ON FINITE LINEAR GROUPS OF DEGREE 16

BY
Harvey I. Blau
1. Introduction

The main result of this paper is:
Theorem 1. Let G be a finite group with a faithful irreducible complex representation of degree 16. Then if P is a Sylow p-subgroup of G for $p \geq 19$ and Z is the center of G, either $P \triangleleft G$ or $p=31$ and $G / Z \approx P S L_{2}(31)$.

Theorem 1 has several consequences bearing on the situation of a group with a complex representation of degree smaller than a prime dividing its order. We state them here, using the same notation as above.

Theorem 2. Let p be a prime. Assume that $|P|=p, P \notin G$, and G has a faithful irreducible complex representation of degree $d<p-1$. Let $t|N: C|=$ $p-1$, where N, C are the normalizer, resp. centralizer, of P in G. If $t \geq 3$ then $t \geq 8$.

It is known that if $t \geq 3$ then $t \geq 6$ [13]. In view of [2], Theorem 1 eliminates the only remaining numerical case when $t=6$, namely $p=19$ and $d=16$. This case was also listed as unresolved in [1, Section 8] as $p=19, d=16$, $e=3$.

Theorem 3. Assume $p>7$. Let G have a faithful irreducible complex representation of degree $d<\max \left\{(7 p+1) / 8, p+(3 / 2)-(p+5 / 4)^{1 / 2}\right\}$. Then either $P \triangleleft G$ or $G / Z \approx P S L_{2}(p)$ and $d=(p \pm 1) / 2$.

For the exceptions to Theorem 3 when $p \leq 7$ see [9, Section 8.5] (or Theorem 4 below for the cases $d<p-1$).

Theorem 4. Assume G has a faithful irreducible complex representation of degree $d \leq 27$. Suppose p is a prime, $p>d+1$. Then one of the following must occur:
(i) $P \triangleleft G$;
(ii) $G / Z \approx P S L_{2}(p), d=(p \pm 1) / 2$;
(iii) $p=17, d=15, G \approx S L_{2}(16) \times A$ where A is abelian;
(iv) $p=7, d=4$, and $G / Z \approx A_{7}$;
(v) $p=5, d=3$, and $G / Z \approx A_{6}$.

In the proof of Theorem 1 , the case $p=19$ is the only one which does not follow quickly from known results. Handling this case involves a fairly straightforward application of the modular-theoretic techniques of [6] and [1], block separation, and a recent result of Walter Feit [10, Theorem 4]. The author would like to thank Professor Feit for informing him of this theorem, and also wishes to acknowledge several useful conversations with Professors Feit and Henry S. Leonard.

2. Notation and preliminary results

Throughout the paper G is a finite group, p a prime, P a Sylow p-subgroup of G. If H is a subgroup, and S a subset, of G, then $N_{H}(S), C_{H}(S)$ denote, respectively, the normalizer and centralizer of S in $H . Z(H)$ is the center of H, $N=N_{G}(P), C=C_{G}(P)$, and $Z=Z(G) . B_{0}(p)$ is the principal p-block of G.

Fix p and a positive integer $d<p-1$. We consider two sets of hypotheses:
$\left({ }^{*}\right) \quad G$ has a faithful irreducible complex representation of degree d.
$\left(^{* *}\right) \quad G$ is not of type $L_{2}(p),|P|=p, G=G^{\prime}$ and G / Z is simple.
The following sort of reduction argument, based on the main result of [5], appears in [7, Section 6], [10, Section 4], and [15]. The proof here is essentially that of [7], with a few more details provided.

Proposition 2.1. Fix p and d. Suppose there is no group satisfying both $\left(^{*}\right.$) and $\left({ }^{(*)}\right)$. Then if G is any group satisfying $\left({ }^{*}\right)$, either $P \triangleleft G$ or $G / Z \approx P S L_{2}(p)$ and $d=(p \pm 1) / 2$.

Proof. Suppose (*) holds for G and $P \nrightarrow G$. Let θ be the given faithful irreducible character of G with $\theta(1)=d$. Since the degree of each irreducible constituent of θ_{P} is a power of p, it follows that each constituent is linear and hence P is abelian.

Let G_{0} be the subgroup of G generated by all p-elements in G. Thus $G_{0} \triangleleft G$, $P \subseteq G_{0}$ and $P \nrightarrow G_{0}$. The main theorem of [5] says there is a subgroup $P_{0} \subseteq P$ with $\left|P: P_{0}\right|=p$ and $P_{0} \triangleleft G$. Thus $P \subseteq C_{G}\left(P_{0}\right) \triangleleft G$ implies the normal subgroup generated by P centralizes P_{0}, i.e. $G_{0} \subseteq C_{G}\left(P_{0}\right)$.

