
ON FINITE LINEAR GROUPS OF DEGREE 16

BY

HARVEY I. BLAU

1. Introduction

The main result of this paper is"

THEOREM 1. Let G be a finite group with a faithful irreducible complex
representation ofdegree 16. Then ifP is a Sylow p-subgroup ofGfor p >_ 19 and
Z is the center of G, either P <a G or p 31 and G/Z " PSL2(31).

Theorem has several consequences bearing on the situation of a group with
a complex representation of degree smaller than a prime dividing its order. We
state them here, using the same notation as above.

THEOREM 2. Let p be a prime. Assume that [P[ p, P . G, and G has a

faithful irreducible complex representation ofdegree d < p 1. Let tiN: C[
p 1, where N, C are the normalizer, resp. centralizer, of P in G. If > 3
then > 8.

It is known that if >_ 3 then > 6 [13]. In view of [2], Theorem elimin-
ates the only remaining numerical case when 6, namelyp 19 and d 16.
This case was also listed as unresolved in [1, Section 8] as p 19, d 16,
e=3.

THEOREM 3. Assume p > 7. Let G have a faithful irreducible complex repre-
sentation of deyree d < max {(7p + 1)/8, p + (3/2) (p + 5/4)x/2}. Then
either P < G or G/Z , PSL2(p) and d (p +_ 1)/2.

For the exceptions to Theorem 3 when p < 7 see [9, Section 8.5] (or Theorem
4 below for the cases d < p 1).

THEOREM 4. Assume G has a faithful irreducible complex representation of
deyree d < 27. Suppose p is a prime, p > d + 1. Then one of the followiny
must occur"

(i) P < G;

(ii) G/Z PSL2(p), d (p +_ 1)/2;
(iii) p 17, d 15, G , SL2(16) x A where A is abelian;

(iv) p 7, d= 4, andG/Z AT;
(v) p 5, d= 3, andG/Z A6.
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In the proof of Theorem l, the case p 19 is the only one which does not
follow quickly from known results. Handling this case involves a fairly straight-
forward application of the modular-theoretic techniques of [6] and [1], block
separation, and a recent result of Walter Feit [10, Theorem 4]. The author
would like to thank Professor Feit for informing him of this theorem, and also
wishes to acknowledge several useful conversations with Professors Feit and
Henry S. Leonard.

2. Notation and preliminary results

Throughout the paper G is a finite group, p a prime, P a Sylow p-subgroup
of G. If H is a subgroup, and S a subset, of G, then Nu(S), Cu(S) denote,
respectively, the normalizer and centralizer of S in H. Z(H) is the center of H,
N NG(P), C CG(P), and Z Z(G). Bo(p) is the principal p-block of G.

Fix p and a positive integer d < p 1. We consider two sets of hypotheses"

(*) G has afaithful irreducible complex representation of degree d.

(**) G is not of type L2(p), IPI p, G G’ and G/Z is simple.

The following sort of reduction argument, based on the main result of [5],
appears in [7, Section 6], I10, Section 4], and [ 15]. The proof here is essentially
that of [7], with a few more details provided.

PROPOSITION 2.1. Fix p and d. Suppose there is no group satisfying both (*)
and (**). Then ifG is any group satisfying (*), either P < G or G/Z , PSLz(p)
and d (p +. 1)/2.

Proof Suppose (*) holds for G and P G. Let 0 be the given faithful
irreducible character of G with 0(1) d. Since the degree of each irreducible
constituent of 0, is a power of p, it follows that each constituent is linear and
hence P is abelian.

Let Go be the subgroup of G generated by all p-elements in G. Thus Go < G,
P - Go and P Go. The main theorem of [-5] says there is a subgroup
Po - P with IP: Pol P and Po < G. Thus P

_
C(Po)< G implies the

normal subgroup generated by P centralizes Po, i.e. Go - C(Po).
Let G be the p-commutator subgroup of Go, whence Gx < G. The transfer

of Go into P has kernel G and image P Z(Noo(P))
_

Po [16, Chapter V,
Theorem 7]. If P c Z(Noo(P)) P, then Go has the normal p-complement
G, as well as a faithful complex representation of degree d < p 1, a con-
tradiction [15, (2.1)]. Thus the image of the transfer is Po, and it is easy to see
that the transfer maps Po onto itself. Hence Go G x Po. LetP P c Gx.
ThenP Po x PxandPx Ga.

