ALGEBRAIC VECTOR BUNDLES OVER THE /-HOLE TORUS

BY
Joseph M. Cavanaugh

Introduction

Moore [5] has shown that every finite dimensional continuous vector bundle over a 2 -sphere is isomorphic to an algebraic bundle. In this paper we use similar methods to study algebraic bundles over the l-hole torus T_{l} (i.e., an orientable surface of genus l). The procedure followed will be to construct a continuous function from T_{l} to S^{2} and pull back the bundles over S^{2} via this map. This yields then a representation of the vector bundles over T_{l} in terms of idempotent matrices with entries in certain integral extensions of quotient rings of affine rings. We then proceed to calculate certain dimensions of these rings. While we have not been able to obtain a complete classification of the algebraic bundles over these rings we are able to show that there are infinitely many nonisomorphic projective modules of rank 1 (2) when the field used is the complex (real) numbers.

1. Functions from T_{1} to S^{2}

We will begin by giving a description of the l-hole torus T_{l} as the set of zeros of a polynomial in three variables. T_{1} can be constructed by rotating the circle $x_{1}=0, x_{3}^{2}+\left(x_{2}-4\right)^{2}=1$ about the line $x_{1}=0, x_{2}=2$, with the result that a point $\left(x_{1}, x_{2}, x_{3}\right)$ from R^{3} is on T_{1} if and only if it satisfies the equation

$$
\left(\left(x_{1}^{2}+\left(x_{2}-2\right)^{2}\right)^{1 / 2}-2\right)^{2}+x_{3}^{2}=1
$$

If we expand this equation and square both sides we add no new real roots, so T_{1} is exactly the set of points $\left(x_{1}, x_{2}, x_{3}\right)$ from R^{3} which satisfy the equation

$$
\begin{aligned}
x_{1}^{4}+\left(x_{2}-2\right)^{4}+\left(x_{3}^{2}+\right. & 3)^{2}+2 x_{1}^{2}\left(x_{2}-2\right)^{2}+2 x_{1}^{2}\left(x_{3}^{2}+3\right) \\
& +2\left(x_{2}-2\right)^{2}\left(x_{3}^{2}+3\right)-16 x_{1}^{2}-16\left(x_{2}-2\right)^{2}=0 .
\end{aligned}
$$

We will denote this polynomial by $T_{1}\left(x_{1}, x_{2}, x_{3}\right)$.
If we identify R^{3} with $C \times R$ in the usual way then the map $h_{l}: C \times R \rightarrow$ $C \times R$ given by $h_{l}\left(z, x_{3}\right)=\left(z^{l}, x_{3}\right)$ is a continuous onto function. It is easy to check that $h_{l}^{-1}\left(T_{1}\right)$ will be an l-hole torus. In terms of polynomials this means that we replace x_{1} by $X_{1, l}=\operatorname{Re}\left(x_{1}+i x_{2}\right)^{l}$ and x_{2} by $X_{2, l}=\operatorname{Im}\left(x_{1}+i x_{2}\right)^{l}$ in the polynomial $T_{1}\left(x_{1}, x_{2}, x_{3}\right)$ and this yields a polynomial

$$
T_{l}\left(x_{1}, x_{2}, x_{3}\right)=T_{1}\left(X_{1, l}, X_{2, l}, x_{3}\right) \in R\left[x_{1}, x_{2}, x_{3}\right]
$$

Received August 25, 1972.
such that $T_{l}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in R^{3} \mid T_{l}\left(x_{1}, x_{2}, x_{3}\right)=0\right\}$. We note here that a straightforward computation shows that T_{l} is irreducible in the ring

$$
C\left[x_{1}, x_{2}, x_{3}\right]
$$

Next we will need a continuous function from T_{1} onto S^{2}. This will be given by the function $g_{l}: T_{l} \rightarrow S^{2}$ defined by

$$
g_{l}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{-1 / 2}\left(x_{1}, x_{2}, x_{3}\right)
$$

