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We shall consider the following question" Under what conditions can we
find an embedding or an immersion f: M2 Ea of a closed surface M2 into
Euclidean 3-space such that there is a linear function on Ea, z" Ea R, so
that the composition zf: M2 R has exactly three critical points, one of which
may be degenerate. This question for a smooth embeddingf was suggested as
an exercise by H. Hopf in I-6, p. 92]. The only possibility of a three critical
point (3cp) smooth embedding is the case of a 2-sphere embedded as a "shoe
surface" (see Figure 1).

FIGURE

When we consider smooth immersions or polyhedral embeddings or immer-
sions, the results are quite different. In this note, we prove the following results.

THEOREM 1. There is a smooth 3cp immersion of the torus but there is no
smooth 3cp immersion for any orientable surface ofgenus greater than one.

THEOREM 2. There is a smooth 3cp immersion of any nonorientable surface.
These immersions can be approximated by polyhedral 3cp immersions but in
the polyhedral case we have an entirely different phenomenon"
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THEOREM 3. For any orientable surface except the sphere there is a polyhedral
3cp embeddin9 into Ea.
We remark that these questions are related to the factorization problems

studied by Haefliger in [3], where he solved the problem of determining when
an "excellent" mapping k" M2 - E2 could be expressed as the composition
of an immersion f: M2 -- E3 and the orthogonal projection n" Ea - E2.
Since for any surface ME there are functions h: M2 -- R with exactly three
critical points, our result may be considered as an attempt to factorize some
such h as an immersion or embedding f: ME -- Ea followed by an orthogonal
projection into a line.
The examples of 3cp polyhedral embeddings given in Section 5 have been used

as motivation for a study of the extensions of the idea of the degree of the Gauss
spherical mapping to polyhedral embeddings in [1].

In Section of this paper we deal with arbitrary functions h with three critical
points on surfaces. In Section 2 we examine those functions of the form h zf
and we develop the rotation number results which we need in Section 3 to prove
Theorem 1. Section 4 treats smooth 3cp immersions of nonorientable surfaces
and contains the proof of Theorem 2. The final section, which proves Theorem
3, deals with polyhedral embeddings and can be read directly after Section 1.

1. Functions with three critical points on closed surfaces

Let h:M2 -- R be a function with exactly three critical points, a minimum
Pl with value h(pl) a, a maximum P2 with h(p2) b, and a middle critical
point Po with h(po) 0. For any other pointp ofM2 the function h is ordinary,
i.e. there is a neighborhood U of p and a function h’" M- R such that
(hi U, h’): U --. R R is a (differentiable or polyhedral) homeomorphism.
For any just below b or just above a, the level curve

M(t) {p M2 h(p) t}

is a simple closed curve. Since the form of the level curve can only change at a
critical point, and sets

M + {p ME hp) > 0} and M- {p M2 h(p) < 0}

are both open 2-discs. The level set M(0) consists of Po together with N arcs
with both endpoints at P0. (This result is discussed in detail in [5]. Another
proof can be constructed using ideas in ]-7, Lemma 3.2].) We thus have a cell
decomposition of m2 into one vertex, N 1-cells, and two 2-cells so z(M2)

N + 2 3 N. If m2 is orientable so that z(M2) 2 29, then
N=29+ 1.

There is a disc neighborhood U ofpo in M2 such that M(0) c U consists of
2N disjoint arcs with one endpoint at Po and the other at points ql, q2,..., q2n

in cyclic order on the boundary curve t3U, indexed so that the (clockwise) arc
on OU from q2r-1 to q2r lies in M + for each r from to N. The complement
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M(0) U will consist ofN arcs y joining disjoint point pairs (qi, qj). For any
sufficiently small > 0, say < e, the set M(t) will consist of N arcs yij(t) near
yj in M(r) U connecting disjoint point pairs (q(t), qj(t)) in cU M/

along with N disjoint arcs at(t) in M(t) c U c M/ connecting the disjoint
point pairs q2r-l(t) and q2r(t). Similarly for -e < < 0 we have N arcs
yj(t) near y,j joining qi(t) to q(t) in (M(t) U) M- and arcs fir(t) in
M(t) c U w M- joining q2r(t) to q2r+ l(t) (with q2,(t) being joined to q(t)).
The set