Let G_{1} be the p-commutator subgroup of G_{0}, whence $G_{1} \triangleleft G$. The transfer of G_{0} into P has kernel G_{1} and image $P \cap Z\left(N_{G_{0}}(P)\right) \supseteq P_{0}$ [16, Chapter V, Theorem 7]. If $P \cap Z\left(N_{G_{0}}(P)\right)=P$, then G_{0} has the normal p-complement G_{1}, as well as a faithful complex representation of degree $d<p-1$, a contradiction [15, (2.1)]. Thus the image of the transfer is P_{0}, and it is easy to see that the transfer maps P_{0} onto itself. Hence $G_{0}=G_{1} \times P_{0}$. Let $P_{1}=P \cap G_{1}$. Then $P=P_{0} \times P_{1}$ and $P_{1} \notin G_{1}$.

Let H be a normal p^{\prime}-subgroup of G_{1}. If $P_{1} \notin P_{1} H$ then $P_{1} H$ has a faithful representation of degree d in a field of characteristic p [8, III.3.4] contrary to Theorem B of Hall and Higman [12]. Thus $P_{1} \triangleleft P_{1} H$ and so $H \subseteq C_{G_{1}}\left(P_{1}\right)$. Since G_{1} is the smallest normal subgroup of G_{1} generated by P_{1}, it follows that
$H \subseteq Z\left(G_{1}\right)$ and $G_{1} / Z\left(G_{1}\right)$ is simple. If $P_{1} \nsubseteq G_{1}^{\prime}$ then G_{1} has a normal p complement, a contradiction. So $P_{1} \subseteq G_{1}^{\prime} \triangleleft G$ implies $G_{1}^{\prime}=G_{1}$.

Let $\theta_{G_{1}}=\sum_{i=1}^{s} \omega_{i}$ where each ω_{i} is an irreducible character of G_{1}. Now $\omega_{i}(1)=\omega_{1}(1)$ for $i=1, \ldots, s$, as the ω_{i} are conjugate under G. So if $s>1$, $\omega_{1}(1)<\frac{1}{2}(p-1)$. Let K_{i} be the kernel of ω_{i}. If $P_{1} \subseteq K_{1}$, then $K_{1}=G_{1}=$ K_{i}, whence G_{1} is in the kernel of θ, a contradiction. So K_{1} is a p^{\prime}-group and $K_{1} \subseteq Z\left(G_{1}\right)$. Thus $P_{1} \triangleleft P_{1} K_{1}$. [11] implies $P_{1} K_{1} / K_{1} \triangleleft G_{1} / K_{1}$, hence $P_{1} \triangleleft G_{1}$, a contradiction. So $s=1$ and $\theta_{G_{1}}$ is irreducible. Thus if $g \in C_{G}\left(G_{1}\right)$ then g is represented by scalars in the representation of G which affords θ, and so $g \in Z$. Hence $Z\left(G_{1}\right)=Z \cap G_{1}$ and $G_{1} C_{G}\left(G_{1}\right)=G_{1} Z$.

If G_{1} is not of type $L_{2}(p)$ then G_{1} satisfies $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$, which contradicts our hypothesis. So G_{1} is of type $L_{2}(p)$. Then $G_{1} / Z\left(G_{1}\right) \approx P S L_{2}(p)$. Thus $G_{1} \approx$ $P S L_{2}(p)$ or $G_{1} \approx S L_{2}(p)$ since the Schur multiplier of $P S L_{2}(p)$ has order 2. Therefore $d=(p \pm 1) / 2$ and θ assumes different values on the two conjugate classes of nontrivial p-elements in G_{1} [4, Theorem 71.3], [3, (47b)]. Since any $g \in G$ fixes $\theta_{G_{1}}$ (acting by conjugation), g must fix each conjugate class of p-elements in G_{1}. It is not hard to see that an automorphism of $S L_{2}(p)$ or $P S L_{2}(p)$ which fixes each conjugate class of p-elements must be an inner automorphism. Thus $G=G_{1} C_{G}\left(G_{1}\right)=G_{1} Z$ and $G / Z \approx G_{1} / Z\left(G_{1}\right) \approx P S L_{2}(p)$.

The next result seems to be well known.
Proposition 2.2. Let p be a prime such that $p||G|$. Let χ be an irreducible character in $B_{0}(p)$ such that χ is rational on all p-elements, and no p-element (except 1) is in the kernel of χ. Let $v_{p}(\chi(1))=m$. Then $\chi(1) \geq p^{m}(p-1)$.