If we use cylindrical coordinates and let

$$
A_{l}=\left\{\left(r, \theta, x_{3}\right) \in T_{l} \left\lvert\, \theta \notin\left(\frac{\pi}{l}, \frac{2 \pi}{l}\right)\right.\right\}, \quad B_{l}=\left\{\left(r, \theta, x_{3}\right) \in S^{2} \left\lvert\, \theta \notin\left(\frac{\pi}{l}, \frac{2 \pi}{l}\right)\right.\right\}
$$

then $g_{l}:\left(T_{l}, A\right) \rightarrow\left(S^{2}, B\right)$ is a relative homeomorphism, that is, g_{l} is a homeomorphism from $T_{l} \backslash A$ to $S^{2} \backslash B$. In order to prove this it is sufficient to show that g_{l} is a one-to-one map of $T_{l} \backslash A$ to $S^{2} \backslash B$. So we assume there are two points $\left(r, \theta, x_{3}\right)$ and $\left(r^{\prime}, \theta, x_{3}^{\prime}\right)$ from $T_{l} \backslash A$ such that $g_{l}\left(r, \theta, x_{3}\right)=g_{l}\left(r^{\prime}, \theta, x_{3}^{\prime}\right)$. This would say that these two points lie on the same ray from the origin, so we can conclude that $r x_{3}^{\prime}=r^{\prime} x_{3}$. But $h_{l}\left(r, \theta, x_{3}\right)=\left(r^{l}, l \theta, x_{3}\right) \in T_{1}$, with $\pi<n \theta<$ 2π, so it suffices to show that for $\pi<\phi<2 \pi, \phi$ fixed and $V \geq 0, V$ is a strictly decreasing function of ρ, for (ρ, ϕ, V) a point on T_{1}. In cylindrical coordinates the equation of T_{1} is $\left(\left(\rho^{2} \cos ^{2} \phi+(\rho \sin \phi-2)^{2}\right)^{1 / 2}-2\right)^{2}+V^{2}=1$, and the derivative of V with respect to ρ yields,

$$
2 V V^{\prime}=-\frac{\left(\left(\rho^{2} \cos ^{2} \phi+(\rho \sin \phi-2)^{2}\right)^{1 / 2}-2\right)(2 \rho-4 \sin \phi)}{\left(\left(\rho^{2} \cos ^{2} \phi+(\rho \sin \phi-2)^{2}\right)^{1 / 2}\right.}
$$

However, when $\pi<\phi<2 \pi$, $\left(\rho^{2} \cos ^{2} \phi+(\rho \sin \phi-2)^{2}\right)^{1 / 2} \geq 2$ and \sin $\phi \leq 0$, so $V^{\prime} \leq 0$ and the function is strictly decreasing.

We now claim that the function g_{l} induces an isomorphism

$$
g_{l}^{*}: H^{2}\left(S^{2} ; Z\right) \rightarrow H^{2}\left(T_{l} ; Z\right)
$$

Since g_{l} is a relative homeomorphism it follows that $g_{l *}: H_{2}\left(T_{l}, A_{l} ; Z\right) \rightarrow$ $H_{2}\left(S^{2}, B_{l} ; Z\right)$ is an isomorphism [8, p. 202]. By applying the excision axiom we get that $H_{n}\left(T_{l}, A_{l} ; Z\right)=0$ for $n \geq 1, n \neq 2$ and $H_{2}\left(T_{l}, A_{l} ; Z\right)=Z$. Also, since A_{l} is the l-hole torus with a disk removed, its homology groups are the same as the groups of the space formed by joining $2 l$ circles at a point. Thus the homology sequence for the pair (T_{l}, A_{l}), with integer coefficients, is

$$
H_{2}\left(A_{l}\right) \xrightarrow{i_{2} *} H_{2}\left(T_{l}\right) \xrightarrow{j_{2} *} H_{2}\left(T_{l}, A_{l}\right) \xrightarrow{\partial_{2 *}} H_{1}\left(A_{l}\right) \xrightarrow{i_{1 *}} H_{1}\left(T_{l}\right) \xrightarrow{j_{1} *} H_{1}\left(T_{l}, A_{l}\right)
$$

or

$$
0 \xrightarrow{i_{2 *}} Z \xrightarrow{j_{2 *}} Z \xrightarrow{\partial_{2 *}} Z \oplus Z \xrightarrow{i_{1 *}} Z \oplus Z \xrightarrow{j_{1 *}} 0
$$

Since $i_{2 *}$ is the zero map, $j_{2 *}$ is a monomorphism. Since $j_{1 *}$ is the zero map, $i_{1 *}$ is onto and thus is an isomorphism. But then $\operatorname{Im} \partial_{2 *}=\operatorname{ker} i_{1 *}=0$, so $j_{2 *}$ is onto and thus is an isomorphism. A similar argument shows that the map

$$
J_{2 *}: H_{2}\left(S^{2}\right) \rightarrow H_{2}\left(S^{2}, B_{l}\right)
$$

is an isomorphism. Finally, if we look at the commutative diagram

we see that $g_{l *}: H_{2}\left(T_{k}\right) \rightarrow H_{2}\left(S^{2}\right)$ is an isomorphism, and this allows us to conclude that $g_{l}^{*}: H^{2}\left(S^{2} ; Z\right) \rightarrow H^{2}\left(T_{l}, Z\right)$ is also an isomorphism.

