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Introduction

Moore [5-] has shown that every finite dimensional continuous vector bundle
over a 2-sphere is isomorphic to an algebraic bundle. In this paper we use
similar methods to study algebraic bundles over the /-hole torus T (i.e., an
orientable surface of genus l). The procedure followed will be to construct a
continuous function from Tz to S2 and pull back the bundles over S2 via this
map. This yields then a representation of the vector bundles over T in terms of
idempotent matrices with entries in certain integral extensions of quotient rings
of affine rings. We then proceed to calculate certain dimensions of these rings.
While we have not been able to obtain a complete classification of the algebraic
bundles over these rings we are able to show that there are infinitely many non-
isomorphic projective modules of rank (2) when the field used is the complex
(real) numbers.

1. Functions from T to S

We will begin by giving a description of the/-hole torus T as the set of zeros
of a polynomial in three variables. T1 can be constructed by rotating the circle
X 0, X -}- (X2 4)2 about the line xl 0, x2 2, with the result
that a point (xl, x2, x3) from R3 is on T if and only if it satisfies the equation

((x2 + (x2- 2)2)1/2- 2)2 4- xa2 1.

If we expand this equation and square both sides we add no new real roots, so

T1 is exactly the set of points (xl, x2, x3) from R3 which satisfy the equation

X -- (X2 2)4 + (x] + 3)2 -I- 2X2(X2 2)2 -t- 2X2(X] + 3)

+ 2(X2 2)2(x] + 3)- 16X2 16(X2 2)2 0.

We will denote this polynomial by Tl(xl, x2, x3).
If we identify R3 with C x R in the usual way then the map h: C x R

C x R given by hz(z, x3) (z z, xa) i.s a continuous onto function. It is easy to
check that h-1(T1) will be an/-hole torus. In terms of polynomials this means
that we replace xl by Xl,z Re (xl + ix2) and x2 by X2, Im (xx + ix2)
in the polynomial Tx(x, x2, xa) and this yields a polynomial

T,(x, x, x) r(X, , X,,, x3) [x, x, x3]
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such that Tt {(xa, X2, X3) RalTt(xa, X2, X3) --0}. We note here that a
straightforward computation shows that Tt is irreducible in the ring

Next we will need a continuous function from Ta onto S2. This will be given
by the function gt: Tt - S2 defined by

If we use cylindrical coordinates and let

then gt: (Tt, A) - (S2, B) is a relative homeomorphism, that is, gt is a homeo-
morphism from Tt\A to S2\B. In order to prove this it is sufficient to show that
gt is a one-to-one map of T\A to S2\B. So we assume there are two points
(r, 0, x3) and (r’, O, x’3) from Tt\A such that gt(r, 0, xa) gt(r’, O, x’a). This
would say that these two points lie on the same ray from the origin, so we can
conclude that rx’3 r’x3. But ha(r, O, x3) (r t, lO, xa) T1, with z < nO <
2r, so it suffices to show that for z < @ < 2zr, b fixed and V _> 0, V is a strictly
decreasing function of p, for (p, b, V) a point on Ta. In cylindrical coordinates
the equation of Ta is ((p2 cos2 b + (p sin b 2)2)a/2 2)2 + V2 1, and
the derivative of V with respect to p yields,

2VV’
((p2 cos2 b + (p sin b 2)2)a/2 2)(2p 4 sin b)

((p2 cos2 b + (p sin 2)2) a/2

However, when r < < 2zr, (p2 COS2 "4- (p sin b 2)2)1/2 >_ 2 and sin
b < 0, so V’ < 0 and the function is strictly decreasing.
We now claim that the function gt induces an isomorphism

g’" H2($2; Z) --. H2(T; Z).

