τ of T. Hence the conclusion follows Corollary 3.

We now begin to prove Theorem 1. We keep the above notations.

LEMMA 5. Let $\phi = \bigotimes_{v} \phi_{v}$ be the canonical product state on M.

(a) ϕ is an almost periodic state, more precisely the e_{ij}^I , I finite subset of N, *i*, $j \in E(I)$ are a total family of eigenvectors for σ^{ϕ} ($e_{ij}^I \in M(\sigma^{\phi}, \lambda_{I,j}/\lambda_{I,i})$) *i*, $j \in E(I)$).

(b) 1 is an isolated point in the spectrum of Δ_{ϕ} , which is the closure of $r(\mathbf{N}) = \bigcup_{\nu=1}^{\infty} r(\{1, \ldots, \nu\}).$

Proof. (a) is immediate, using $\sigma_t^{\phi} = \bigotimes_{v=1}^{\infty} \sigma_t^{\phi_v}$, $t \in \mathbb{R}$.

The formula $Sp\Delta_{\phi} = \bar{r}(N)$ follows from (a) and the hypothesis on the eigenvalue list $\{\lambda_{v,j}\}_{j=1,\ldots,n_v}$ gives (b). Q.E.D.

Now let $v \in \mathbf{N}$ and $\alpha_1^v < \cdots < \alpha_{k_v}^v$ the various values of λ_v . Put

$$a_j^{\nu} = \sum_{\lambda_{\nu,i} = \alpha_j^{\nu}} e_{ii}^{\nu}.$$

It is easy to check that a_j^v is an atom in C_v = Center of M_{v,ϕ_v} and is the central support in M_{ϕ_v} of e_{ii}^v if $\lambda_{v,i} = \alpha_j^v$. Let P_v be the restriction of ϕ_v to C_v , $(P_v(a_j^v) = p_v(\{j\}))$.

LEMMA 6. Let C be the Center of M_{ϕ} ; then $C = \bigotimes_{\nu=1}^{\infty} (C_{\nu}, P_{\nu})$.

Proof. Let $f \in L^1(\mathbb{R})$ satisfy $\hat{f}(1) = 1$, support $\hat{f} \cap Sp\Delta_{\phi} = \{1\}$ where $\hat{f}(\lambda) = \int f(t)\lambda^{-it} dt$, $\lambda \in \mathbb{R}^*_+$. Then it is easy to check that $\sigma^{\phi}(f)$ [2, p. 170] restricted to M_{ϕ} is identity. By hypothesis, for $v \in \mathbb{N}$, $r_j \in r(\{j\})$, $j = 1, \ldots, v$ we have that $\prod_{j=1}^{v} r_j = 1$ implies $r_j = 1$ for all $j = 1, \ldots, v$. Writing any $x \in M_{\phi}$ as weak limit of finite linear combinations of the $\sigma^{\phi}(f)(e_{ij}^{I})$, $i, j \in E(I)$, $I = \{1, \ldots, v\}$ we see that $M_{\phi} = \bigotimes_{v=1}^{\infty} M_{\phi_v}$ hence that Lemma 6 holds.

Q.E.D.

LEMMA 7. Let v be an integer, $p_j \in \{1, ..., k_j\}, j = 1, ..., v$ with $\mu \in \{1, ..., v\}$ such that $p_1 = k_1, ..., p_{\mu-1} = k_{\mu-1}, p_{\mu} < k_{\mu}$. Put

$$a = a_{p_1}^1 \otimes \cdots \otimes a_{p_\nu}^\nu \otimes 1, ^1$$
 and $b = a_{q_1}^1 \otimes \cdots \otimes a_{q_\nu}^\nu \otimes 1$

¹ 1 stands, for short, for the unit of $\bigotimes_{v > v} (M_{v'}, \phi_{v'})$.

where $q_j = 1$ for $1 \le j \le \mu - 1$, $q_\mu = p_\mu + 1$ and $q_j = p_j$ for $j > \mu$. Then there exists a partial isometry $u \in M$, and $a \lambda > 1$ with:

- (1) $u \in M(\sigma^{\phi}, \{\lambda\}).$
- (2) Central support of uu^* (resp. u^*u) in M_{ϕ} equal to a (resp. b).
- (3) $x \in M(\sigma^{\phi},]1, \infty[)$ implies $ax \in M(\sigma^{\phi}, [\lambda, \infty[).$

Proof. Let $I = \{1, \ldots, \nu\}$. Choose

$$i = (i_1, ..., i_v) \in E(I)$$
 and $j = (j_1, ..., j_v) \in E(I)$

such that for each *n*, $\lambda_{n,i_n} = \alpha_{p_n}^n$, $\lambda_{n,j_n} = \alpha_{q_n}^n$. Put $u = e_{ij}^I$,

$$\lambda = \prod_{n=1}^{\nu} \frac{\lambda_{n,j_n}}{\lambda_{n,i_n}} = \prod_{n=1}^{\mu} \frac{\lambda_{n,j_n}}{\lambda_{n,i_n}}.$$