Let H be a normal p’-subgroup of Gx. If P . PH then PxH has a faithful
representation of degree d in a field of characteristic p [8, III.3.4] contrary to
Theorem B of Hall and Higman [12]. Thus Px < PxH and so H

_
CG(Px).

Since Gx is the smallest normal subgroup of G generated by Px, it follows that
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H
_

Z(G1) and GI/Z(Gx) is simple. If Px G then G1 has a normal p-
complement, a contradiction. So P1 G - G implies

Let 0, =1 o where each o is an irreducible character of Ga. Now
o(1) o(1) for 1,..., s, as the o are conjugate under G. So if s > 1,
o(1) < 1/2(p 1). Let K be the kernel of a. IfPa --- Ka, thenK G1
K, whence G is in the kernel of 0, a contradiction. So K is a p’-group and
Ka Z(G). Thus P1 " PKa. [11] implies PIK/KI G/Kx, hence

P1 < G, a contradiction. So s and 01 is irreducible. Thus if9 C(GI)
then 9 is represented by scalars in the representation of G which affords 0, and
so 9 e Z. Hence Z(GI) Z c Ga and GaC(Ga) GaZ.

If Ga is not of type Lz(p) then Ga satisfies (*) and (**), which contradicts our
hypothesis. So Ga is of type Lz(p). Then Ga/Z(G1) PSLz(p). Thus G1
PSL2(p) or GI SLz(p) since the Schur multiplier of PSLz(p) has order 2.
Therefore d (p +_ 1)/2 and 0 assumes different values on the two conjugate
classes of nontrivial p-elements in Ga [4, Theorem 71.3], [3, (47b)]. Since any
9 G fixes 01 (acting by conjugation), 7 must fix each conjugate class of
p-elements in G1. It is not hard to see that an automorphism of SLz(p) or
PSL2(p) which fixes each conjugate class of p-elements must be an inner auto-
morphism. Thus G GICa(G1) GaZ and G/Z . G/Z(G) PSLz(p).
The next result seems to be well known.

PROPOSITION 2.2. Let p be a prime such that p ]G]. Let 7, be an irreducible
character in Bo(p) such that 7. is rational on all p-elements, and no p-element
(except l) is in the kernel of 7,. Let vp(7,(1)) m. Then 7.(1) >_ pm(p 1).

Proof Let x be an element of order p in Z(P). Then K, the conjugate class
of x, has order prime to p. Since 7,(x) is rational, 7,(x) and 7,(x)[K]/7,(1) are
rational integers and vp(7,(x)) >_ vp(7,(1)). 7, Bo(p) implies (x)lKI/(1) IKI
(mod p) (see [4, Theorem 61.2]). Let q pro. Then

(Z(x)/q)lKI
=_ IK[ (mod p) implies 7,(x) Z(1) (mod p).

7,(1)/q q q

Let T be a faithful linear character of (x), and let n be its multiplicity as a
constituent of 7,<x>. Then 7,(x) - 7,(1) and 7,(x) rational imply n > 0 and each
of the p algebraic conjugates of T occurs in 7,<,> with multiplicity n. Hence

7,(x)- n(-1) + (Z(1) -n(p 1))-- Z(1) -np.

Therefore (7,(1) np)/q =- Z(1)/q (mod p) implies q n. Now 7,(1) _> n(p 1)
yields the result.

PROPOSITION 2.3. Assume that ]P] p and IN: CI 3. If the Brauer tree
corresponding to Bo(p) is not an open polygon then p -= (mod 4).