Since gt is a relative homeomorphism it follows that gt.: Hz(Tt, At; Z)
H2(S2, Bt; Z) is an isomorphism [8, p. 202]. By applying the excision axiom
we get that H,,(Tt, At; Z) 0 for n > 1, n 4:2 and H2(Tt, At; Z) Z. Also,
since At is the/-hole torus with a disk removed, its homology groups are the
same as the groups of the space formed by joining 21 circles at a point. Thus the
homology sequence for the pair (Tt, At), with integer coefficients, is

H2(At)J H2(T) H2(Tt, At) Hi(At) Ha(T) Ha(T, At)

or
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Since i2, is the zero map, J2, is a monomorphism. Sincejl, is the zero map, il,
is onto and thus is an isomorphism. But then Im 02, ker ia, 0, so J2, is
onto and thus is an isomorphism. A similar argument shows that the map

J2, :H($2) H(S, Bt)

is an isomorphism. Finally, if we look at the commutative diagram

Hz(Tt) Hz(TI, A)

Hz(S) J2 H(Sz, B,)

we see that g,: H2(T)- H2(S2) is an isomorphism, and this allows us to
conclude that g" H2($2; Z) -- H2(TI, Z) is also an isomorphism.

2. Vector bundles and projective modules

Moore [5] has shown that there is a one-to-one correspondence between the
set of integers and the set of all equivalence classes of complex one-plane bundles
over S2. If 02 represents the trivial two-plane bundle then the idempotent
matrix

1 [ (1 x3)" (xa ix2)n1Nn n t_(Xl + ix2) (1 X3) J
n >_ O,

where hn (1 + x3)" + (1 x3)", defines an endomorphism of 02 in terms of
the coordinates of a point (Xl, x2, x3) S2, and the image of 02 under this map
is the bundle n corresponding to the positive integer n. The bundle corre-
sponding to the negative integer -n is the image of the endomorphism of 02
defined by the matrix N-n which is obtained from Nn by replacing x2 by -x2,
so N-n Nn. It is also shown that the first chern class c(,) n.

In the real case we notice that the trivial real four plane bundle 04 over S2

comes from the complex bundle 02 by restricting scalar multiplication to R.
For n > 0 consider the matrix

M, 1 [(1 x3)"IB, (1 +B"x3)nil where i I10 011
and if al + ia2 (xx + ix2)" then

B. =[aaa2 -a2]’aa
and B, is the transpose of B.. Then M. defines an endomorphism of 04 and if
r/. is the image of M., there is a one-to-one correspondence from the set Z + of
nonnegative integers and the set of equivalence classes of real two plane vector
bundles over S2. Since these bundles are restrictions of complex bundles they
are oriented and the euler class is given by e(r/.) c(.) n.
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Since the maps gV Tt S2 are continuous functions they pullback the vector
bundles over S2 described above to vector bundles over T.

PROPOSITION 2.1. (i) There exists a bijection from Z into Vect (T) given by
n --, g(7,)for I 1, 2,

(ii) There exists an injection from Z + into Vectn2 (T) given by n 9(q.).for
1= 1,2,....

Proof Recall that c1(,) n, so, since clg’(,) g(ea(,)) n, and c
is a one-to-one correspondence from Vect (T) to HZ(T, Z) [2, p. 234], it
follows that g(,) is equivalent to g() if and only if n k. Since g is an
isomorphism this proves (i). Since all of the bundles q, are orientable, we can
use the same property of their Euler classes to show that the map in (ii) is an
injection.

We note here that the bundle g(q,), n O, is the image of the trivial bundle
C2 x T under the endomorphism of C2 x T defined at the point

(Xl, X2, X3) T,
by the idempotent matrix

1 (1- gl3)" (g,, + iglz)n9N,,
(91 igt2)" (1 gl3)" ]

where the gl are the components of the function gt and hi, (1 + gt)" +
(1 9)". As above, 9N-, (9N,)-. If we again let

where (a + Jan) ( + i), then the bundle (,) is the image of the
endomorphism of R x T defined at the point (x, x, x) e T by the idem-
potent matrix

1 [(1 g,3)"I BIn

Denote by (T) the ideal in either R[x, x2, x3] or C[x, xz, x3] generated by the
polynomial T(Xl, x2, x3). Since T(Xl, xz, x3) is irreducible over C[x, xz, x3]
it is irreducible over R[Xl, x2, x3], and the ideal (TI) is a prime ideal in either
ring. Let

A, R[Xl, x2, x3]/(Tt) and CA, C[Xl, xz, x3]/(T), 1, 2,....