2. Vector bundles and projective modules

Moore [5] has shown that there is a one-to-one correspondence between the set of integers and the set of all equivalence classes of complex one-plane bundles over S^{2}. If θ^{2} represents the trivial two-plane bundle then the idempotent matrix

$$
N_{n}=\frac{1}{h_{n}}\left[\begin{array}{cc}
\left(1-x_{3}\right)^{n} & \left(x_{1}-i x_{2}\right)^{n} \\
\left(x_{1}+i x_{2}\right)^{n} & \left(1-x_{3}\right)^{n}
\end{array}\right], \quad n \geq 0
$$

where $h_{n}=\left(1+x_{3}\right)^{n}+\left(1-x_{3}\right)^{n}$, defines an endomorphism of θ^{2} in terms of the coordinates of a point $\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$, and the image of θ^{2} under this map is the bundle γ_{n} corresponding to the positive integer n. The bundle corresponding to the negative integer $-n$ is the image of the endomorphism of θ^{2} defined by the matrix N_{-n} which is obtained from N_{n} by replacing x_{2} by $-x_{2}$, so $N_{-n}=N_{n}$. It is also shown that the first chern class $c_{1}\left(\gamma_{n}\right)=n$.

In the real case we notice that the trivial real four plane bundle θ^{4} over S^{2} comes from the complex bundle θ^{2} by restricting scalar multiplication to R. For $n \geq 0$ consider the matrix

$$
M_{n}=\frac{1}{h_{n}}\left[\begin{array}{cc}
\left(1-x_{3}\right)^{n} I & B_{n} \\
B_{n}^{\prime} & \left(1+x_{3}\right)^{n} I
\end{array}\right] \quad \text { where } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and if $a_{1}+i a_{2}=\left(x_{1}+i x_{2}\right)^{n}$ then

$$
B_{n}=\left[\begin{array}{rr}
a_{1} & -a_{2} \\
a_{2} & a_{1}
\end{array}\right]
$$

and B_{n}^{\prime} is the transpose of B_{n}. Then M_{n} defines an endomorphism of θ^{4} and if η_{n} is the image of M_{n}, there is a one-to-one correspondence from the set Z^{+}of nonnegative integers and the set of equivalence classes of real two plane vector bundles over S^{2}. Since these bundles are restrictions of complex bundles they are oriented and the euler class is given by $e\left(\eta_{n}\right)=c_{1}\left(\gamma_{n}\right)=n$.

Since the maps $g_{l}: T_{l} \rightarrow S^{2}$ are continuous functions they pullback the vector bundles over S^{2} described above to vector bundles over T_{l}.

Proposition 2.1. (i) There exists a bijection from Z into $\operatorname{Vect}_{C}^{1}\left(T_{l}\right)$ given by $n \rightarrow g_{l}^{*}\left(\gamma_{n}\right)$ for $l=1,2, \ldots$
(ii) There exists an injection from Z^{+}into $\operatorname{Vect}_{R}^{2}\left(T_{l}\right)$ given by $n \rightarrow g_{l}^{*}\left(\eta_{n}\right)$ for $l=1,2, \ldots$

Proof. Recall that $c_{1}\left(\gamma_{n}\right)=n$, so, since $c_{1} g_{l}^{*}\left(\gamma_{n}\right)=g_{l}^{*}\left(c_{1}\left(\gamma_{n}\right)\right)=n$, and c_{1} is a one-to-one correspondence from $\operatorname{Vect}_{C}^{1}\left(T_{l}\right)$ to $H^{2}\left(T_{l}, Z\right)$ [2, p. 234], it follows that $g_{l}^{*}\left(\gamma_{n}\right)$ is equivalent to $g_{l}^{*}\left(\gamma_{k}\right)$ if and only if $n=k$. Since g_{l}^{*} is an isomorphism this proves (i). Since all of the bundles η_{n} are orientable, we can use the same property of their Euler classes to show that the map in (ii) is an injection.

