SOME CONDITIONS FOR UNIFORM H-CONVEXITY

BY
Barnet M. Weinstock

A compact set K in \mathbf{C}^{n} is called uniformly H-convex if there exist a sequence $\left\{D_{k}\right\}_{k=1}^{\infty}$ of domains of holomorphy and a constant $r, 0<r<1$, such that
(a) D_{k} contains all points at distance $<r / k$ from K, and
(b) all points of D_{k} have distance $<1 / k$ from K.

This terminology is due to Cirka [1] who proved several propositions concerning uniform approximation by holomorphic functions on uniformly H convex sets, although the condition itself appears earlier in the paper by Hörmander and Wermer [2].

If K is the closure of a bounded, strongly pseudoconvex domain then K is known to be uniformly H-convex. However, it is not known whether this remains true for the closure of an arbitrary bounded domain of holomorphy with smooth, but not strongly pseudoconvex, boundary.

Let $D \subset \mathbf{C}^{n}$ be a domain with C^{3} boundary. We denote by $n(z)$ the unit exterior normal to ∂D at z. For each $t>0$ we consider the set D_{t}, defined by

$$
D_{t}=D \cup\{z+\operatorname{sn}(z): z \in \partial D, 0 \leq s<t\}
$$

It is well known that if t is sufficiently small then D_{t} is a domain with C^{2} boundary. We call D a special domain of holomorphy if D_{t} is a domain of holomorphy for all sufficiently small t. Convex domains and strongly pseudoconvex domains with smooth boundary are special, and it is clear that the closure of a special domain of holomorphy is uniformly H-convex. The purpose of this note is to characterize the special domains of holomorphy by means of a boundary condition.

It will be convenient for us to work entirely in the underlying real vector space $\mathbf{R}^{2 n}$. We suppose that $D=\{\rho<0\}$ where ρ is a real-valued C^{3} function on a neighborhood of \bar{D} satisfying the condition $\operatorname{grad} \rho \neq 0$ on ∂D. Such a function will be referred to as a defining function for D. If $z \in \partial D$, the tangent space to ∂D at z, denoted $T_{z}(\partial D)$, is the set of vectors normal to $\operatorname{grad} \rho(z)$. The holomorphic tangent space to ∂D at z, denoted $A_{z}(\partial D)$, is the subspace of $T_{z}(\partial D)$ consisting of vectors v such that $J v \in T_{z}(\partial D)$, where J is the orthogonal transformation on $\mathbf{R}^{2 n}$ corresponding to multiplication by $\sqrt{ }-1$ in \mathbf{C}^{n}.

Let $H_{\rho}(z)$ denote the $2 n \times 2 n$ matrix $\left(\partial^{2} \rho / \partial x_{i} \partial x_{j}(z)\right)$ and let $L_{\rho}(z)$ be the matrix $\frac{1}{4}\left\{H_{\rho}(z)+{ }^{t} J H_{\rho}(z) J\right\}$. The Levi form for ∂D at z is the bilinear form defined on $A_{z}(\partial D)$ by the matrix $L_{\rho}(z)$. (A simple computation shows that this definition is consistent with the usual definition of the Levi form as a hermitian
form on a complex vector space.) The domain D is a domain of holomorphy if and only if the Levi form is positive semidefinite on $A_{z}(\partial D)$ for each $z \in \partial D$.

Since ∂D is compact we can find $t_{0}>0$ such that the matrix $\left(I+t H_{\rho}(z)\right)$ is invertible for all $t, 0 \leq t \leq t_{0}$. Henceforth we will assume that $t \in\left[0, t_{0}\right]$.

Proposition 1. Let D be a bounded domain of holomorphy in \mathbf{C}^{n} and let ρ be $a C^{3}$ defining function for D satisfying $|\operatorname{grad} \rho(z)|=1$ for all $z \in \partial D$. Then D is a special domain of holomorphy if and only if there exists $t_{1}>0$ such that, if $0 \leq t \leq t_{1}$ the matrix

$$
L^{t}(z)=H_{\rho}(z)\left(I+t H_{\rho}(z)\right)^{-1}+{ }^{t} J H_{\rho}(z)\left(I+t H_{\rho}(z)\right)^{-1} J
$$

defines a positive semidefinite form on $A_{z}(\partial D)$ for each $z \in \partial D$.
Proposition 1 is stated in terms of a particular defining function for D. However the following corollary gives a necessary condition independent of the choice of defining function.

