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1. Statement of results

In I-l] we studied some properties of maximal integral manifolds of a contact
distribution of a Sasakian space form. Let M2n+l(c) denote a (2n + 1)-
dimensional Sasakian space form of constant b-sectional curvature c. The
purpose of this paper is to prove the following.

THEOREM. Let M be an n-dimensional compact integral manifold ofthe contact
distribution ofM2n+ 1(c) which is minimally immersed. If the sectional curvature

ofM is greater than
(n 2)(c -t- 3)
4(2n- 1)

then M is totally geodesic.

In [1] we showed that the 5-dimensional unit sphere Ss with its usual Sasakian
structure admits S2 as a totally geodesic integral surface of its contact distribu-
tion and the flat 2-dimensional torus as a minimal nontotally geodesic integral
surface. Thus in dimension five the number in the theorem is best possible.

2. Basic lemmas

We use the same notation and terminologies as in [1] unless otherwise stated.
It was proved in Ill that the second fundamental form of the immersion
satisfies

(1) allll= IiWll 2 + Z (h,hkRujk + h,h,R,kjk)
i, j, k, I,

1
tr (AiAj AjAi)2 + c 1

iltrll 2+ - ,j 4

where Rijk= are the components of the curvature tensor of M.
On the one hand, using the equation of Gauss we obtain

(2) (hihkRujk + hhiR,kjk)
i, j, k, l,

n(c + 3)iio.ii + 1
4

tr (AiAj AjAi)2 X (tr AiAj)2.
i,j i,j
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On the other hand, Yau’s idea in [4] can be applied as follows. For each m,
let h’,..., h be the eigenvalues of Am. Then we have

(h,hkmRnjk + h,h,mR,kjk) {h’h’Rk,k + (h?)2R,kik}
i, j, k, i, k

1
hk) Rikik.2(h
,,,

Therefore if the sectional curvature of M is greater than t, then we have

1X (hihkmlRlijk + hihimlRlkjk) >- ik (h hn)2t
i, j, k,

nt X (h")2

n tr A2,

since M is minimal so that i h’ 0. This implies that

(3) (hihkmlRlok + hihimlRlkjk) >__ ntl[crll 2.
i, j, k, 1,

From (1), (2), and (3) we have"

LEMMA 1. If the sectional curvature ofM is greater than iS, then

1/2Allall 2 IIV’all 2 + (1 + a)nllcrll 2 na(c + 3) (c 1)11o.ii 2

1 -2 a .. tr (AiAj AjAi)2 + a _i,j (tr AiAj)2

for all a > -1. (Equality holds for a -1.)

The following lemma is due to Ikawa, Kon, and Yamaguchi [3].

LEMMA 2. v’IIm -> 2,

Proof If we denote by hik the components of V’a, then we have

hk G((V,ka)(Xi, Xj), )

G(Vk(o’(Xi. Xj)). )

-G(o’(Xi. Xj). Vk)

-(.(X. Xj). Vx)

G(tT(Xi, Xj), Xk)
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from which it follows that

i,j,k,

E

>_ Ilall 2,

Finally the following lemma is purely algebraic.

h,.kh,’k + , h.khijk
i, j, k

11o"1[ 2

Q.E.D.

LEMMA 3.

_1 ilcrll (tr AiA) 2< ilcrl[4,
n i,j

3. Proof of the theorem

Since the symmetric (n, n)-matrix (tr AAj) is covariant for an orthogonal
change of bases, for a suitable choice of basis we may assume that

(4) trAAj 0 fori #:j.

An algebraic lemma of Chern, doCarmo, and Kobayashi (Lemma in [2])
implies that

(5) tr (AiAj AjAi)z >_ -2 (tr A)(tr Azj)
i,j i*j

-211all" + 2 (tr A)z.
From Lemma 1, Lemma 2, (4), and (5), it follows that

1/2AIIII 2 (1 + a)ncSIlall 2 (na- 1)(c + 3)ilall2
4

-(1 -a)llall" + (tr A/2)2

for all a e [- l, 1-1. This, together with Lemma 3 and (4), implies that

1/2AIIcrll 2 (1 + a)ncSIIcrll 2 (na-1)(c+3)4 11112 + {-(1-a)l
In particular, putting a (l/n), we obtain

1/2Allal[2 > {(2n- 1)6-(n-2)(c+3)1114
from which the theorem follows.
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