Now (1) and (2) are easy to check. To prove (3) first observe that the $e_{k,l}^J$ belonging to $M(\sigma^{\phi},]1, \infty[$) are total in $M(\sigma^{\phi},]1, \infty[$). Then take $x = e_{k,l}^J$, $I \subset J$. If $ax \neq 0$ it follows that $\lambda_{n,k_n} = \alpha_{p_n}^n, n \in \{1, \ldots, \nu\}$. In particular, for $n \in \{1, \ldots, \mu\}, \lambda_{n,k_n}$ is the largest value of λ_n . Put $r_n = \lambda_{n,l_n}/\lambda_{n,k_n}$; then if $r_n \neq 1$ for some n > 1, the condition of Theorem 1 and the hypothesis $\prod_{n \in J} r_n > 1$, show that

$$\prod_{n\in J} r_n > |r\{1,\ldots,\mu\}| \ge \lambda.$$

One then easily checks that all the ratios $\prod_{n=1}^{\mu} \lambda_{n, l_n} / \lambda_{n, k_n}$, with $\lambda_{n, k_n} = \alpha_{p_n}^n$ which are > 1 are larger than $\prod_{n=1}^{\mu} \lambda_{n, j_n} / \lambda_{n, i_n} = \lambda$.

Proof of Theorem 1. Let F_{∞} be a factor of type I_{∞} , put $P = M \otimes F_{\infty}$, $\psi = \phi \otimes$ trace. Our hypothesis says that the center of the centraliser of ϕ on M is non-atomic; moreover 1 is an isolated point in $Sp\Delta_{\phi}$ so it follows that M is of type III₀ and that ψ satisfies conditions of Lemma 5.3.2 of [2] on the factor P isomorphic to M. We choose as in [2, proof of 5.3.1 p. 238] a unitary $U \in P(\sigma^{\psi},]1, \infty[$) such that P^{ψ} and U generate P and $UP^{\psi}U^* = P^{\psi}$. Let $v \in \mathbf{N}, p_j \in \{1, \ldots, k_j\}, j = 1, \ldots, v$. Take a and b as in Lemma 7, as well as u and λ . We then have:

(1)' $u \otimes 1 \in P(\sigma^{\psi}, \{\lambda\}).$

(2)' Central support of $uu^* \otimes 1$ (resp. $u^*u \otimes 1$) in P_{ψ} is $a \otimes 1$ (resp. $b \otimes 1$).

(3)' $x \in P(\sigma^{\psi},]1, \infty[)$ implies $(a \otimes 1)x \in P(\sigma^{\psi}, [\lambda, \infty[).$

To see this note that $P_{\psi} = M_{\phi} \otimes F_{\infty}$ has center $C \otimes 1$. By Lemma 5.3.3 of [2] we get a partial isometry $v \in P(\sigma^{\psi}, \{\lambda\})$ with initial support $b \otimes 1$, final support $a \otimes 1$. Condition (3)' implies that v belongs to the set \mathscr{E}_1 associated in [2, p. 235] to the action σ^{ψ} of **R** on *P*. It hence follows that $Uv^* \in P_{\psi}$ using [2, p. 238, end of the proof of 5.3.4]. Hence the final support $U(b \otimes 1)U^*$ of Uv^* is equal to its initial support $a \otimes 1$. As the restriction of AdU to P_{ψ} is the automorphism θ of the discrete decomposition of *P*, and as the center of P_{ψ} is $C \otimes 1$, which is generated by the $a \otimes 1$, for *a* as above, we have shown that the restriction of θ to the center is isomorphic to T_p acting on $L^{\infty}(X)$. Q.E.D.

A. CONNES

BIBLIOGRAPHY

- 1. H. ARAKI AND E. J. WOODS, A classification of factors, Publ. Res. Inst. Math. Sci. Kyoto, vol. 9 (1968) pp. 51-130.
- 2. A. CONNES, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 4eme Serie, tome 6 (1973), pp. 133-252.
- 3. A. CONNES AND M. TAKESAKI, Flots des poids sur les facteurs de type III, preprint.
- 4. W. KRIEGER, On non-singular transformations of a measure space I, Z. Wahrscheinlickeitstheorie und Verw. Gebiete, Bd 11 (1969), p. 83.
- 5. ——, On ergodic flows and the isomorphism of factors (preprint).
- 6. M. TAKESAKI, Duality for crossed products and the structure of von Neumann algebras of type III, Acta. Math., vol. 131 (1973), pp. 249–310.

QUEEN'S UNIVERSITY KINGSTON, ONTARIO, CANADA