Proof. Let x be an element of order p in $Z(P)$. Then K, the conjugate class of x, has order prime to p. Since $\chi(x)$ is rational, $\chi(x)$ and $\chi(x)|K| / \chi(1)$ are rational integers and $v_{p}(\chi(x)) \geq v_{p}(\chi(1)) . \quad \chi \in B_{0}(p)$ implies $\chi(x)|K| / \chi(1) \equiv|K|$ $(\bmod p)\left(\right.$ see $[4$, Theorem 61.2] $)$. Let $q=p^{m}$. Then

$$
\frac{(\chi(x) / q)|K|}{\chi(1) / q} \equiv|K|(\bmod p) \quad \text { implies } \frac{\chi(x)}{q} \equiv \frac{\chi(1)}{q}(\bmod p)
$$

Let γ be a faithful linear character of $\langle x\rangle$, and let n be its multiplicity as a constituent of $\chi_{\langle x\rangle}$. Then $\chi(x) \neq \chi(1)$ and $\chi(x)$ rational imply $n>0$ and each of the $p-1$ algebraic conjugates of γ occurs in $\chi_{\langle x\rangle}$ with multiplicity n. Hence

$$
\chi(x)=n(-1)+(\chi(1)-n(p-1))=\chi(1)-n p
$$

Therefore $(\chi(1)-n p) / q \equiv \chi(1) / q(\bmod p)$ implies $q \mid n$. Now $\chi(1) \geq n(p-1)$ yields the result.

Proposition 2.3. Assume that $|P|=p$ and $|N: C|=3$. If the Brauer tree corresponding to $B_{0}(p)$ is not an open polygon then $p \equiv 1(\bmod 4)$.

Proof. Since $|N: C| \mid p-1$, we have $p \equiv 1(\bmod 3)$. The discussion in [14, Section 5] shows that the map sending each ordinary or modular irreducible character to its complex conjugate reflects the tree across a unique real stem.

The exceptional vertex lies on the stem. Thus if the graph is not an open polygon, it must have the form

where 1 is the principal character, $\eta(1) \equiv 1(\bmod p), \bar{\eta}$ is the complex conjugate of η, the χ_{i} are exceptional characters, and $\chi_{i}(1) \equiv 3(\bmod p)$ for $i=1, \ldots$, $(p-1) / 3$. Hence $\chi_{i}(1) \eta(1) \bar{\eta}(1) \equiv 3(\bmod p)$. Now $\chi_{i}(1) \eta(1) \bar{\eta}(1)$ is the square of a rational integer [10, Theorem 4], so that 3 is a quadratic residue $\bmod p$. Quadratic reciprocity implies $p \equiv 1(\bmod 4)$.

3. Proof of Theorem 1

By Proposition 2.1, it suffices to assume G satisfies (**) and then show such a group cannot exist.

Now $C_{G}(P)=P \times Z$ (so that N / P is abelian) and $z=|Z| \mid 16[7,(2.1)]$. Then the situation of $[1,(4.3)]$ holds. $\left({ }^{* *}\right)$ and $[14]$ imply $16>(p+1) / 2$, whence $16=p-e$, where $e=|N: C| \mid p-1$. Since $e \leq(p-1) / 3$ (so that $16 \geq(2 p+1) / 3)$, it follows that $p=19, e=3$.

So the theorem is proved for all primes $q>19$. If $q||G|$ for some prime $q>19$ then no Sylow q-subgroup is normal, since G / Z is simple. Hence $q=31$ and $G / Z \approx P S L_{2}(31)$, a contradiction. Thus no prime larger than 19 divides $|G|$.

Let R be the ring of integers in a 19 -adic number field F so that both F and $K=R / I$ are splitting fields for all subgroups of G, where I is the maximal ideal of R. Let X be an R-free $R G$-module affording a faithful irreducible character θ of degree 16 such that $L=X / X I$ is an indecomposable $K G$-module. Then L is faithful, as G has no proper normal 19-subgroup.

Let $L_{N}=V_{16}(\lambda)$ in the notation of [1]. L is irreducible [1, Proposition 6.1]. We have [1, (5.2), (5.3)]

$$
\left(L \otimes L^{*}\right)_{N}=V_{1}(1) \oplus V_{3}(\alpha) \oplus V_{5}\left(\alpha^{2}\right) \oplus \sum_{i=3}^{15} V_{19}\left(\alpha^{i}\right)
$$

where $\alpha: N \rightarrow K$, a linear character of order 3, is defined in [1, Section 2].

$$
L \otimes L^{*}=L_{0} \oplus L_{1} \oplus L_{2} \oplus Q
$$

where L_{0} is the one-dimensional trivial $K G$-module, Q is projective, and

$$
L_{1_{N}}=V_{3}(\alpha) \oplus \sum_{j \in \mathscr{S}_{1}} V_{19}\left(\alpha^{j}\right), \quad L_{2_{N}}=V_{5}\left(\alpha^{2}\right) \oplus \sum_{j \in \mathscr{S}_{2}} V_{19}\left(\alpha^{j}\right)
$$

where \mathscr{S}_{1} and \mathscr{S}_{2} are sets of integers with $\left|\mathscr{S}_{1}\right|+\left|\mathscr{S}_{2}\right| \leq 13$. Let $m_{i}=\left|\mathscr{S}_{i}\right|$, $i=1,2$. Then

$$
\operatorname{dim} L_{i}=2 i+1+19 m_{i}, \quad m_{i}>0, m_{1}+m_{2} \leq 13 .
$$

