SOME CONDITIONS FOR UNIFORM H-CONVEXITY

BY

BARNET M. WEINSTOCK

A compact set K in Cⁿ is called *uniformly H-convex* if there exist a sequence $\{D_k\}_{k=1}^{\infty}$ of domains of holomorphy and a constant r, 0 < r < 1, such that

- (a) D_k contains all points at distance < r/k from K, and
- (b) all points of D_k have distance < 1/k from K.

This terminology is due to Čirka [1] who proved several propositions concerning uniform approximation by holomorphic functions on uniformly Hconvex sets, although the condition itself appears earlier in the paper by Hörmander and Wermer [2].

If K is the closure of a bounded, strongly pseudoconvex domain then K is known to be uniformly H-convex. However, it is not known whether this remains true for the closure of an arbitrary bounded domain of holomorphy with smooth, but not strongly pseudoconvex, boundary.

Let $D \subset \mathbb{C}^n$ be a domain with C^3 boundary. We denote by n(z) the unit exterior normal to ∂D at z. For each t > 0 we consider the set D_t , defined by

$$D_t = D \cup \{z + sn(z) \colon z \in \partial D, 0 \le s < t\}.$$

It is well known that if t is sufficiently small then D_t is a domain with C^2 boundary. We call D a special domain of holomorphy if D_t is a domain of holomorphy for all sufficiently small t. Convex domains and strongly pseudoconvex domains with smooth boundary are special, and it is clear that the closure of a special domain of holomorphy is uniformly H-convex. The purpose of this note is to characterize the special domains of holomorphy by means of a boundary condition.

It will be convenient for us to work entirely in the underlying real vector space \mathbb{R}^{2n} . We suppose that $D = \{\rho < 0\}$ where ρ is a real-valued C^3 function on a neighborhood of \overline{D} satisfying the condition grad $\rho \neq 0$ on ∂D . Such a function will be referred to as a defining function for D. If $z \in \partial D$, the tangent space to ∂D at z, denoted $T_z(\partial D)$, is the set of vectors normal to grad $\rho(z)$. The holomorphic tangent space to ∂D at z, denoted $A_z(\partial D)$, is the subspace of $T_z(\partial D)$ consisting of vectors v such that $Jv \in T_z(\partial D)$, where J is the orthogonal transformation on \mathbb{R}^{2n} corresponding to multiplication by $\sqrt{-1}$ in \mathbb{C}^n .

Let $H_{\rho}(z)$ denote the $2n \times 2n$ matrix $(\partial^2 \rho / \partial x_i \partial x_j(z))$ and let $L_{\rho}(z)$ be the matrix $\frac{1}{4} \{H_{\rho}(z) + {}^t J H_{\rho}(z) J\}$. The Levi form for ∂D at z is the bilinear form defined on $A_z(\partial D)$ by the matrix $L_{\rho}(z)$. (A simple computation shows that this definition is consistent with the usual definition of the Levi form as a hermitian

Received June 31, 1974.

form on a complex vector space.) The domain D is a domain of holomorphy if and only if the Levi form is positive semidefinite on $A_z(\partial D)$ for each $z \in \partial D$.

Since ∂D is compact we can find $t_0 > 0$ such that the matrix $(I + tH_{\rho}(z))$ is invertible for all $t, 0 \le t \le t_0$. Henceforth we will assume that $t \in [0, t_0]$.

PROPOSITION 1. Let D be a bounded domain of holomorphy in Cⁿ and let ρ be a C³ defining function for D satisfying $|\text{grad } \rho(z)| = 1$ for all $z \in \partial D$. Then D is a special domain of holomorphy if and only if there exists $t_1 > 0$ such that, if $0 \le t \le t_1$ the matrix

$$L'(z) = H_{\rho}(z)(I + tH_{\rho}(z))^{-1} + {}^{t}JH_{\rho}(z)(I + tH_{\rho}(z))^{-1}J$$

defines a positive semidefinite form on $A_z(\partial D)$ for each $z \in \partial D$.