Proof. Since IN: C[]p 1, we have p (mod 3). The discussion in
[14, Section 5] shows that the map sending each ordinary or modular irreducible
character to its complex conjugate reflects the tree across a unique real stem.
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The exceptional vertex lies on the stem. Thus if the graph is not an open polygon,
it must have the form

where is the principal character, r/(1) (mod p), f/is the complex conjugate
of r/, the ;ti are exceptional characters, and Zi(1) 3 (mod p) for 1,...,
(p 1)/3. Hence Zi(1)r/(1)f/(1) 3 (mod p). Now Zz(1)r/(1)f/(1) is the square
of a rational integer [10, Theorem 4], so that 3 is a quadratic residue mod p.
Quadratic reciprocity implies p (mod 4).

3. Proof of Theorem

By Proposition 2.1, it suffices to assume G satisfies (**) and then show such
a group cannot exist.
Now Co(P) P x Z (so that NIP is abelian) and z IZll 16 [7, (2.1)].

Then the situation of [1, (4.3)] holds. (**) and [14] imply 16 > (p / 1)/2,
whencel6 =p e, wheree IN: C[[p 1. Sincee_< (p 1)/3 (so that
16 >_ (2p + 1)/3), it follows thatp 19, e 3.
So the theorem is proved for all primes q > 19. If q[lG[ for some prime

q > 19 then no Sylow q-subgroup is normal, since G/Z is simple. Hence
q 31 and G/Z , PSL2(31 ), a contradiction. Thus no prime larger than 19
divides

Let R be the ring of integers in a 19-adic number field F so that both F and
K R/I are splitting fields for all subgroups of G, where I is the maximal ideal
of R. Let X be an R-free RG-module affording a faithful irreducible character
0 of degree 16 such that L X/XI is an indecompogable KG-module. Then L
is faithful, as G has no proper normal 19-subgroup.

Let LN V16(2) in the notation of [1]. L is irreducible [1, Proposition 6.1].
We have [1, (5.2), (5.3)]

15

(L (R) L*) V,(1) @ V3(tx @) Vs((X2) @) E v19((xi)
i=3

where 0: N K, a linear character of order 3, is defined in [1, Section 2].
L (R) L* Lo 03 L1 ) L2 t Q

where Lo is the one-dimensional trivial KG-module, Q is projective, and

L,, V3(a) E V,9(Oj), L2- Vs(02) ( V19(Oj)
j .Stl

where ff’a and 2 are sets of integers with I’1 / 12l < 13. Let
i= 1, 2. Then

dimL, 2i + + 19m, ms > 0, m + m2 < 13.
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If ;t is an exceptional character in Bo(19) then Z(1) =- 3 (mod 19) by [7, (2.1)]
and I-7, (4.1)] applied to 0 and its complex conjugate. Then Proposition 2.3
implies there are only two possibilities for the graph of Bo(19)"

Lo M2 Mx8
, (i)

where the g are exceptional characters, < < 6, and r/are nonexceptional
characters with (1) (mod 19), r/(1) -= -1 (mod 19), and M2 and Mxs are
irreducible KG-modules. Since Lo and M2 are the only constituents of a KG-
module with socle Lo [8, 1.17.12], [1, Proposition 4.5] implies M2 has Green
correspondent V2(a2). Similarly, M2 and Mxs are the only constituents of a
KG-module with socle M2, so Mxs has Green correspondent Vxs(a).

Lo M7 Ma-- -- : (ii)

where again (1) (mod 19) /(1) -1 (mod 19) and F have
Green correpondent V() V()respectively. (So L.)

(3.1) Z(1) 22 (1) ?’ /(1) 6 n ether (i) or (ii).