If χ is an exceptional character in $B_{0}(19)$ then $\chi(1) \equiv 3(\bmod 19)$ by [7, (2.1)] and [7, (4.1)] applied to θ and its complex conjugate. Then Proposition 2.3 implies there are only two possibilities for the graph of $B_{0}(19)$:

where the χ_{i} are exceptional characters, $1 \leq i \leq 6, \xi$ and η are nonexceptional characters with $\xi(1) \equiv 1(\bmod 19), \eta(1) \equiv-1(\bmod 19)$, and M_{2} and M_{18} are irreducible $K G$-modules. Since L_{0} and M_{2} are the only constituents of a $K G$ module with socle L_{0} [8, I.17.12], [1, Proposition 4.5] implies M_{2} has Green correspondent $V_{2}\left(\alpha^{2}\right)$. Similarly, M_{2} and M_{18} are the only constituents of a $K G$-module with socle M_{2}, so M_{18} has Green correspondent $V_{18}(\alpha)$.

where again $\xi(1) \equiv 1(\bmod 19), \eta(1) \equiv-1(\bmod 19)$, and M_{17}, M_{3} have Green correspondents $V_{17}\left(\alpha^{2}\right), V_{3}(\alpha)$ respectively. (So $M_{3}=L_{1}$.)

$$
\begin{equation*}
\chi_{i}(1)=22, \xi(1)=77, \eta(1)=56 \text { in either }(\mathrm{i}) \text { or }(\mathrm{ii}) \tag{3.1}
\end{equation*}
$$

Proof. Suppose (i) holds. By [1, Lemma 2.4], the npmv's of $V_{2}\left(\alpha^{2}\right) \otimes V_{3}(\alpha)$ are $\alpha^{3}=1$ and α^{-1}. Hence $M_{2} \otimes L_{1}$ contains a nonzero invariant (as a $K G$-module) [1, Theorem 4.1]. Since $M_{2} \approx M_{2}^{*}$ and $L_{1} \approx L_{1}^{*}$, we see that $M_{2} \subseteq \operatorname{socle}\left(L_{1}\right)$ and $M_{2} \subseteq L_{1} / \operatorname{rad}\left(\mathrm{L}_{1}\right)$. Thus M_{2} is a constituent of L_{1} with multiplicity at least two.

Now $V_{18}(\alpha) \otimes V_{3}(\alpha)$ has 1 as a npmv [1, Lemma 2.6]. Then as above, M_{18} is a constituent of L_{1} with multiplicity at least two. Similarly, M_{2} occurs at least twice as a constituent of L_{2}. Let $\operatorname{dim} M_{2}=2+19 a, a>0$, and $\operatorname{dim} M_{18}=18+19 b, b \geq 0$. Then

$$
4 \operatorname{dim} M_{2}+2 \operatorname{dim} M_{18} \leq \operatorname{dim} L_{1}+\operatorname{dim} L_{2} \leq 8+13 \cdot 19
$$

implies

$$
\begin{equation*}
4 a+2 b+2 \leq 13 \tag{3.2}
\end{equation*}
$$

Now $\chi_{1}(1) \xi(1) \eta(1)=(3+19 a)(1+19(a+b+1))(18+19 b)$ is the square of a rational integer [10, Theorem 4]. But the only values of $a>0, b \geq 0$ satisfying (3.2) for which this is true are $a=1, b=2$. Hence $\chi_{1}(1)=22, \xi(1)=77$, $\eta(1)=56$.

Suppose (ii) holds. As above, we see that M_{3} and M_{17} are both constituents of L_{2} with multiplicity at least two. Let $\operatorname{dim} L_{1}=3+19 c, c>0$, and $\operatorname{dim} M_{17}=17+19 f, f \geq 0$. Then

$$
3 \operatorname{dim} L_{1}+2 \operatorname{dim} M_{17} \leq \operatorname{dim} L_{1}+\operatorname{dim} L_{2} \leq 8+13 \cdot 19
$$

implies $3 c+2 f \leq 11$. Since

$$
\chi_{1}(1) \eta(1) \xi(1)=(3+19 c)(18+19 f)(1+19(c+f+1))
$$

is the square of an integer, it follows that $c=1, f=2$. (3.1) is established.
(3.3) $4 \mid z$.