We note here that the bundle $g_{l}^{*}\left(\eta_{n}\right), n \geq 0$, is the image of the trivial bundle $C^{2} \times T_{l}$ under the endomorphism of $C^{2} \times T_{l}$ defined at the point

$$
\left(x_{1}, x_{2}, x_{3}\right) \in T_{l}
$$

by the idempotent matrix

$$
g_{l}^{*} N_{n}=\frac{1}{h_{l n}}\left[\begin{array}{cc}
\left(1-g_{l 3}\right)^{n} & \left(g_{l 1}+i g_{l 2}\right)^{n} \\
\left(g_{l 1}-i g_{l 2}\right)^{n} & \left(1-g_{l 3}\right)^{n}
\end{array}\right]
$$

where the $g_{l i}$ are the components of the function g_{l} and $h_{l n}=\left(1+g_{l 3}\right)^{n}+$ $\left(1-g_{l 3}\right)^{n}$. As above, $g_{l}^{*} N_{-n}=\left(g_{l}^{*} N_{n}\right)^{-}$. If we again let

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad B_{l n}=\left[\begin{array}{rr}
a_{l 1} & -a_{l 2} \\
a_{l 2} & a_{l 1}
\end{array}\right]
$$

where $\left(a_{l 1}+i a_{l 2}\right)^{n}=\left(g_{l 1}+i g_{l 2}\right)^{n}$, then the bundle $g_{l}^{*}\left(\eta_{n}\right)$ is the image of the endomorphism of $R^{4} \times T_{l}$ defined at the point $\left(x_{1}, x_{2}, x_{3}\right) \in T_{l}$ by the idempotent matrix

$$
g_{l}^{*}\left(M_{n}\right)=\frac{1}{h_{l n}}\left[\begin{array}{cc}
\left(1-g_{l 3}\right)^{n} I & B_{l n} \\
B_{l n}^{\prime} & \left(1+g_{l 3}\right)^{n} I
\end{array}\right] .
$$

Denote by $\left(T_{l}\right)$ the ideal in either $R\left[x_{1}, x_{2}, x_{3}\right]$ or $C\left[x_{1}, x_{2}, x_{3}\right]$ generated by the polynomial $T_{l}\left(x_{1}, x_{2}, x_{3}\right)$. Since $T_{l}\left(x_{1}, x_{2}, x_{3}\right)$ is irreducible over $C\left[x_{1}, x_{2}, x_{3}\right]$ it is irreducible over $R\left[x_{1}, x_{2}, x_{3}\right]$, and the ideal $\left(T_{l}\right)$ is a prime ideal in either ring. Let

$$
A_{l}=R\left[x_{1}, x_{2}, x_{3}\right] /\left(T_{l}\right) \quad \text { and } \quad C A_{l}=C\left[x_{1}, x_{2}, x_{3}\right] /\left(T_{l}\right), \quad l=1,2, \ldots
$$

Since $\left(T_{l}\right)$ is a prime ideal all of these rings are integral domains. The standard inclusion map of R into C extends to an injection of A_{l} into $C A_{l}$ for each l, and if we identify A_{l} with its image in $C A_{l}$, then $C A_{l}$ is a free A_{l} module with basis $\{1, i\}$. Next, we adjoin $\alpha=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}$ to these rings to get the rings $B_{l}=A_{l}[\alpha]$ and $C B_{l}=C A_{l}[\alpha]$ which are integral extensions of A_{l} and $C B_{l}$, respectively.

Let $S_{l}=\left\{f \in B_{l} \mid f(x) \neq 0\right.$ for all $\left.x \in T_{l}\right\}$; then S_{l} is a multiplicative system in B_{l} as well as in $C B_{l}$, and we can form the rings of quotients $\left(B_{l}\right)_{S_{l}}$ and $\left(C B_{l}\right)_{S_{l}}$. Since B_{l} and $C B_{l}$ are integral domains, so are $\left(B_{l}\right)_{s_{l}}$ and $\left(C B_{l}\right)_{S_{l}}$. If we denote the ring of continuous F-valued functions on T_{l} by $\mathscr{C}_{F}\left(T_{l}\right)$, where $F=C$ or R, then, in the usual way, we can identify $\left(B_{l}\right)_{s_{l}}$ and $\left(C B_{l}\right)_{s_{l}}$ with subrings of $\mathscr{C}_{R}\left(T_{l}\right)$ and $\mathscr{C}_{C}\left(T_{l}\right)$.