Proposition 1 is stated in terms of a particular defining function for D. However the following corollary gives a necessary condition independent of the choice of defining function.

COROLLARY 1. If D is a special domain of holomorphy and ρ is any C^2 defining function for D then $\langle L_{\rho}(z)v, v \rangle = 0$ for $v \in A_z(\partial D)$ implies $\langle H_{\rho}(z)v, w \rangle = 0$ for all $w \in A_z(\partial D)$. (Here \langle , \rangle denotes the usual scalar product on \mathbb{R}^{2n}).

Remark. It is easy to find examples of pseudoconvex hypersurfaces which do not satisfy the condition of Corollary 1. For instance, if S is the surface $x_2 = x_1y_1$ in \mathbb{C}^2 (where $z_j = x_j + iy_j$, j = 1, 2) then the Levi form is identically zero on S but the real Hessian form is not identically zero on the holomorphic tangent space.

The next corollary gives a sufficient condition for D to be a special domain of holomorphy.

COROLLARY 2. Let D be a bounded domain of holomorphy in \mathbb{C}^n with a \mathbb{C}^3 defining function ρ satisfying $|\text{grad } \rho(z)| = 1$ for all $z \in \partial D$. Suppose that $\partial D = E_1 \cup E_2$ where E_1 and E_2 are closed sets satisfying the following conditions:

(i) if $z \in E_1$ and $v \in T_z(\partial D)$ then $\langle H_\rho(z)v, v \rangle \ge 0$;

(ii) if $z \in E_2$, $v \in A_z(\partial D)$ and $\langle L_\rho(z)v, v \rangle = 0$ then $H_\rho(z)v = 0$;

(iii) there is a constant C > 0 such that if $z \in E_2$ and $\lambda(z)$ is any nonzero eigenvalue of the form defined by $L_{\rho}(z)$ on $A_z(\partial D)$ then $\lambda(z) \ge C$.

Then D is a special domain of holomorphy.

It follows from the proof of Corollary 1 given below that condition (ii) is necessary for D to be special, given that $|\text{grad } \rho(z)| = 1$ on ∂D . Also note that as special cases of Corollary 2 one can deduce that strongly pseudoconvex domains and convex domains with C^3 boundaries are special.

For the proof of Proposition 1 we introduce the following notation. Let

 $z_0 \in \partial D$. Choose a parametrization for ∂D near z_0 , i.e., a C^3 mapping $\phi = (\phi_1, \ldots, \phi_{2n})$ of a neighborhood U of 0 in \mathbb{R}^{2n-1} into a neighborhood V of z_0 such that

- (a) $\phi(0) = z_0$,
- (b) $d\phi$ has rank 2n 1 at each point of V, and
- (c) $\partial D \cap V = \phi(U)$.

Let u_1, \ldots, u_{2n-1} denote the coordinates in \mathbb{R}^{2n-1} . Then the vectors v^1, \ldots, v^{2n-1} defined by

$$v^{\alpha} = \left[\left(\frac{\partial \phi_1}{\partial u_{\alpha}} \right)(0), \ldots, \left(\frac{\partial \phi_{2n}}{\partial u_{\alpha}} \right)(0) \right]$$

form a basis for the tangent space $T_{z_0}(\partial D)$. For t sufficiently small the mapping ϕ' defined by

$$\phi'(u) = \phi(u) + tn(\phi(u)), \quad u \in U,$$

is a parametrization of ∂D_t near $z'_0 = z_0 + tn(z_0)$. Consequently, if we let

$$w^{\alpha} = v^{\alpha} + t \left(\frac{\partial (n \circ \phi)}{\partial u_{\alpha}} \right) (0)$$

then $\{w^1, \ldots, w^{2n-1}\}$ is a basis for $T_{z_0}(\partial D_t)$. Here $\partial(n \circ \phi)/\partial u_{\alpha}$ is the vector whose *j*th component is $\partial(n_j \circ \phi)/\partial u_{\alpha}$.