Proof. [7, Theorem 1] implies $z>1$. Suppose $z=2$. Then there are two 19 -blocks of positive defect, say $B_{0}(19)$ and $B . L$ and L^{*} both lie in B. Since L separates three vertices from the exceptional vertex, we see that $L \approx L^{*}$ (see [1, Section 4]). Then [1, Lemma 3.3] implies $m_{1} \leq 7, m_{2} \leq 6$. But in case (i), we have
$2(2+19)+2(3 \cdot 19-1)=2\left(\operatorname{dim} M_{2}+\operatorname{dim} M_{18}\right) \leq \operatorname{dim} L_{1} \leq 3+19 \cdot 7$, a contradiction. In case (ii),
$2(3+19)+2(17+2 \cdot 19)=2\left(\operatorname{dim} M_{3}+\operatorname{dim} M_{17}\right) \leq \operatorname{dim} L_{2} \leq 5+19 \cdot 6$, again a contradiction. Since $z \mid 16$, the result follows.

There are two possible configurations for the block B which contains L :

$$
\begin{equation*}
\stackrel{L}{\bullet} \quad \bullet_{\bullet}^{\bullet} \quad \stackrel{W_{2}}{\bullet} \quad \stackrel{W_{18}}{\bullet} \tag{a}
\end{equation*}
$$

where $\theta_{i}(1)=16,1 \leq i \leq 6, \psi(1) \equiv-1 \equiv \zeta(1)(\bmod 19), \mu(1) \equiv 1(\bmod 19)$. Since L and W_{2} are the only constituents of a $K G$-module with socle L, [1, Proposition 4.5] implies the Green correspondent of W_{2} is $V_{2}\left(\lambda \alpha^{2}\right)$. Similarly, $W_{18} \leftrightarrow V_{18}(\lambda \alpha)$.

where $\theta_{i}=16, \phi(1) \equiv-1(\bmod 19), \rho(1) \equiv \gamma(1) \equiv 1(\bmod 19)$, and $W_{1} \leftrightarrow$ $V_{1}(\lambda \alpha), U_{1} \leftrightarrow V_{1}\left(\lambda \alpha^{2}\right)$.
(3.4) If (a) holds, then $\psi(1)=\zeta(1)=56$ and $\mu(1)=96$. If (b) holds, then one of $\phi(1)=132, \rho(1)=96, \gamma(1)=20 ; \phi(1)=132, \rho(1)=20, \gamma(1)=96$; or $\phi(1)=56, \rho(1)=20=\gamma(1)$ is true.

Proof. Suppose $B_{0}(19)$ satisfies (i). Then $M_{2_{N}}=V_{2}\left(\alpha^{2}\right) \oplus V_{19}(\sigma)$. Since Z is in the kernel of all ordinary and Brauer characters in $B_{0}(19), \sigma \in\langle\alpha\rangle$. Then [1, Lemma 2.3] and the fact that $G=G^{\prime}$ forces the action of any element of G,
on any $K G$-module, to have determinant 1 imply $\sigma=1$. Now by [1, Lemma 2.4, Lemma 2.5],

$$
\begin{equation*}
\left(L \otimes M_{2}\right)_{N}=V_{17}\left(\lambda \alpha^{2}\right) \oplus V_{15}(\lambda \alpha) \oplus \sum_{i=0}^{15} V_{19}\left(\lambda \alpha^{-i}\right) \tag{3.5}
\end{equation*}
$$

Let L_{17}, L_{15} be the indecomposable $K G$-modules such that $L_{17} \leftrightarrow V_{17}\left(\lambda \alpha^{2}\right)$, $L_{15} \leftrightarrow V_{15}(\lambda \alpha)$. (3.5) implies $\operatorname{dim} L_{17}+\operatorname{dim} L_{15} \leq 32+19 \cdot 16$. [1, Lemma $2.3]$ says that $L^{*} \leftrightarrow V_{16}\left(\lambda^{-1}\right), W_{2}^{*} \leftrightarrow V_{2}\left(\lambda^{-1} \alpha^{2}\right), W_{18}^{*} \leftrightarrow V_{18}\left(\lambda^{-1} \alpha\right), L_{17}^{*} \leftrightarrow$ $V_{17}\left(\lambda^{-1} \alpha^{2}\right), L_{15}^{*} \leftrightarrow V_{15}\left(\lambda^{-1} \alpha\right)$.
[1, Lemma 2.6] implies 1 is a npmv of both $V_{16}\left(\lambda^{-1}\right) \otimes V_{17}\left(\lambda \alpha^{2}\right)$ and $V_{17}\left(\lambda^{-1} \alpha^{2}\right) \otimes V_{16}(\lambda)$. Hence, both $L^{*} \otimes L_{17}$ and $L_{17}^{*} \otimes L$ have a nonzero invariant [1, Theorem 4.1], so that $L \subseteq L_{17}$ and $L \subseteq L_{17} / \mathrm{rad} L_{17}$. Thus the multiplicity of L as a constituent of L_{17} is at least two.