M[-e, e] {p M2I -e < h(p) < e}
can then be expressed as a union of a disc M[- e, e] U bounded by 2N arcs

q,[-e, e] {q,(t) -e < < e}
and arcs er(e), fir(e), 0 < r _< N, together with N strips

attached to the disc at qir-e, e-I and qjl--e, all.
If j joins two points q and q with indices of the same parity then the arcs

ql--, dl and q[--e, di have the same orientation on the boundary of
Mr-e, e-I c u so the union of Ml--e, dl U and ii--e, e-I is a Mobius
band and M2 is nonorientable. It follows that if M2 is orientable then all arcs

join points with indices with different parity. If we orient the curve MI-dl,
so that the curve enters U at q(e) and leaves at q2(e), then each oriented arc

i(e) must have its first index even and its second index odd, and all arcs
are oriented from q2r-(e) to q2r(e). In this case we may orient M(-e) as well
so that the arcs flr(-e) are oriented from q2r+ (-) to q2r(-e) and the orienta-
tion on yj(-), from the even to the odd index, induces a similar orientation
on each arc of M(O) which agrees with the one induced by the orientation
on M(e).

See Figure 2 for three examples of level curves of functions with three critical
points.

FIGURE 2
Sphere, N 1; projective plane, N 2; torus, N 3

2. Differentiable height functions with three critical points
and rotation numbers

Letf: M2 E3 be a differentiable immersion and let z" E3 R be a linear
function so that the composition h z of, h(p) z(f(p)) has exactly three
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critical points. Then the function f lM(t) for a < < 0 or 0 < < b is an
immersion of the curve M(t) into the plane

E2(t) {x E3 [z(x) t}.

Let re" E3 --r E2 (= E2(0)) denote the orthogonal projection and set #t
rc f M(t), so for each 0 between a and b, gt is an immersion of a circle
M(t) into the plane E2. For sufficiently small e > 0, the immersion #b- will
be an embedding and the family (gt e < < b e} gives a regular homotopy
between the immersion tT and the embedding gb-. If we orient all the curves
M(t), > 0, in the same way then each of the immersions 9t has a well defined
rotation number W(gt). This rotation number is preserved under regular
homotopy so W(g)= W(#b-)= _+ since the rotation number of an
embedding is +__ 1. Similarly W(g_ ) W(g,+ ) +_ 1.
We use the following notations in computing the rotation number of a smooth

immersion g of a circle S. We consider an oriented line l in E2 and define
W(g, p, l) (respectively -1) if the oriented tangent line to g(S) at g(p)
coincides with the line parallel to through g(p) and if a neighborhood ofp on
S has image to the right (respectively left) of this line, and we set W(9, p, l) 0
otherwise. If l is chosen such that W(g, p, l) 0 for only finitely many p in s,
we set W(g, l) p in S W(g, p, l) and this rotation number W(g) W(g, l)
is independent of the line chosen.

3. Smooth 3cp immersions of orientable surfaces

Letf: M2 E3 be a smooth 3cp immersion of an orientable surface, so that
at each point f(p) there is a well-defined tangent plane. In particular at f(Po)
the tangent plane is Ez (= EZ(O)) and we find a disc neighborhood U ofpo in
M2 such that rc (fl U) maps U homeomorphically to an open disc in E2.
We may assume that the neighborhood U is chosen to fulfill the conditions of the
previous paragraphs of Section 1.
The set f(U) may then be described as the graph of some function

F: f(U) - R determined by the condition that (x, y, z) is in f(U) if and
only if z F(x, y), for any (x, y) in rc f(U). The function F is then itself a
differentiable function of two variables over the domain rc f(U) with precisely
one critical point at 0 f(Po), and the set F-1(0) consists of an even number,
say 2N, of differentiable arcs from 0. We need to know the behavior of the
function F near 0, and using the techniques of [5], we proceed to modify F to
a function such that the behavior we are interested in takes the simplest possible
form. We may choose open sets Vand Wwith0 V V W W U
and a function ig defined on n of(U) such that (i) ig coincides with F in
n f(U) rc f(W), (ii) ig has only one critical point in n f(U), and (iii) in
V,/V(x,y) real part of(x + iy)nifN> andx3 yZifN= 1. We may
then define a new immersion f: Mz Ez by setting f(p) f(p) if p U and
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f(p) (re f(p),/V orc f(p)) if p e U. The natural mapping from f(U) to
f(U) will be continuous everywhere and differentiable except perhaps at f(Po).
We assume that such a modification has been carried out if necessary and we
continue to writefinstead off. This classification is implicit in [5].
To compute the rotation numbers of the immersions g8 and g-8, choose an

oriented line I not parallel to any of the 2N rays tangent to the curves emanating
from 0 in F-l(0). For sufficiently small e, the points of M(e) and M(-e)
outside of a small neighborhood D of f(Po) with W(gs, p, l) 0 or
W(g-8, p, l) 0 are in 1-1 correspondence with equal algebraic signs. The
difference W(gs) W(g_ 8) depends only on the points in D in arcs gs(a,(e)) or
g_,(fl,(-e)) with oriented tangent lines parallel to I. We may, and do, assume
that D is contained in zt- lzt f(V) (see construction of/V) so that we can use the
explicit formula for/ there to find the contributions inside D to the winding
numbers of g8 and g_