Now it is straightforward to verify, using where necessary the fact that $|\text{grad } \rho| = 1$, that

(1) $H_{\rho}(z_0)(v^{\alpha}) = (\partial (n \circ \phi)/\partial u_{\alpha})(0)$ and

(2) if σ is any C^2 defining function for D_t then grad $\sigma(z'_0) = |\text{grad } \sigma(z'_0)|$ grad $\rho(z_0)$.

In particular,

(3) $T_{z_0}(\partial D) = T_{z_0'}(\partial D_t)$

from which it follows that

(4) $A_{zo}(\partial D) = A_{zo'}(\partial D_t).$

Finally one has the following identity

(5) if $w \in T_{z_0}(\partial D_t)$ then $\langle H_0(z_0)w^{\alpha}, w \rangle = |\text{grad } \sigma(z_0)| \langle H_{\rho}(z_0)v^{\alpha}, w \rangle$.

Indeed, let $w = (w_1, \ldots, w_{2n})$ and write a(z') for $|\text{grad } \sigma(z')|$. Then, using the property

$$\sum w_j \left(\frac{\partial \sigma}{\partial x_j} \circ \phi' \right) (0) = 0$$

one obtains

$$\langle H_{\sigma}(z'_{0})w^{\alpha}, w \rangle = \sum_{i, j} \left(\frac{\partial^{2}\sigma}{\partial x_{i} \partial x_{j}} \right) \left(\frac{\partial \phi'_{i}}{\partial u_{\alpha}} \right) w_{j}$$

$$= \sum_{j} w_{j} \left(\frac{\partial}{\partial u_{\alpha}} \right) \left[\left(\frac{\partial \sigma}{\partial x_{j}} \right) \circ \phi' \right] (0)$$

$$= a(z'_{0}) \sum_{j} w_{j} \left(\frac{\partial}{\partial u_{\alpha}} \right) \left[(a \circ \phi')^{-1} \left(\frac{\partial \sigma}{\partial x_{j}} \circ \phi' \right) \right]$$

$$= a(z'_{0}) \sum_{j} w_{j} \left(\frac{\partial}{\partial u_{\alpha}} \right) \left(\frac{\partial \rho}{\partial x_{j}} \circ \phi \right) (0)$$

$$= |\text{grad } \sigma(z'_{0})| \langle H_{\rho}(z_{0})v^{\alpha}, w \rangle.$$

Proof of Proposition 1. Let $v = \sum b_{\alpha}w^{\alpha}$, $w = \sum c_{\alpha}w^{\alpha}$. Then

$$\langle H_{\sigma}(z'_{0})v, w \rangle = \sum_{\alpha, \beta} \langle H_{\sigma}(z'_{0})w^{\alpha}, w^{\beta} \rangle b_{\alpha}c_{\beta}.$$

From (5),

$$\langle H_{\sigma}(z'_0)w^{\alpha}, w^{\beta} \rangle = |\text{grad } \sigma(z'_0)| \langle H_{\rho}(z_0)v^{\alpha}, w^{\beta} \rangle$$

But (1) implies $v^{\alpha} = (1 + tH_{\rho}(z_0))^{-1}w^{\alpha}$. Thus

(6) $\langle H_{\sigma}(z'_0)v, w \rangle = |\text{grad } \sigma(z'_0)| \langle H_{\rho}(z_0)(1 + tH_{\rho}(z_0))^{-1}v, w \rangle.$ Since $L_{\sigma}(z'_0) = H_{\sigma}(z'_0) + {}^tJH_{\sigma}(z'_0)J$, Proposition 1 is established.