Since (Tl) is a prime ideal all of these rings are integral domains. The standard
inclusion map of R into C extends to an injection of A into CA for each L and
if we identify A with its image in CAt, then CAis a free A module with basis
{ 1, i}. Next, we adjoin (x + x + x)/2 to these rings to get the rings
B Aria] and CB CA[a] which are integral extensions of A and CBt,
respectively.
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Let St {fe Bt If(x) # 0 for all x e Tt}; then St is a multiplicative system
in Bt as well as in CBt, and we can form the rings of quotients (Bt)s, and (CB3s,.
Since Bt and CBt are integral domains, so are (Bt)s, and (CBt)s,. If we denote
the ring of continuous F-valued functions on Tt by cgr(Tt), where F C or R,
then, in the usual way, we can identify (B3s, and (CBt)s, with subrings of
cg(T3 and Cgc(T3.
Swan [9] has shown that the section functor F defines a one-to-one corre-

spondence between the set of equivalence classes of n-plane F vector bundles
over a normal space X and isomorphism classes of projective modules of rank n
over the ring of continuous F-valued functions on X. Since both hr. and are
not zero at any point on Tz, they are in St, and thus the matrices gN. have
all their entries in the rings (CBt)s, and the matrices g’M. have all their entries
in the rings (B3s,; hence they define the projective modules

Qt,. (CBt)Zs,9N. and P,,. (Bt),9M..
Since F(g’(.)) and Q. (R) Cgc(T3 are both the image of cg(Tt) under the map
defined by gN., they are isomorphic as c(T3 modules. Similarly, P. (R)
cgR(T3 is isomorphic to F(g’(r/.)). If we let #(A, n) denote the set of iso-
morphism classes of rank n projective A modules, then the above can be sum-
marized as follows"

THEOREM 2.2. (i) The map n Qt,. gives an injection ofZ into #((CB)s,, 1)
for each 1 1, 2,

(ii) The map n Pt. gives an injection of Z + into ((B3s,, 2)for each
l= 1, 2,....

We record some properties of these modules in the following propositions.

PROPOSITION 2.3. Qt,. is not stably trivialfor any n or 1.

Proof. If Qz. were stably trivial, since free (CBt)s, modules correspond to
free c(T3 modules under the map_ (R) ffc(T3, this would say that F(g’(.))

*(were stably trivial. This in turn would imply that the bundles gt .) were
stably trivial, that is, for some trivial bundle 0", g’(.) @ 0" 0m+ x. But
cl(g’(y.)) n, so el(gt(y.) @ 0") n, a contradiction.

PROPOSITION 2.4. For n and I odd, Pt,n i not stably trivial.

Proof The proof is the same as above, using the fact that w2(g(rln))
c (g’(.)) mod 2.

PROPOSITION 2.5. For each and n > 0, P,. is indecomposable.

Proof If Pz,. were decomposable then the vector bundle g’(q.) would also
have to be able to be written as a Whitney sum of 1-plane bundles. We will
show that this is impossible in the next section.
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3. Real 1-plane bundles over TI
The first Stiefel-Whitney characteristic class gives an isomorphism

wl" Vect (X) --, HI(X; Zz)
[2, p. 234].
Thus, since Hi(T;; Z2) Z22t, we must find 22t nonequivalent 1-plane bundles
over each Tt.
We will first classify the bundles over T1. For the present we shall consider

T1 as S x S1. It is well known that S RP1, the real projective line, so we
may consider T1 as RP x RP1. It is also well known that the bundle
(E, p, RP1), with E {(Ix], 2x) RP x R2 26 R}, is a nontrivial 1-plane
bundle over RP with wl()= g, where g is the nonzero element of
HI(RP1; Z2), I-4, pp. 2 and 7-1. Let P and P2 be the projection maps from Ta
onto the first and second coordinates, respectively. Let p’() and//2
P(0, and let el and e2 be the injections of RP into RP x RP1. Then the
sequence

H(Rpx Z2)-2* HI(Rp1 x Rp Z2)* H(RPL, Z2)
el* P2*

is split exact in either direction I-4, Appendix A, p. 16-1. So

w(fll) wl(p())= p(w())= p(o)