Proof Suppose (i) holds. By [l Lemma .-J the npmC of" V() (R) V()
are a-- and -. Hence ,/ (R) L contains a nonzero invariant (as a
KG-module) J-l Theorem .l]. Since and L L we see that
M socle (L) and L/rad (L). Thus _M is a constituent of L with
multiplicity at least two.
Now V() (R) V() ha as a npmv [l Lemma 2.6]. Then as above

is a constituent of" L with multiplicity at leat two. $imilarly , occur at
least twice as a constituent of L2. Let dim M2 "-2 + 19a, a > 0, and
dimMxa 18 + 19b, b > 0. Then

4 dim M2 + 2 dim Ma < dim L1 + dim L2 _< 8 + 13" 19

implies
4a + 2b + 2 < 13. (3.2)

Now gl(1)(1)q(1)= (3 + 19a)(1 + 19(a + b + 1))(18 + 19b) isthe square of
a rational integer [10, Theorem 4]. But the only values of a > 0, b > 0 satisfy-
ing (3.2) for which this is true are a 1, b 2. Hence ZI(1) 22, (1) 77,
q(1) 56.

Suppose (ii) holds. As above, we see that Ma and Ma7 are both constituents
of L2 with multiplicity at least two. Let dim La 3 + 19, c > 0, and
dimM7 17 + 19f, f> 0. Then

3dimL + 2dimMx7 < dimL1 + dimL2 < 8 + 13" 19
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implies 3c + 2f < 11. Since

Zl(1)r/(1)(1) (3 + 19c)(18 + 19f)(1 + 19(c + f + 1))

is the square of an integer, it follows that c 1, f 2. (3.1) is established.

(3.3) 41z.

Proof. !-7, Theorem 1] implies z > 1. Suppose z 2. Then there are two
19-blocks of positive defect, say Bo(19) and B. L and L* both lie in B. Since L
separates three vertices from the exceptional vertex, we see that L L* (see
[1, Section 4]). Then [1, Lemma 3.3] implies ml < 7, m2 < 6. But in case (i),
we have

2(2 + 19) + 2(3.19 1) 2(dim M2 + dim Mla) < dim L1 < 3 + 19.7,

a contradiction. In case (ii),

2(3 + 19) + 2(17 + 2"19) 2(dim Ma + dim M17) < dim L2 < 5 + 19" 6,

again a contradiction. Since z 16, the result follows.
There are two possible configurations for the block B which contains L"

L w
0 u

(a)

P

(b)

where 0 16, b(1) -1 (mod 19), p(1)-- y(1) (mod 19), and W-
V(,), U V(,).

(3.4) if(a) holds, then if(l) ((1) 56 and #(1) 96. If(b) holds, then one

of b(1) 132, p(1) 96, (1) 20; b(1) 132, p(1) 20, y(1) 96; or
b(1) 56, p(1) 20 y(1) is true.

Proof Suppose Bo(19) satisfies (i). Then Mz, V2(o2) @ V19(o’). Since Z
is in the kernel of all ordinary and Brauer characters in Bo(19), a (,). Then
[1, Lemma 2.3] and the fact that G G’ forces the action of any element of G,

where 0(1) 16, < < 6, @(1) -1 ((1) (mod 19),/(1) (mod 19).
Since L and W2 are the only constituents of a KG-module with socle L, [1,
Proposition 4.5] implies the Green correspondent of W2 is V2(202). Similarly,
W8 V8().
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on any KG-module, to have determinant imply a 1. Now by [1, Lemma
2.4, Lemma 2.5],

15

(L (R) M2)s V17(,(x2) @) Vl5(,(x) ( Vl9(,(x-i). (3.5)
i=o

Let L7, L5 be the indecomposable KG-modules such that L7 V7(232),
L5 - V5(2a). (3.5)implies dim L7 + dim L5 < 32 + 19.16. [1, Lemma
2.3] says that L* - V6(2-), W’ V2(2-32), W8 - V8(2-a), L7 -V17(,-ltx2), L5 V15(,-I(z).

[1, Lemma 2.6] implies is a npmv of both V6(-1) (R) V7(232) and
Vx7(2-1a2) (R) V36(2). Hence, both L* (R) Lx7 and L7 (R) L have a nonzero
invariant [1, Theorem 4.1], so that L

_
L7 and L

_
L7/rad L7. Thus the

multiplicity of L as a constituent of Lx 7 is at least two.
Suppose (a) holds. By the method used above, we see that the multiplicity

of W2 as a constituent of L 7, and the multiplicities of L, W2, and W8 as con-
stituents of Lxs, are all at least two.