Suppose (a) holds. By the method used above, we see that the multiplicity of W_{2} as a constituent of L_{17}, and the multiplicities of L, W_{2}, and W_{18} as constituents of L_{15}, are all at least two.

Let $\operatorname{dim} W_{2}=2+19 a, a>0$, and $\operatorname{dim} W_{18}=18+19 b, b \geq 0$. Then

$$
\begin{aligned}
4(16+2+19 a)+2(18+19 b) & =4\left(\operatorname{dim} L+\operatorname{dim} W_{2}\right)+2 \operatorname{dim} W_{18} \\
& \leq \operatorname{dim} L_{15}+\operatorname{dim} L_{17} \leq 32+19 \cdot 16
\end{aligned}
$$

implies

$$
\begin{equation*}
2 a+b \leq 6 \tag{3.6}
\end{equation*}
$$

Since W_{2} and W_{18} are constituents of L_{15},

$$
W_{2_{N}}=V_{2}\left(\lambda \alpha^{2}\right) \oplus \sum_{i(a \mathrm{terms})} V_{19}\left(\lambda \alpha^{-i}\right), \quad W_{18_{N}}=V_{18}(\lambda \alpha) \oplus \sum_{i(b \mathrm{terms})} V_{19}\left(\lambda \alpha^{-i}\right)
$$

We set determinants equal to 1 (as $G=G^{\prime}$) and apply [1, Lemma 2.3] to obtain

$$
1=\lambda^{2+19 a} \alpha^{n}=\lambda^{18+19 b} \alpha^{m}
$$

for some integers n and m. Since α is trivial on $Z, 1=\left(\lambda^{2+19 a}\right)_{Z}=\left(\lambda^{18+19 b}\right)_{Z}$. Since L is faithful, λ is faithful on Z and Z is cyclic [1, Proposition 5.1]. Thus by (3.3), $4|z| 2+19 a, 4|z| 18+19 b$; hence $a \equiv b \equiv 2(\bmod 4)$. Then (3.6) implies $a=b=2$. So $\operatorname{dim} W_{2}=40, \operatorname{dim} W_{18}=56$, and the result follows if (i) and (a) are true.

Still assuming $B_{0}(19)$ satisfies (i), suppose (b) holds. As above, we see that $W_{1} \subseteq L_{15}, U_{1} \subseteq L_{15} / \mathrm{rad} L_{15}, U_{1} \subseteq L_{17}, W_{1} \subseteq L_{17} / \mathrm{rad} L_{17}, L \subseteq L_{15}$, and $L \subseteq L_{15} / \mathrm{rad} L_{15}$. Let $\operatorname{dim} W_{1}=1+19 w, \operatorname{dim} U_{1}=1+19 u$. Then
$4 \operatorname{dim} L+2\left(\operatorname{dim} W_{1}+\operatorname{dim} U_{1}\right) \leq \operatorname{dim} L_{15}+\operatorname{dim} L_{17} \leq 32+19 \cdot 16$
implies $u+w \leq 7$. As before, $G=G^{\prime}$, [1, Lemma 2.3], [1, Proposition 5.1] and (3.3) imply $4|1+19 w, 4| 1+19 u$. Then $u \equiv w \equiv 1(\bmod 4)$. It follows that either $w=1$ and $u=5$ (hence $\phi(1)=132, \rho(1)=20, \gamma(1)=96$), $w=5$ and $u=1$ (hence $\phi(1)=132, \gamma(1)=20, \rho(1)=96$), or $w=1=u$ (and $\phi(1)=56, \rho(1)=20=\gamma(1))$.

Now suppose (ii) holds for $B_{0}(19)$. By the method applied to M_{2} in case (i), we see that $M_{3_{N}}=V_{3}(\alpha) \oplus V_{19}(1)$. By [1, Lemma 2.4, Lemma 2.5],

$$
\begin{equation*}
\left(L \otimes M_{3}\right)_{N}=V_{18}(\lambda \alpha) \oplus V_{16}(\lambda) \oplus V_{14}\left(\lambda \alpha^{2}\right) \oplus \sum_{i=0}^{15} V_{19}\left(\lambda \alpha^{-i}\right) \tag{3.7}
\end{equation*}
$$

Let $L_{18} \leftrightarrow V_{18}(\lambda \alpha), L_{14} \leftrightarrow V_{14}\left(\lambda \alpha^{2}\right)$ under the Green correspondence. Of course, $L \leftrightarrow V_{16}(\lambda)$. Then (3.7) implies $\operatorname{dim} L_{18}+\operatorname{dim} L_{14} \leq 32+16 \cdot 19$.