Swan [9] has shown that the section functor Γ defines a one-to-one correspondence between the set of equivalence classes of n-plane F vector bundles over a normal space X and isomorphism classes of projective modules of rank n over the ring of continuous F-valued functions on X. Since both $h_{l n}$ and α are not zero at any point on T_{l}, they are in S_{l}, and thus the matrices $g_{l}^{*} N_{n}$ have all their entries in the rings $\left(C B_{l}\right)_{S_{l}}$ and the matrices $g_{l}^{*} M_{n}$ have all their entries in the rings $\left(B_{l}\right)_{S_{l}}$; hence they define the projective modules

$$
Q_{l, n}=\left(C B_{l}\right)_{S_{l}}^{2} g_{l}^{*} N_{n} \quad \text { and } \quad P_{l, n}=\left(B_{l}\right)_{S_{l}}^{4} g_{l}^{*} M_{n}
$$

Since $\Gamma\left(g_{l}^{*}\left(\gamma_{n}\right)\right)$ and $Q_{n} \otimes \mathscr{C}_{c}\left(T_{l}\right)$ are both the image of $\mathscr{C}_{c}^{2}\left(T_{l}\right)$ under the map defined by $g_{l}^{*} N_{n}$, they are isomorphic as $\mathscr{C}_{C}\left(T_{l}\right)$ modules. Similarly, $P_{n} \otimes$ $\mathscr{C}_{R}\left(T_{l}\right)$ is isomorphic to $\Gamma\left(g_{l}^{*}\left(\eta_{n}\right)\right)$. If we let $\mathscr{P}(\Lambda, n)$ denote the set of isomorphism classes of rank n projective Λ modules, then the above can be summarized as follows:

Theorem 2.2. (i) The map $n \rightarrow Q_{l, n}$ gives an injection of Z into $\mathscr{P}\left(\left(C B_{l}\right)_{S_{l}}, 1\right)$ for each $l=1,2, \ldots$.
(ii) The map $n \rightarrow P_{l n}$ gives an injection of Z^{+}into $\mathscr{P}\left(\left(B_{l}\right)_{S_{l}}\right.$, 2) for each $l=1,2, \ldots$

We record some properties of these modules in the following propositions.
Proposition 2.3. $\quad Q_{l, n}$ is not stably trivial for any n or l.
Proof. If $Q_{l n}$ were stably trivial, since free $\left(C B_{l}\right)_{S_{l}}$ modules correspond to free $\mathscr{C}_{\boldsymbol{C}}\left(T_{l}\right)$ modules under the map _ $\otimes \mathscr{C}_{\boldsymbol{C}}\left(T_{l}\right)$, this would say that $\Gamma\left(g_{l}^{*}\left(\gamma_{n}\right)\right)$ were stably trivial. This in turn would imply that the bundles $g_{l}^{*}\left(\gamma_{n}\right)$ were stably trivial, that is, for some trivial bundle $\theta^{m}, g_{l}^{*}\left(\gamma_{n}\right) \oplus \theta^{m}=\theta^{m+1}$. But $c_{1}\left(g_{l}^{*}\left(\gamma_{n}\right)\right)=n$, so $c_{1}\left(g_{l}\left(\gamma_{n}\right) \oplus \theta^{m}\right)=n$, a contradiction.

Proposition 2.4. For n and l odd, $P_{l, n}$ is not stably trivial.
Proof. The proof is the same as above, using the fact that $w_{2}\left(g_{l}^{*}\left(\eta_{n}\right)\right) \equiv$ $c_{1}\left(g_{l}^{*}\left(\gamma_{n}\right)\right) \bmod 2$.

Proposition 2.5. For each l and $n>0, P_{l, n}$ is indecomposable.
Proof. If $P_{l, n}$ were decomposable then the vector bundle $g_{l}^{*}\left(\eta_{n}\right)$ would also have to be able to be written as a Whitney sum of 1-plane bundles. We will show that this is impossible in the next section.