(0, O) HI(RP; Z2) H(RP; Z2) Z2 Z2,

and similarly, wl(fl2) (0, )e Z2 ) Z2. Finally, the bundle (R) f12 (see
[2-] for a definition) has w([3 (R)//2) w([3) + w1(2) (ct, ). Thus, with
0, these give a representative of each possible equivalence class in Vect, (T1).
The /-hole torus can be constructed by removing an open disk from the

l-l-hole torus and attaching a 1-hole torus which also has had a disk removed.
We note that if D is an open disk contained in Tt then the inclusion map
i" Tt\D T induces an isomorphism i*" HI(Tt; Z2) H(Tt\D; Z2). It
follows then that if the bundles 01 , f12,. fl 2 are representative of each
of the possible equivalence classes of bundles over T, then the Bj i*([3j) for
j 1,..., 22 give representatives of all the equivalence classes of 1-plane
bundles over T\D.

The classification of the 1-plane bundles over Tt will now proceed by induc-
tion. As above, Tt can be considered as T_ \Da w TI\Db for Da and Db open
disks. If (j is a 1-plane bundle over Tt_\D and dig is a 1-plane bundle over
TI\Db then by the clutching construction [1, p. 20], ( w k is a 1-plane bundle
over T. If we let A c3(Tt_ \D,) which is identified in Tt with c(Tl\Db), then
the Mayer-Vietoris sequence of the triple (Tt_ l\Da, T\Db, A) yields the exact
sequence

Ha(A; Z2)----’ H(Tt; Z2) H(Tt-I\Da; Z2) + H(T\D,; Z2).
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Since A is 8(T\D) St, H*(A; Z2) 0, 0 is a monomorphism, and since

HI(Tt; Z2) Z’=, HI(T_\Da Z2) H(Tx\Db; Z2),

it follows that is an isomorphism. The map is induced by the injections

ix’Tt-\O. T and i2" TD T,

and it is easy to check that

$(w(( k)) (i(wi(()), i(wi(6k)) (Wi((), W(k)).

In this way we get all possible elements of Z as images of w of bundles of the
form ( w 6k. Thus the classification of 1-plane bundles over Tt is reduced to
the classification of 1-plane bundles over Tt_ and over T, so by induction we
are done.

THEOREM 3.1. No nontrivial orientable real 2-plane bundle over Tt can be
decomposed into the Whitney sum of real 1-plane bundles.

Proof Let be an orientable 2-plane bundle over Tt and suppose
fi 2, where each is a 1-plane bundle over T. Since is orientable,
w(n) 0 [2, p. 244], so 0 w() w(( (2) w(() + w((2), which
implies that w(()= w1((2) or ( (2. Thus it suces to show that
( ( 02 for any 1-plane bundle ( over T. By our construction ( fix w...
w 6 where each 6i is a 1-plane bundle over TD. Since

[1, p. 22],

it suffices to show that 6 6 0z for any 1-plane bundle over Ta -D.
There are two possible cases" (a) 6 p() for or 2, but then 6 6
p() p() p( ) p(Oz) 0, or (b)6 p() p(), but then

6 g (p() p()) (p() p())

p() (p() p(O)

p() o
(p() o’) + (v()

02.

4. Dimensions

The projective modulus of the domain A, proj mod A, is the least integer k
such that every projective A module is the direct sum of a free module and a
module of rank < k [3].
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THEOREM 4.1. proj mod (B3s, 2 for l 1, 2,

Proof. Serre [-7] has shown that for a commutative integral domain A,

proj mod A _< dim max A

where max A is the maximum spectrum ofA. It is well known that dim max A _<
K-dim A, when K-dim A is the Krull dimension ofA, so proj mod A < K-dim A.
Now, K-dim R[xl, x2, x3] 3 and since (Tt(Xl, x2, x3)) is a prime ideal for
each l,

K-dim R[xl, x2, Xa]/(T(xl, x2, x3)) 2.

It is also well known that for any multiplicatively closed set S contained in a
ring A, K-dim As < K-dim A. Also it follows from the "Lying-over theorem"
and the "Going up theorem" [6, p. 30] that if S is an integral extension of A
then K-dim S K-dim A. Thus K-dim B K-dim A 2, and K-dim (B3s, <
2. But we have shown in Proposition 2.5 that the projective modules P,, are
irreducible and have rank 2. Thus

2 _< proj mod (Bt)s, <_ K-dim (Bt)s, < 2.
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