Suppose (a) holds. Then $L_{18}=W_{18}$. We see, by the method used above, that both L and W_{2} occur as constituents of L_{14} with multiplicity at least two. Let $\operatorname{dim} W_{2}=2+19 a$, $\operatorname{dim} W_{18}=18+19 b$. Then

$$
\begin{aligned}
18+19 b+2(16+2+19 a) & =\operatorname{dim} L_{18}+2\left(\operatorname{dim} L+\operatorname{dim} W_{2}\right) \\
& \leq \operatorname{dim} L_{18}+\operatorname{dim} L_{14} \leq 32+16 \cdot 19
\end{aligned}
$$

implies $2 a+b \leq 14$. As before, $G=G^{\prime}$, [1, Lemma 2.3], [1, Proposition 5.1] and (3.3) imply $4|2+19 a, 4| 18+19 b$. Then $a \equiv b \equiv 2(\bmod 4)$. It follows that one of $a=b=2, a=6$ and $b=2$, or $a=2$ and $b=6$ must hold. But the last two cases imply $\mu(1)=\operatorname{dim} W_{2}+\operatorname{dim} W_{18}=172=4 \cdot 43$. Hence $43||G|$, a contradiction. Therefore $a=b=2$, and (3.4) is true if (a) holds.

Suppose (b) holds. As before, L is a constituent of L_{14} with multiplicity at least two, and each of W_{1}, U_{1} are constituents of both L_{18} and L_{14}. Again, let $\operatorname{dim} W_{1}=1+19 w, \operatorname{dim} U_{1}=1+19 u$. Then

$$
\begin{aligned}
2(16+1+19 w+1+19 u) & =2\left(\operatorname{dim} L+\operatorname{dim} W_{1}+\operatorname{dim} U_{1}\right) \\
& \leq \operatorname{dim} L_{18}+\operatorname{dim} L_{14} \\
& \leq 32+19 \cdot 16
\end{aligned}
$$

implies $u+w \leq 7$. Since $u \equiv w \equiv 1(\bmod 4)$, we again have one of $w=1$ and $u=5, u=1$ and $w=5$, or $w=u=1$. Thus (3.4) holds in all cases.

We use $19-11$ block separation to complete the proof. Since $\xi(1)=77$, $11||G|$. Because the centralizer of a nontrivial 19 -element has order $19 z, z| 16$, the centralizer of a nontrivial 11 -element has order prime to 19 . Since the exceptional characters in a 19 -block of positive defect agree on 19^{\prime}-elements, they must agree on the centralizer of a nontrivial 11-element. If they are zero on all 11-singular elements, then each is in its own 11-block of defect zero [8; IV.3.13, IV.4.20]. Otherwise, they are all in the same 11-block by Brauer's second main theorem.

Since ξ is the only character of degree 77 in $B_{0}(19)$, which is invariant under algebraic conjugation, it follows that ξ is rational. Since G / Z is simple, the kernel of ξ is precisely Z. Then Proposition 2.2 implies $\xi \notin B_{0}(11)$.

Now block separation [8, IV.4.23] says that $\sum \tau(1) \tau(x) \equiv 0\left(\bmod 11^{m}\right)$ where $\langle x\rangle=P, m=v_{11}(|G|)$, and τ ranges over all irreducible characters in
$B_{0}(19) \cap B_{0}(11)$. Since $\sum_{i} \chi_{i}(x)=-1$, the only possibilities for $\sum \tau(1) \tau(x)$ divisible by 11 are $1-56$ and $1-56-22$. Hence $11^{2} \times|G|$.

Now for any 11-block of G of positive defect, there is an integer $n \not \equiv 0$ $(\bmod 11)$ and an integer $r \mid 10$ such that all degrees of irreducible characters in the block are congruent $(\bmod 11)$ to $\pm n$ or $\pm r n[3]$. Let B^{\prime} be the 11-block of the θ_{i}.

If (a) holds, then (3.4) and block separation imply $B \subseteq B^{\prime}$. But $\theta(1) \equiv 5$ $(\bmod 11), \mu(1) \equiv-3(\bmod 11)$, and $\zeta(1)=56 \not \equiv \pm 5$ or $\pm 3(\bmod 11)$, a contradiction.

If (b) holds and $\phi(1)=132$, then $\phi \notin B^{\prime}$. Then block separation implies ρ, γ (and all the θ_{i}) are in $B^{\prime} \cap B$. However, $\theta(1) \equiv 5(\bmod 11)$, and $\rho(1), \gamma(1)$ are congruent $(\bmod 11)$ to 8,9 in some order, a contradiction.

So (3.4) implies the character degrees of B are 16 (6 of them), 20 (2), and 56. Then block separation forces $B \subseteq B^{\prime}$. But $20 \not \equiv \pm 56$ or $\pm 16(\bmod 11)$, a final contradiction.