Corollary 1. If D is a special domain of holomorphy and ρ is any C^{2} defining function for D then $\left\langle L_{\rho}(z) v, v\right\rangle=0$ for $v \in A_{z}(\partial D)$ implies $\left\langle H_{\rho}(z) v, w\right\rangle=0$ for all $w \in A_{z}(\partial D)$. (Here $\langle, \quad\rangle$ denotes the usual scalar product on $\mathbf{R}^{2 n}$).

Remark. It is easy to find examples of pseudoconvex hypersurfaces which do not satisfy the condition of Corollary 1. For instance, if S is the surface $x_{2}=x_{1} y_{1}$ in \mathbf{C}^{2} (where $z_{j}=x_{j}+i y_{j}, j=1,2$) then the Levi form is identically zero on S but the real Hessian form is not identically zero on the holomorphic tangent space.

The next corollary gives a sufficient condition for D to be a special domain of holomorphy.

Corollary 2. Let D be a bounded domain of holomorphy in \mathbf{C}^{n} with a C^{3} defining function ρ satisfying $|\operatorname{grad} \rho(z)|=1$ for all $z \in \partial D$. Suppose that $\partial D=E_{1} \cup E_{2}$ where E_{1} and E_{2} are closed sets satisfying the following conditions:
(i) if $z \in E_{1}$ and $v \in T_{z}(\partial D)$ then $\left\langle H_{\rho}(z) v, v\right\rangle \geq 0$;
(ii) if $z \in E_{2}, v \in A_{z}(\partial D)$ and $\left\langle L_{\rho}(z) v, v\right\rangle=0$ then $H_{\rho}(z) v=0$;
(iii) there is a constant $C>0$ such that if $z \in E_{2}$ and $\lambda(z)$ is any nonzero eigenvalue of the form defined by $L_{\rho}(z)$ on $A_{z}(\partial D)$ then $\lambda(z) \geq C$.

Then D is a special domain of holomorphy.
It follows from the proof of Corollary 1 given below that condition (ii) is necessary for D to be special, given that $|\operatorname{grad} \rho(z)|=1$ on ∂D. Also note that as special cases of Corollary 2 one can deduce that strongly pseudoconvex domains and convex domains with C^{3} boundaries are special.

For the proof of Proposition 1 we introduce the following notation. Let
$z_{0} \in \partial D$. Choose a parametrization for ∂D near z_{0}, i.e., a C^{3} mapping $\phi=$ $\left(\phi_{1}, \ldots, \phi_{2 n}\right)$ of a neighborhood U of 0 in $\mathbf{R}^{2 n-1}$ into a neighborhood V of z_{0} such that
(a) $\phi(0)=z_{0}$,
(b) $d \phi$ has rank $2 n-1$ at each point of V, and
(c) $\partial D \cap V=\phi(U)$.

Let $u_{1}, \ldots, u_{2 n-1}$ denote the coordinates in $\mathbf{R}^{2 n-1}$. Then the vectors v^{1}, \ldots, $v^{2 n-1}$ defined by

$$
v^{\alpha}=\left[\left(\frac{\partial \phi_{1}}{\partial u_{\alpha}}\right)(0), \ldots,\left(\frac{\partial \phi_{2 n}}{\partial u_{\alpha}}\right)(0)\right]
$$

form a basis for the tangent space $T_{z_{0}}(\partial D)$. For t sufficiently small the mapping ϕ^{\prime} defined by

$$
\phi^{\prime}(u)=\phi(u)+\operatorname{tn}(\phi(u)), \quad u \in U
$$

is a parametrization of ∂D_{t} near $z_{0}^{\prime}=z_{0}+\operatorname{tn}\left(z_{0}\right)$. Consequently, if we let

$$
w^{\alpha}=v^{\alpha}+t\left(\frac{\partial(n \circ \phi)}{\partial u_{\alpha}}\right)(0)
$$

then $\left\{w^{1}, \ldots, w^{2 n-1}\right\}$ is a basis for $T_{z_{0}{ }^{\prime}}\left(\partial D_{t}\right)$. Here $\partial(n \circ \phi) / \partial u_{\alpha}$ is the vector whose j th component is $\partial\left(n_{j} \circ \phi\right) / \partial u_{\alpha}$.

Now it is straightforward to verify, using where necessary the fact that $|\operatorname{grad} \rho|=1$, that
(1) $H_{\rho}\left(z_{0}\right)\left(v^{\alpha}\right)=\left(\partial(n \circ \phi) / \partial u_{\alpha}\right)(0)$ and
(2) if σ is any C^{2} defining function for D_{t} then $\operatorname{grad} \sigma\left(z_{0}^{\prime}\right)=\left|\operatorname{grad} \sigma\left(z_{0}^{\prime}\right)\right|$ $\operatorname{grad} \rho\left(z_{0}\right)$.