Proof of Corollary 1. Observe that for any symmetric matrix A,

(7) $A(I + tA)^{-1} = A - tA^{2}(I + tA)^{-1}$,

and also $A^2(I + tA)^{-1}$ is positive for small t. Suppose now that $|\text{grad } \rho(z)| = 1$ for $z \in \partial D$ and that $\langle H_{\rho}(z)v, v \rangle + \langle H_{\rho}(z)Jv, Jv \rangle = 0$. If D is special then Proposition 1 implies that

$$0 = \langle H_{\rho}(z)^{2}(1 + tH_{\rho}(z))^{-1}v, v \rangle + \langle H_{\rho}(z)^{2}(1 + tH_{\rho}(z))^{-1}Jv, Jv \rangle$$

from which it follows that $H_{\rho}(z)v = 0$.

If we do not assume $|\text{grad } \rho(z)| = 1$ then $\rho = g\rho'$ where $|\text{grad } \rho'(z)| = 1$, and ρ' is a defining function for *D*. A straightforward calculation shows that $\langle H_{\rho}(z)v, w \rangle = g(z) \langle H_{\rho'}(z)v, w \rangle$, since *v* and *w* are orthogonal to grad $\rho'(z)$. But $H_{\rho'}(z)v = 0$ by the preceding argument, which completes the proof.

Proof of Corollary 2. If $z \in E_1$ then $H_{\rho}(z)$ maps $T_z(\partial D)$ into $T_z(\partial D)$. (This follows from the assumption that $|\text{grad } \rho(z)|$ is constant on ∂D .) Since by (i), $H_{\rho}(z)$ is positive semidefinite on $T_z(\partial D)$ it follows that $H_{\rho}(z)(I + tH_{\rho}(z))^{-1}$ is positive semidefinite for sufficiently small t, independent of $z \in E_1$ by compactness.

If $z \in E_2$ we choose an orthonormal basis w^1, \ldots, w^{2n-2} for $A_z(\partial D)$ such that, if $w = \sum b_{\alpha}w^{\alpha}$ then $\langle L_{\rho}(z)w, w \rangle = \sum \lambda_{\alpha}b_{\alpha}^2$ with $\lambda_{\alpha} = 0$ or $\lambda_{\alpha} \ge C$. Write $w = w_1 + w_2$ where $\langle L_{\rho}(z)w_1, w_1 \rangle = 0$ and $w_2 = \sum b_{\alpha,2}w^{\alpha}$ where $b_{\alpha,2} = 0$ if $\lambda_{\alpha} = 0$. Then $\langle L_{\rho}(z)w_2, w_2 \rangle \ge C|w_2|^2$. Also, by (ii), $H_{\rho}(z)w_1 = 0$. Finally, observe that L_{ρ} commutes with J. Arguing as in the proof of Corollary 1 one obtains

$$\begin{aligned} 4\langle L^{t}(z)w, w \rangle &= 4\langle L_{\rho}(z)w, w \rangle - t \langle H_{\rho}(z)^{2}(I + tH_{\rho})(I + tH_{\rho}(z))^{-1}w, w \rangle \\ &- t \langle H_{\rho}(z)^{2}(I + tH_{\rho}(z))^{-1}Jw, Jw \rangle \\ &= 4\langle L_{\rho}(z)w_{2}, w_{2} \rangle - t \langle H_{\rho}(z)^{2}(I + tH_{\rho}(z))^{-1}w_{2}, w_{2} \rangle \\ &- t \langle H_{\rho}(z)^{2}(I + tH_{\rho}(z))^{-1}Jw_{2}, Jw_{2} \rangle \\ &\geq (4C - \gamma(t)) \|w_{2}\|^{2} \end{aligned}$$

which can be made nonnegative by choosing t small independent of $z \in E_2$.

References

- 1. E. M. ČIRKA, Approximation by holomorphic functions on smooth manifolds in Cⁿ, Mat. Sb., vol. 78 (1969), pp. 101–123; Math. USSR–Sb., vol. 7 (1969), pp. 95–113.
- 2. L. HÖRMANDER AND J. WERMER, Uniform approximation on compact sets in Cⁿ, Math. Scand., vol. 23 (1968), pp. 5–21.

UNIVERSITY OF KENTUCKY LEXINGTON, KENTUCKY