3. Real 1-plane bundles over $T_{\text {, }}$

The first Stiefel-Whitney characteristic class gives an isomorphism

$$
w_{1}: \operatorname{Vect}_{R}^{1}(X) \rightarrow H^{1}\left(X ; Z_{2}\right)
$$

[2, p. 234].
Thus, since $H^{1}\left(T_{l} ; Z_{2}\right)=Z_{2}^{2 l}$, we must find $2^{2 l}$ nonequivalent 1-plane bundles over each T_{l}.

We will first classify the bundles over T_{1}. For the present we shall consider T_{1} as $S^{1} \times S^{1}$. It is well known that $S^{1}=R P^{1}$, the real projective line, so we may consider T_{1} as $R P^{1} \times R P^{1}$. It is also well known that the bundle $\xi=$ $\left(E, p, R P^{1}\right)$, with $E=\left\{([x], \lambda x) \in R P^{1} \times R^{2} \mid \lambda \in R\right\}$, is a nontrivial 1-plane bundle over $R P^{1}$ with $w_{1}(\xi)=\alpha$, where α is the nonzero element of $H^{1}\left(R P^{1} ; Z_{2}\right),\left[4\right.$, pp. 2 and 7]. Let p_{1} and p_{2} be the projection maps from T_{1} onto the first and second coordinates, respectively. Let $\beta_{1}=p_{l}^{*}(\xi)$ and $\beta_{2}=$ $p_{2}^{*}(\xi)$, and let e_{1} and e_{2} be the injections of $R P^{1}$ into $R P^{1} \times R P^{1}$. Then the sequence

$$
H^{1}\left(R P^{1} ; Z_{2}\right) \stackrel{p_{1}^{*}}{\stackrel{e_{1}^{*}}{\rightleftarrows}} H^{1}\left(R P^{1} \times R P^{1} ; Z_{2}\right) \underset{p_{2^{*}}}{\stackrel{e_{2}^{*}}{\gtrless}} H^{1}\left(R P^{1} ; Z_{2}\right)
$$

is split exact in either direction [4, Appendix A, p. 16]. So

$$
\begin{aligned}
w_{1}\left(\beta_{1}\right) & =w_{1}\left(p_{1}^{*}(\xi)\right)=p_{1}^{*}\left(w_{1}(\xi)\right)=p_{1}^{*}(\alpha) \\
& =(\alpha, 0) \in H^{1}\left(R P^{1} ; Z_{2}\right) \oplus H^{1}\left(R P^{1} ; Z_{2}\right)=Z_{2} \oplus Z_{2},
\end{aligned}
$$

and similarly, $w_{1}\left(\beta_{2}\right)=(0, \alpha) \in Z_{2} \oplus Z_{2}$. Finally, the bundle $\beta_{1} \otimes \beta_{2}$ (see [2] for a definition) has $w_{1}\left(\beta_{1} \otimes \beta_{2}\right)=w_{1}\left(\beta_{1}\right)+w_{1}\left(\beta_{2}\right)=(\alpha, \alpha)$. Thus, with θ_{R}^{1}, these give a representative of each possible equivalence class in $\operatorname{Vect}_{R}^{1}\left(T_{1}\right)$.

The l-hole torus can be constructed by removing an open disk from the l-1-hole torus and attaching a 1 -hole torus which also has had a disk removed. We note that if D is an open disk contained in T_{l} then the inclusion map $i: T_{l} \backslash D \rightarrow T_{l}$ induces an isomorphism $i^{*}: H^{1}\left(T_{l} ; Z_{2}\right) \rightarrow H^{1}\left(T_{l} \backslash D ; Z_{2}\right)$. It follows then that if the bundles $\theta^{1}=\beta_{1}, \beta_{2}, \ldots, \beta_{2 l}$ are representative of each of the possible equivalence classes of bundles over T_{l}, then the $B_{j}^{\prime}=i^{*}\left(\beta_{j}\right)$ for $j=1, \ldots, 2^{2 l}$ give representatives of all the equivalence classes of 1-plane bundles over $T_{l} \backslash D$.