Let dim W2 2 + 193, a > 0, and’dim Ws 18 + 19b, b > 0. Then

4(16 + 2 + 19a) + 2(18 + 19b) 4(dim L + dim W2) + 2 dim Wa8

implies
< dim La5 + dim L17 _< 32 + 19’ 16

2a + b < 6. (3.6)

Since W2 and Wa 8 are constituents of La 5,

W2N V2(/2) V19(,- i), Wl 8N V18(/0 ) Vl 9(/ i).
i(a terms) i(b terms)

We set determinants equal to (as G (7’) and apply [1, Lemma 2.3] to obtain

22+ 19aon /],18+ X9bom

for some integers n and m. Since is trivial on Z, (/2+ 19a)z (/],18+ 19b)z"
Since L is faithful, 2 is faithful on Z and Z is cyclic [1, Proposition 5.1]. Thus
by (3.3), 4[zl2 + 19a, 41z118 + 19b; hence a b 2 (mod 4). Then (3.6)
impliesa b 2. o dim W2 40, dim Was 56, and the result follows
if (i) and (a) are true.

Still assuming Bo(19) satisfies (i), suppose (b) holds. As above, we see that
Wa - Las, Us - Las/rad Las, U1 cz L7, Wa LaT/rad LaT, L

_
LaS, and

L __. Las/rad Las. Let dim Wa + 19w, dim Us + 19u. Then

4 dim L + 2(dim Wx + dim U1) _( dim La5 + dim La7 _< 32 + 19.16

implies u + w < 7. As before, G G’, [1, Lemma 2.3], [1, Proposition 5.1]
and (3.3)imply 411 + 19w, 411 + 19u. Then u w (mod 4). It follows
that either w and u 5 (hence qS(1) 132, p(1) 20, /(1) 96), w 5
and u (hence b(1) 132, (1) 20, p(1) 96), or w u (and
q(1) 56, p(1) 20 (1)).
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Now suppose (ii) holds for B0(19). By the method applied to _/V/2 in case (i),
we see that Man Va() @ V19(1). By [1, Lemma 2.4, Lemma 2.5],

15

(L (R) Ma)N V18(2) V6(2) 0) V,(22) @ Vx9(2-i). (3.7)
i=0

Let La V18(2), L, - Vl,(22) under the Green correspondence. Of
course, L - V6(2). Then (3.7) implies dim La + dim L, _< 32 + 16.19.

Suppose (a) holds. Then Lla Wa. We see, by the method used above,
that both L and W2 occur as constituents of L, with multiplicity at least two.
Let dim W2 2 / 193, dim W8 18 + 19b. Then

18 + 19b + 2(16 + 2 + 19a) dim L8 + 2(dim L + dim

_< dim L18 + dim L1, _< 32 + 16.19

implies 2a + b _< 14. As before, G G’, [1, Lemma 2.3], [-1, Proposition
5.1] and (3.3) imply 412 + 193,41 18 + 19b. Thena-- b-- 2(mod4). It
follows that one ofa b 2, a 6andb 2, ora 2andb 6must
hold. But the last two cases imply #(1) dim W2 + dim W8 172 4.43.
Hence 43 IGI, a contradiction. Therefore a b 2, and (3.4) is true if (a)
holds.

Suppose (b) holds. As before, L is a constituent of LI, with multiplicity at
least two, and each of W1, U are constituents of both L 8 and L,. Again, let
dim W + 19w, dim U1 + 19u. Then

2(16 + + 19w + + 19u) 2(dim L + dim W + dim U)

< dimL8 + dimL14

<32+ 19"16

impliesu + w < 7. Sinceu w (mod 4), we again have one of w
andu 5, u andw 5, orw u 1. Thus (3.4) holds in all cases.
We use 19-11 block separation to complete the proof. Since (1)= 77,

11 IGI. Because the centralizer ofa nontrivial 19-element has order 19z, z 16,
the centralizer of a nontrivial 11-element has order prime to 19. Since the
exceptional characters in a 19-block of positive defect agree on 19’-elements,
they must agree on the centralizer of a nontrivial 11-element. If they are zero
on all 1-singular elements, then each is in its own ll-block of defect zero
I-8; IV.3.13, IV.4.20]. Otherwise, they are all in the same 11-block by Brauer’s
second main theorem.