In particular,
(3) $T_{z_{0}}(\partial D)=T_{z_{0}{ }^{\prime}}\left(\partial D_{t}\right)$
from which it follows that
(4) $A_{z_{0}}(\partial D)=A_{z_{0}{ }^{\prime}}\left(\partial D_{t}\right)$.

Finally one has the following identity
(5) if $w \in T_{z_{0}}\left(\partial D_{t}\right)$ then $\left\langle H_{0}\left(z_{0}^{\prime}\right) w^{\alpha}, w\right\rangle=\left|\operatorname{grad} \sigma\left(z_{0}^{\prime}\right)\right|\left\langle H_{\rho}\left(z_{0}\right) v^{\alpha}, w\right\rangle$.

Indeed, let $w=\left(w_{1}, \ldots, w_{2 n}\right)$ and write $a\left(z^{\prime}\right)$ for $\left|\operatorname{grad} \sigma\left(z^{\prime}\right)\right|$. Then, using the property

$$
\sum w_{j}\left(\frac{\partial \sigma}{\partial x_{j}} \circ \phi^{\prime}\right)(0)=0
$$

one obtains

$$
\begin{aligned}
\left\langle H_{\sigma}\left(z_{0}^{\prime}\right) w^{\alpha}, w\right\rangle & =\sum_{i, j}\left(\frac{\partial^{2} \sigma}{\partial x_{i} \partial x_{j}}\right)\left(\frac{\partial \phi_{i}^{\prime}}{\partial u_{\alpha}}\right) w_{j} \\
& =\sum_{j} w_{j}\left(\frac{\partial}{\partial u_{\alpha}}\right)\left[\left(\frac{\partial \sigma}{\partial x_{j}}\right) \circ \phi^{\prime}\right](0) \\
& =a\left(z_{0}^{\prime}\right) \sum_{j} w_{j}\left(\frac{\partial}{\partial u_{\alpha}}\right)\left[\left(a \circ \phi^{\prime}\right)^{-1}\left(\frac{\partial \sigma}{\partial x_{j}} \circ \phi^{\prime}\right)\right] \\
& =a\left(z_{0}^{\prime}\right) \sum_{j} w_{j}\left(\frac{\partial}{\partial u_{\alpha}}\right)\left(\frac{\partial \rho}{\partial x_{j}} \circ \phi\right)(0) \\
& =\left|\operatorname{grad} \sigma\left(z_{0}^{\prime}\right)\right|\left\langle H_{\rho}\left(z_{0}\right) v^{\alpha}, w\right\rangle .
\end{aligned}
$$

Proof of Proposition 1. Let $v=\sum b_{\alpha} w^{\alpha}, w=\sum c_{\alpha} w^{\alpha}$. Then

$$
\left\langle H_{\sigma}\left(z_{0}^{\prime}\right) v, w\right\rangle=\sum_{\alpha, \beta}\left\langle H_{\sigma}\left(z_{0}^{\prime}\right) w^{\alpha}, w^{\beta}\right\rangle b_{\alpha} c_{\beta} .
$$

From (5),

$$
\left\langle H_{\sigma}\left(z_{0}^{\prime}\right) w^{\alpha}, w^{\beta}\right\rangle=\left|\operatorname{grad} \sigma\left(z_{0}^{\prime}\right)\right|\left\langle H_{\rho}\left(z_{0}\right) v^{\alpha}, w^{\beta}\right\rangle .
$$

But (1) implies $v^{\alpha}=\left(1+t H_{\rho}\left(z_{0}\right)\right)^{-1} w^{\alpha}$. Thus
(6) $\left\langle H_{\sigma}\left(z_{0}^{\prime}\right) v, w\right\rangle=\left|\operatorname{grad} \sigma\left(z_{0}^{\prime}\right)\right|\left\langle H_{\rho}\left(z_{0}\right)\left(1+t H_{\rho}\left(z_{0}\right)\right)^{-1} v, w\right\rangle$.