The classification of the 1-plane bundles over T_{l} will now proceed by induction. As above, T_{l} can be considered as $T_{l-1} \backslash D_{a} \cup T_{1} \backslash D_{b}$ for D_{a} and D_{b} open disks. If ζ_{j} is a 1 -plane bundle over $T_{l-1} \backslash D_{a}$ and δ_{k} is a 1 -plane bundle over $T_{1} \backslash D_{b}$ then by the clutching construction [1, p. 20], $\zeta_{j} \cup \delta_{k}$ is a 1-plane bundle over T_{l}. If we let $A=\partial\left(T_{l-1} \backslash D_{a}\right)$ which is identified in T_{l} with $\partial\left(T_{1} \backslash D_{b}\right)$, then the Mayer-Vietoris sequence of the triple $\left(T_{l-1} \backslash D_{a}, T_{1} \backslash D_{b}, A\right)$ yields the exact sequence

$$
H^{0 \#}\left(A ; Z_{2}\right) \longrightarrow H^{1}\left(T_{l} ; Z_{2}\right) \xrightarrow{\psi} H^{1}\left(T_{l-1} \backslash D_{a} ; Z_{2}\right)+H^{1}\left(T_{1} \backslash D_{b} ; Z_{2}\right)
$$

Since A is $\partial\left(T_{1} \backslash D\right)=S^{1}, H^{0 \#}\left(A ; Z_{2}\right)=0, \psi$ is a monomorphism, and since

$$
H^{1}\left(T_{l} ; Z_{2}\right)=Z_{2}^{2 l}=H^{1}\left(T_{l-1} \backslash D_{a} ; Z_{2}\right) \oplus H^{1}\left(T_{1} \backslash D_{b} ; Z_{2}\right)
$$

it follows that ψ is an isomorphism. The map ψ is induced by the injections

$$
i_{1}: T_{l-1} \backslash D_{a} \rightarrow T_{l} \text { and } i_{2}: T_{1} \backslash D_{b} \rightarrow T_{l}
$$

and it is easy to check that

$$
\psi\left(w_{1}\left(\zeta_{j} \cup \delta_{k}\right)\right)=\left(i_{1}^{*}\left(w_{1}\left(\zeta_{j}\right)\right), i_{2}^{*}\left(w_{1}\left(\delta_{k}\right)\right)=\left(w_{1}\left(\zeta_{j}\right), w_{1}\left(\delta_{k}\right)\right)\right.
$$

In this way we get all possible elements of $Z_{2}^{2 l}$ as images of w_{1} of bundles of the form $\zeta_{j} \cup \delta_{k}$. Thus the classification of 1-plane bundles over T_{l} is reduced to the classification of 1-plane bundles over T_{l-1} and over T_{1}, so by induction we are done.

Theorem 3.1. No nontrivial orientable real 2-plane bundle over T_{l} can be decomposed into the Whitney sum of real 1-plane bundles.

Proof. Let η be an orientable 2-plane bundle over T_{l} and suppose $\eta=$ $\delta_{1} \oplus \delta_{2}$, where each δ_{i} is a 1 -plane bundle over T_{l}. Since η is orientable, $w_{1}(\eta)=0\left[2\right.$, p. 244], so $0=w_{1}(\eta)=w_{1}\left(\zeta_{1} \oplus \zeta_{2}\right)=w_{1}\left(\zeta_{1}\right)+w_{1}\left(\zeta_{2}\right)$, which implies that $w_{1}\left(\zeta_{1}\right)=w_{1}\left(\zeta_{2}\right)$ or $\zeta_{1} \cong \zeta_{2}$. Thus it suffices to show that $\zeta \oplus \zeta=\theta^{2}$ for any 1-plane bundle ζ over T_{l}. By our construction $\zeta=\delta_{1} \cup \cdots$ $\cup \delta_{l}$ where each δ_{i} is a 1-plane bundle over $T_{1} \backslash D$. Since

$$
\begin{aligned}
& \left.\zeta \oplus \zeta=\left(\delta_{1} \cup \cdots \cup \delta_{l}\right) \oplus \delta_{1} \cup \cdots \cup \delta_{l}\right)=\left(\delta_{1} \oplus \delta_{1}\right) \cup \cdots \cup\left(\delta_{l} \oplus \delta_{l}\right) \\
& {[1, \text { p. 22], }}
\end{aligned}
$$

it suffices to show that $\delta \oplus \delta=\theta^{2}$ for any 1-plane bundle over $T_{1}-D$. There are two possible cases: (a) $\delta=p_{i}^{*}(\xi)$ for $i=1$ or 2 , but then $\delta \oplus \delta=$ $p_{i}^{*}(\xi) \oplus p_{i}^{*}(\xi)=p_{i}^{*}(\xi \oplus \xi)=p_{i}^{*}\left(\theta^{2}\right)=\theta^{2}$, or (b) $\delta=p_{1}^{*}(\xi) \otimes p_{2}^{*}(\xi)$, but then