Since is the only character of degree 77 in B0(19), which is invariant under
algebraic conjugation, it follows that is rational. Since G/Z is simple, the
kernel of is precisely Z. Then Proposition 2.2 implies Bo(11).
Now block separation [8, IV.4.23] says that z(1)z(x) 0 (mod 11m) where

(x) P, m vl([GI), and z ranges over all irreducible characters in
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Bo(19) c Bo(ll). Since Z(x) -1, the only possibilities for . z(1)z(x)
divisible by 11 are 1-56 and 1-56-22. Hence 112 g al.
Now for any 1-block of G of positive defect, there is an integer n 0

(mod 11) and an integer r 10 such that all degrees of irreducible characters
in the block are congruent (mod 11) to + n or __+ rn [3]. Let B’ be the 11-block
of the 0.

If (a) holds, then (3.4) and block separation imply B
_

B’. But 0(1) 5
(mod 11), #(1)-= -3 (mod 11), and (1) 56 +5 or +3 (mod 11), a
contradiction.

If (b) holds and tk(1) 132, then tk B’. Then block separation implies p,
(and all the 0) are in B’ B. However, 0(1) 5 (mod 11), and p(1), (1)

are congruent (mod 11) to 8, 9 in some order, a contradiction.
So (3.4) implies the character degrees of B are 16 (6 of them), 20 (2), and 56.

Then block separation forces B
_

B’. But 20 : 56 or + 16 (mod 11), a final
contradiction.

4. Proofs of the consequences

Proof of Theorem 2. Either d > (p + 1)/2 or G/Z PSL2(p) [14]. But
the latter implies 2, a contradiction. Since G has a faithful indecomposable
representation of degree d in characteristic p, we see that d p (p 1)It
[1, (4.3)]. Assume 3 < < 8. By Proposition 2.1 there is a group Gx, not of
type L2(p), with a faithful irreducible complex representation of degree d, a
Sylow p-subgroup of order p, G1 G, and G1/Z(Gx) simple. Since d, and
hence (again by [1, (4.3)]) are the same for G and G1, we may assume G G1.

[2] impliesp < 2 3t + 1. So > 3. Ift 4thenp 5 ande 1,
whenced=p 1, acontradiction. Ift 5thenp < 11. Sincee > 2, we
must havep 11, e 2, d 9. This contradicts [9, 8.3.4.iii-], [10, Theorem 2-1
(and was eliminated in [13]). If 6 then p 19 and d 16, contradicting
Theorem 1. If 7 then e is even. [7, (2.1)] implies IZI is odd. This con-
tradicts [7, Theorem 1].

Proof of Theorem 3. If G exists satisfying the hypothesis but not the con-
clusion, then Proposition 2.1 implies we may assume G is not of type L2(p) and
IPI--P. Then [14] and [1, (4.3)] imply d p -e, where e IN: CI <
(p 1)/3. Theorem 2 yields > 8, sod> (7p + 1)/8. [2] impliesd>p +
(3/2) (p + 5/4) 1/2, a contradiction.

Proof of Theorem 4. Ifp 3 then G is abelian. Ifp 5 the result follows
by [15]. So assume p > 5. Then we may suppose d < p 2 [9, 8.3.4.iii],
[10]. Hence we may assumep > 7 [15]. It suffices to show (i) or (ii) must hold.
By Proposition 2.1, [14], and Theorem 2, we may assume that IPI P, G is not
of typeL2(p),andd=p (p 1)/twhere tIN:CI =p 1, > 8. Then
p >_ 31. Ifp 31, d> 31 30/10 28. Ifp > 37, d> (7p + 1)/8 > 32.
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