Since $L_{\sigma}\left(z_{0}^{\prime}\right)=H_{\sigma}\left(z_{0}^{\prime}\right)+{ }^{t} J H_{\sigma}\left(z_{0}^{\prime}\right) J$, Proposition 1 is established.
Proof of Corollary 1. Observe that for any symmetric matrix A,

$$
\begin{equation*}
A(I+t A)^{-1}=A-t A^{2}(I+t A)^{-1} \tag{7}
\end{equation*}
$$

and also $A^{2}(I+t A)^{-1}$ is positive for small t. Suppose now that $|\operatorname{grad} \rho(z)|=1$ for $z \in \partial D$ and that $\left\langle H_{\rho}(z) v, v\right\rangle+\left\langle H_{\rho}(z) J v, J v\right\rangle=0$. If D is special then Proposition 1 implies that

$$
0=\left\langle H_{\rho}(z)^{2}\left(1+t H_{\rho}(z)\right)^{-1} v, v\right\rangle+\left\langle H_{\rho}(z)^{2}\left(1+t H_{\rho}(z)\right)^{-1} J v, J v\right\rangle
$$

from which it follows that $H_{\rho}(z) v=0$.
If we do not assume $|\operatorname{grad} \rho(z)|=1$ then $\rho=g \rho^{\prime}$ where $\left|\operatorname{grad} \rho^{\prime}(z)\right|=1$, and ρ^{\prime} is a defining function for D. A straightforward calculation shows that $\left\langle H_{\rho}(z) v, w\right\rangle=g(z)\left\langle H_{\rho^{\prime}}(z) v, w\right\rangle$, since v and w are orthogonal to grad $\rho^{\prime}(z)$. But $H_{\rho^{\prime}}(z) v=0$ by the preceding argument, which completes the proof.

Proof of Corollary 2. If $z \in E_{1}$ then $H_{\rho}(z)$ maps $T_{z}(\partial D)$ into $T_{z}(\partial D)$. (This follows from the assumption that $|\operatorname{grad} \rho(z)|$ is constant on ∂D.) Since by (i), $H_{\rho}(z)$ is positive semidefinite on $T_{z}(\partial D)$ it follows that $H_{\rho}(z)\left(I+t H_{\rho}(z)\right)^{-1}$ is positive semidefinite for sufficiently small t, independent of $z \in E_{1}$ by compactness.

If $z \in E_{2}$ we choose an orthonormal basis $w^{1}, \ldots, w^{2 n-2}$ for $A_{z}(\partial D)$ such that, if $w=\sum b_{\alpha} w^{\alpha}$ then $\left\langle L_{\rho}(z) w, w\right\rangle=\sum \lambda_{\alpha} b_{\alpha}^{2}$ with $\lambda_{\alpha}=0$ or $\lambda_{\alpha} \geq C$. Write $w=w_{1}+w_{2}$ where $\left\langle L_{\rho}(z) w_{1}, w_{1}\right\rangle=0$ and $w_{2}=\sum b_{\alpha, 2} w^{\alpha}$ where $b_{\alpha, 2}=0$ if $\lambda_{\alpha}=0$. Then $\left\langle L_{\rho}(z) w_{2}, w_{2}\right\rangle \geq C\left|w_{2}\right|^{2}$. Also, by (ii), $H_{\rho}(z) w_{1}=0$. Finally, observe that L_{ρ} commutes with J. Arguing as in the proof of Corollary 1 one obtains

$$
\begin{aligned}
4\left\langle L^{t}(z) w, w\right\rangle= & 4\left\langle L_{\rho}(z) w, w\right\rangle-t\left\langle H_{\rho}(z)^{2}\left(I+t H_{\rho}\right)\left(I+t H_{\rho}(z)\right)^{-1} w, w\right\rangle \\
& -t\left\langle H_{\rho}(z)^{2}\left(I+t H_{\rho}(z)\right)^{-1} J w, J w\right\rangle \\
= & 4\left\langle L_{\rho}(z) w_{2}, w_{2}\right\rangle-t\left\langle H_{\rho}(z)^{2}\left(I+t H_{\rho}(z)\right)^{-1} w_{2}, w_{2}\right\rangle \\
& -t\left\langle H_{\rho}(z)^{2}\left(I+t H_{\rho}(z)\right)^{-1} J w_{2}, J w_{2}\right\rangle \\
\geq & (4 C-\gamma(t))\left\|w_{2}\right\|^{2}
\end{aligned}
$$

which can be made nonnegative by choosing t small independent of $z \in E_{2}$.

References

1. E. M. Čirka, Approximation by holomorphic functions on smooth manifolds in $\mathbf{C}^{n}, \mathrm{Mat}$. Sb ., vol. 78 (1969), pp. 101-123; Math. USSR-Sb., vol. 7 (1969), pp. 95-113.
2. L. Hörmander and J. Wermer, Uniform approximation on compact sets in \mathbf{C}^{n}, Math. Scand., vol. 23 (1968), pp. 5-21.

University of Kentucky

Lexington, Kentucky