$$
\begin{aligned}
\delta \oplus \delta & =\left(p_{1}^{*}(\xi) \otimes p_{2}^{*}(\xi)\right) \oplus\left(p_{1}^{*}(\xi) \otimes p_{2}^{*}(\xi)\right) \\
& =p_{1}^{*}(\xi) \otimes\left(p_{2}^{*}(\xi) \oplus p_{2}^{*}(\xi)\right) \\
& =p_{1}^{*}(\xi) \otimes \theta^{2} \\
& =\left(p_{1}^{*}(\xi) \otimes \theta^{1}\right)+\left(p_{1}^{*}(\xi) \otimes \theta^{1}\right) \\
& =p_{1}^{*}(\xi) \oplus p_{1}^{*}(\xi) \\
& =\theta^{2}
\end{aligned}
$$

4. Dimensions

The projective modulus of the domain $\Lambda, \operatorname{proj} \bmod \Lambda$, is the least integer k such that every projective Λ module is the direct sum of a free module and a module of rank $\leq k$ [3].

Theorem 4.1. proj $\bmod \left(B_{l}\right)_{S_{l}}=2$ for $l=1,2, \ldots$
Proof. Serre [7] has shown that for a commutative integral domain Λ,

$$
\operatorname{proj} \bmod \Lambda \leq \operatorname{dim} \max \Lambda
$$

where $\max \Lambda$ is the maximum spectrum of Λ. It is well known that $\operatorname{dim} \max \Lambda \leq$ $K-\operatorname{dim} \Lambda$, when $K-\operatorname{dim} \Lambda$ is the Krull dimension of Λ, so $\operatorname{proj} \bmod \Lambda \leq K-\operatorname{dim} \Lambda$. Now, K-dim $R\left[x_{1}, x_{2}, x_{3}\right]=3$ and since $\left(T_{l}\left(x_{1}, x_{2}, x_{3}\right)\right)$ is a prime ideal for each l,

$$
K-\operatorname{dim} R\left[x_{1}, x_{2}, x_{3}\right] /\left(T_{l}\left(x_{1}, x_{2}, x_{3}\right)\right)=2
$$

It is also well known that for any multiplicatively closed set S contained in a ring $\Lambda, K-\operatorname{dim} \Lambda_{S} \leq K-\operatorname{dim} \Lambda$. Also it follows from the "Lying-over theorem" and the "Going up theorem" [6, p. 30] that if S is an integral extension of Λ then $K-\operatorname{dim} S=K-\operatorname{dim} \Lambda$. Thus $K-\operatorname{dim} B_{l}=K-\operatorname{dim} A_{l}=2$, and $K-\operatorname{dim}\left(B_{l}\right)_{s_{l}} \leq$ 2. But we have shown in Proposition 2.5 that the projective modules $P_{l, n}$ are irreducible and have rank 2. Thus

$$
2 \leq \operatorname{proj} \bmod \left(B_{l}\right)_{S_{l}} \leq K-\operatorname{dim}\left(B_{l}\right)_{S_{l}} \leq 2
$$

Acknowledgement. This paper represents part of the author's doctoral dissertation submitted to Syracuse University in July 1970. The research was partially supported by a National Science Foundation grant. The author wishes to express his sincere appreciation to Professor David Lissner for his help and encouragement during the writing of this paper.

References

1. M. Atiyah, K-Theory, W. A. Benjamin, New York, 1964.
2. D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1966.
3. D. Lissner and N. Moore, Projective modules over certain rings of quotients of affine rings. J. Algebra, vol. 15 (1970), pp. 72-80.
4. J. Milnor, The theory of characteristic classes, Princeton University Press, Princeton, N.J., 1957.
5. N. Moore, Algebraic vector bundles over the 2-sphere, Invent. Math., vol. 14 (1971), p. 167.
6. N. Nagata, Local rings, Interscience Tract No. 13, Interscience, New York, 1962.
7. J. -P. Serre, Modules projectifs et espaces fibrés à fibre vectorille, Sém. Dubreil, No. 23, 1957-58.
8. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
9. R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc., vol. 105 (1962), pp. 264-277.

East Stroudsberg State College
East Stroudsberg, Pennsylvania