FIGURE 3

We easily see from Figure 3 that W(gs) W(g_ 8) N 2 x(M2).
In order to obtain an 3cp embedding of a surface we must have W(gs)

W(g-8) so ;t(M2) 2 and M2 is a sphere. In the smooth case there is an
embedding which satisfies this condition--a "shoe" embedding with one
maximum, one minimum, and a middle critical point, where f(M) is locally
of the form (x, y, x3 y2). (See Figure 1.)
The above result allows for the possibility of a 3cp immersion with W(gs) 1,

W(g-8) -1, and 0 ;(M2), and we describe such an immersion by ex-
hibiting the imagesf(M(0)), gs(M(e,)), and g_8(M(-e)). (See Figure 4.)
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FIGURE 4

We may easily check that the immersions g, and 9-, have winding numbers
+ and -1, respectively. By the Whitney-Graustein Theorem, these curves
may be deformed by regular homotopies to circles.

4. Smooth 3cp immersions of nonorientable surfaces

For a nonorientable surface M2 iff: M2 - E3 is a 3cp immersion, then the
set M[-e, e] will be nonorientable so one of the strips yij[-e, e] will join a
pair of arcs qi[ e, e] and qj[ e, e] with indices of the same parity. For example
we obtain a 3cp immersion of the projective plane (see Figure 5).

FIGURE 5
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(This immersion was described by Kuiper in [4], p. 88.) Again, the curves
M(e.) and M(-e.) can be oriented so that each of the immersions # and
has winding number + (even though it is impossible to orient both so that the
orientations induced on the arcs off(M(0)) agree).

In order to obtain 3cp immersions of other nonorientable surfaces we modify
this example for the projective plane as follows" In the configuration formed by
two adjacent wedges at f(Po) we modify the curve M(0) by adding a curve
which will not change W(g) or W(g_ ) so both stay at but which decreases
the Euler characteristic by 1. In this way we can obtain 3cp immersions of all
nonorientable surfaces. (See Figure 6).

FIGURE 6

5. Polyhedral 3cp embeddings of orientable surfaces

To introduce the difference between the smooth and the polyhedral case, we
exhibit a polyhedral torus and a height function with precisely three critical
points. Between the levels and 2, the surface is the cone from (0, 0, 2)
over the closed polygon with vertices ( 2, 2, 1), ( 2, 0, 1), ( 1, 0, 1), (- 1, 1, 1),
(1, 1, 1), (- 1, 1, 1), (1, 1, 1) (1, 0, 1), (2, 0, 1), (2, 2, 1). Between -2 and

-1, the surface is the cone from (0, 0, -2) over the polygon (-2, 2, -1),
(-2, 0, -1), (-1, 0, -1), (-1, -1, -1), (1, -1, -l), (-1, 1, -1), (1, 1, -1),
(1, 0, -1), (2, 0, -1), (2, 2, -1).
Between -1 and + 1, the surface consists of vertical strips over the

segments from (- 1, 1, 1) to (- 1, 1, 1), from (1, 1, 1), to (1, 1,- 1)
and over the polygonal arc (- 1, 0, 1), (- 2, 0, 1), (- 2, 2, 1), (2, 2, 1),
(2, 0, -1), (1, 0, -1), together with the cone from the origin over the polygon
on the unit cube with vertices (1, l, 1), (1, 1, 1), (1, 0, 1), (1, 0, 1), (1, 1, 1),
(1, -1, -1), (-1, 1, -1), (-1, 1, 1), (-1, 0, 1),
(-1, -1, 1).
The intersection of this surface with any plane {(x, y, z)[z- t) for

-1 < < 0 or 0 < < is a simple closed polygon, and every vertex is
ordinary for the z-coordinate direction except for the maximum at (0, 0, 2), the
minimum at (0, 0, -2), and a third critical point at the origin (0, 0, 0).
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The intersection of the polyhedron with the plane z 0 consists of three
polygonal arcs with both endpoints at the origin. The Euler characteristic of the
surface is then 0 by the formula from Section 2, and since any embedded surface
is necessarily orientable, the surface is a torus.