4. Proofs of the consequences

Proof of Theorem 2. Either $d>(p+1) / 2$ or $G / Z \approx P S L_{2}(p)$ [14]. But the latter implies $t=2$, a contradiction. Since G has a faithful indecomposable representation of degree d in characteristic p, we see that $d=p-(p-1) / t$ [1, (4.3)]. Assume $3 \leq t<8$. By Proposition 2.1 there is a group G_{1}, not of type $L_{2}(p)$, with a faithful irreducible complex representation of degree d, a Sylow p-subgroup of order $p, G_{1}=G_{1}^{\prime}$, and $G_{1} / Z\left(G_{1}\right)$ simple. Since d, and hence t (again by $[1,(4.3)]$) are the same for G and G_{1}, we may assume $G=G_{1}$.
[2] implies $p \leq t^{2}-3 t+1$. So $t>3$. If $t=4$ then $p=5$ and $e=1$, whence $d=p-1$, a contradiction. If $t=5$ then $p \leq 11$. Since $e \geq 2$, we must have $p=11, e=2, d=9$. This contradicts [9, 8.3.4.iii], [10, Theorem 2] (and was eliminated in [13]). If $t=6$ then $p=19$ and $d=16$, contradicting Theorem 1. If $t=7$ then e is even. [7, (2.1)] implies $|Z|$ is odd. This contradicts [7, Theorem 1].

Proof of Theorem 3. If G exists satisfying the hypothesis but not the conclusion, then Proposition 2.1 implies we may assume G is not of type $L_{2}(p)$ and $|P|=p$. Then [14] and [1, (4.3)] imply $d=p-e$, where $e=|N: C| \leq$ $(p-1) / 3$. Theorem 2 yields $t \geq 8$, so $d \geq(7 p+1) / 8$. [2] implies $d \geq p+$ $(3 / 2)-(p+5 / 4)^{1 / 2}$, a contradiction.

Proof of Theorem 4. If $p=3$ then G is abelian. If $p=5$ the result follows by [15]. So assume $p>5$. Then we may suppose $d<p-2$ [9, 8.3.4.iii], [10]. Hence we may assume $p>7$ [15]. It suffices to show (i) or (ii) must hold. By Proposition 2.1, [14], and Theorem 2, we may assume that $|P|=p, G$ is not of type $L_{2}(p)$, and $d=p-(p-1) / t$ where $t|N: C|=p-1, t \geq 8$. Then $p \geq 31$. If $p=31, d \geq 31-30 / 10=28$. If $p \geq 37, d \geq(7 p+1) / 8>32$.

References

1. H. I. Blau, Under the degree of some finite linear groups, Trans. Amer. Math. Soc., vol. 155 (1971), pp. 95-113.
2. -, An inequality for complex linear groups of small degree, Proc. Amer. Math. Soc., vol. 28 (1971), pp. 405-408.
3. R. Brauer, On groups whose order contains a prime number to the first power I, Amer. J. Math., vol. 64 (1942), pp. 401-420.
4. L. Dornhoff, Group representation theory, Part B, Dekker, New York, 1972.
5. W. Feit, Groups which have a faithful representation of degree less than p-1,Trans. Amer. Math. Soc., vol. 112 (1964), pp. 287-303.
6. -_, Groups with a cyclic Sylow subgroup, Nagoya Math. J., vol. 27 (1966), pp. 571-584.
7. ——, On finite linear groups, J. Algebra, vol. 5 (1967), pp. 378-400.
8. -_, Representations of finite groups, Part I, Lecture Notes, Yale University, New Haven, Conn., 1969.
9. ——, The current situation in the theory of finite simple groups, Proceedings of the International Congress of Mathematicians, Nice, September 1970.
10. _, On finite linear groups II, J. Algebra, vol. 30 (1974), pp. 496-506.
11. W. Feit and J. G. Thompson, Groups which have a faithful representation of degree less than $\frac{1}{2}(p-1)$, Pacific J. Math., vol. 11 (1961), pp. 1257-1262.
12. P. Hall and G. Higman, On the p-length of p-solvable groups and reduction theorems for Burnside's problem, Proc. London Math. Soc., vol. 6 (1956), pp. 1-42.
13. S. Hayden, On finite linear groups whose order contains a prime larger than the degree, Thesis, Harvard University, Cambridge, Mass., 1963.
14. H. F. Tuan, On groups whose orders contain a prime number to the first power, Ann. of Math. (2), vol. 45 (1944), pp. 110-140.
15. D. L. Winter, Finite groups having a faithful representation of degree less than $(2 p+1) / 3$, Amer. J. Math., vol. 86 (1964), pp. 608-618.
16. H. Zassenhaus, The theory of groups, Chelsea, New York, 1958.

Northern Illinois University
De Kalb, Illinois