FIGURE 7
Level

FIGURE 8
Level

FIGURE 9 FIGURE 10
Level 0

In a similar way we may obtain 3cp polyhedral embeddings of orientable
surfaces with Euler characteristic _<0. For example in Figure 11 we give the
level curves at -1, 0, and for a 3cp embedding of a surface of
genus 2 and Euler characteristic -2.

FIGURE 11
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Remarks. The key fact that makes the polyhedral situation so different from
the smooth case is that in the smooth case the topological form of any isolated
critical point is completely determined up to a reflection by the level set of the
surface through the critical point. This follows since for any point of a smooth
surface there is a neighborhood such that the orthogonal projection to some
plane is one-to-one (the tangent plane of the surface for example). This property
is not true in general for polyhedral embeddings.

Generally we may describe an isolated critical point Po of a height function

zf on an embedded polyhedron by taking a neighborhood

M(c e,c + e) {peM c e < zf(p) < c + e}

such that there are no vertices of M on any polygon M(t) for c e < < c
and c < < c + e, where zf(po) c. The polygon M(c) then consists of a
collection of disjoint embedded closed curves together with a number, N, of
polygonal arcs beginning and ending at f(Po). These arcs meet a small disc
D(c) about f(Po) in the plane E2(c) {x e E3[zx c} in a collection of
segments fromf(po) to pointsf(q), 1, 2,..., 2N. The part of M with the
image lying in the cylinder D(c) x [c e, c + e] over D(c) is then a 2-dimen-
sional disc neighborhood B2 ofPo back in M, and the image of this disc will be
a cone from f(Po) over a curve consisting of pieces of helix on the boundary
OD(c) x [c e, c + e] joining f(q) to f(q) on D(c + e) and to f(q:) on
OD(c ), together with polygonal arcs in the end discs D( ) and D(e + )
joining pointsf(q/+) tof(q]) orf(q-) to/(q-).

If the isolated critical point is equivalent to an isolated critical point of a
height function on a smoothly embedded or immersed surface, then the points
qi occur in cyclic order in the boundary of B 2, i.e.f(q{) is connected tof(q+ )
and f(qT) is connected to f(q[+ ) for all indices (or this ordering may be
reversed). It is this restriction which limits the possibilities of embedding or
immersing orientable surfaces smoothly into Ea. We have this same restriction
if we consider only imbeddings for which each point possesses a "transversal"
plane, onto which a sufficiently small neighborhood of the point projects in a
one-to-one way. (See Figure 12.) In the polygonal case however, there is no

f(qo)

ql

(%)
q5

FIGURE 12
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reason why the points q should be traced in cyclic order and indeed they are
not traced cyclically in the examples presented at the beginning of this section.
For example, the middle critical point has the points q, 1, 2,..., 6 traced
in the order ql, q,, q3, q2, qs, q6. (See Figure 13.)

FIGURE 13

For this embedded polyhedral disc there is no plane onto which the ortho-
gonal projection is one-to-one, and indeed it is possible to show that for any
3cp polyhedral embedding of an orientable surface other than the sphere, no
neighborhood of the middle critical point will project orthogonally into any
plane in a one-to-one way. This theorem and other results relating to the theory
of spherical images of polyhedral immersions will be presented in [-1 ].

Remark. For a smoothly embedded or immersed surface in Euclidean 3-
space, almost all height functions will have only nondegenerate critical points,
so for a surface of Euler characteristic 2 k there must be at least one max-
imum, at least one minimum, and at least k nondegenerate saddles, so the average
number of critical points over all height functions in E3 is greater than or equal
to 2 + k. For the polyhedral case, however, if there is a height function z such
that z fhas exactly three critical points, then for z’ sufficiently close to z, the
height function z’ f.also has exactly three critical points. An example of a
polyhedral embedding of the torus for which the average number of critical
points is less than 4 is given by the torus constructed by Csszir [2]. This
embedding has only seven vertices and every pair of vertices determines an edge
of the embedded polyhedral surface. This embedding is tiyht in the sense that
each height function has at most one strict local maximum and one strict local
minimum, so there can be at most two other critical levels, and therefore at most
four critical points. Since for certain directions there are exactly three critical
points, it follows that the average number of critical points for this embedding
is less than four although for any smooth embedding or immersion of the torus,
the average number of critical points is at least four.
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