THE COMPONENT OF THE ORIGIN IN THE NEVANLINNA CLASS

BY
James W. Roberts

1. Introduction

The Nevanlinna class N is the algebra of functions f analytic in the open unit disc U whose characteristic function

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i t}\right)\right| d t
$$

is bounded for $0 \leq r<1$ where $\log ^{+} x=\max \{\log x, 0\}$. In [6], J. H. Shapiro and A. L. Shields define a metric d on N by

$$
\begin{equation*}
d(f, g)=\lim _{r \rightarrow 1} \frac{1}{2} \pi \int_{0}^{2 \pi} \log \left(1+\left|f\left(r e^{i t}\right)-g\left(r e^{i t}\right)\right|\right) d t \tag{1.1}
\end{equation*}
$$

Although the metric d is both complete and translation invariant, they also show that N is not connected and scalar multiplication is not continuous in the scalar variable. Now if $f \in N$, then

$$
\begin{equation*}
\lim _{r \rightarrow 1} f\left(r e^{i t}\right)=f\left(e^{i t}\right) \tag{1.2}
\end{equation*}
$$

where the limit holds for almost every $e^{i t}$ in the unit circle T and $\log \left|f\left(e^{i t}\right)\right|$ is integrable on T [1, p. 17]. N^{+}is the class of functions $f \in N$ such that

$$
\lim _{r \rightarrow 1} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i t}\right)\right| d t=\int_{0}^{2 \pi} \log ^{+}\left|f\left(e^{i t}\right)\right| d t
$$

(see [1, Section 2.5]). N^{+}may alternately be defined as the set of $f \in N$ such that

$$
\begin{align*}
d(f, 0) & =\lim _{r \rightarrow 1} \frac{1}{2} \pi \int_{0}^{2 \pi} \log \left(1+\left|f\left(r e^{i t}\right)\right|\right) d t \\
& =\frac{1}{2} \pi \int_{0}^{2 \pi} \log \left(1+\left|f\left(e^{i t}\right)\right|\right) d t \tag{1.3}
\end{align*}
$$

(see [6, Proposition 1.2]). In [6], J. H. Shapiro and A. L. Shields pose the problem of characterizing the component of the origin in N (and more generally in $N\left(U^{n}\right)$). They show in Corollary 2 of Theorem 3.1 that every finite dimensional subspace of N / N^{+}has the discrete topology. This fact suggests that quite possibly the space N / N^{+}is totally disconnected and equivalently N^{+}is the component of the origin in N. We shall prove that this is false and, in particular,
we shall characterize the component of the origin in N. It will further be shown that for a metric ρ (equivalent to the metric d) the open ρ-balls in the component of the origin are connected. Thus the component of the origin is locally connected.

I wish to thank M. Stoll for introducing me to this problem and for his numerous helpful suggestions in the preparation of this manuscript. I would also like to thank the referee for his helpful comments.

2. Preliminaries

From our point of view the most important feature of N is the canonical factorization property. A function $f \in N$ can be factored uniquely as follows [1, p. 25]:

$$
\begin{equation*}
f(z)=B(z) \frac{S_{\mu_{1}}(z)}{S_{\mu_{2}}(z)} F(z) \tag{2.1}
\end{equation*}
$$

where $B(z)$ is the Blaschke product with respect to the zeroes of $f, F(z)$ is an outer function, and $S_{\mu_{1}}(z)$ and $S_{\mu_{1}}(z)$ are singular inner functions with respect to the nonnegative singular measures μ_{1} and μ_{2} which are mutually singular and

$$
\begin{equation*}
S_{\mu_{j}}(z)=\exp \left[\int \frac{z+e^{i t}}{z-e^{i t}} d \mu_{j}(t)\right], \quad j=1,2 \tag{2.2}
\end{equation*}
$$

A function $f \in N$ is in N^{+}if and only if $S_{\mu_{2}}(z)=1$, i.e., $\mu_{2}=0[1, \mathrm{p} .26]$. Thus every function $g \in N$ can be written in the form $g=f / S_{\mu}$ where $f \in N^{+}$. In particular if $f=B S_{v} F$ and v is mutually singular with respect to μ we shall say that f / S_{μ} is in reduced form. If f / S_{μ} is in reduced form, then we define

$$
\begin{equation*}
\left\|\frac{f}{S_{\mu}}\right\|=d(f, 0)+\mu(T) \tag{2.3}
\end{equation*}
$$

In particular, if $f \in N^{+},\|f\|=d(f, 0)$ so that $\|\cdot\|$ is an extension of $d(\cdot, 0)$ to N. We now define

$$
\begin{equation*}
\rho(f, g)=\|f-g\| \quad \text { for } f, g \in N \tag{2.4}
\end{equation*}
$$

Proposition 2.1. (1) If $f \in N^{+}$and S_{μ} is a singular function, then $\left\|S_{\mu} f\right\|=$ $\|f\|$.
(2) If $f \in N^{+}$and S_{μ} is a singular inner function, then $\left\|f / S_{\mu}\right\| \leq\|f\|+\mu(T)$.
(3) ρ is a translation invariant metric on N.
(4) $\rho \geq d \geq \frac{1}{2} \rho$, i.e., the metrics ρ and d are equivalent.

Proof. (1) follows directly from the definition and the fact that $\left|S_{\mu}\left(e^{i t}\right)\right|=1$ a.e. on T.

Suppose that $f / S_{\mu}=g / S_{v}$ where g / S_{v} is in reduced form. We have $f=B S_{\gamma} F$
the canonical factorization of f. Let δ be the infimum of μ and γ. Then $\mu-\delta$ is mutually singular with respect to $\gamma-\delta$ and

$$
\frac{f}{S_{\mu}}=\frac{B S_{\gamma-\delta} S_{\delta} F}{S_{\mu-\delta} S_{\delta}}=\frac{B S_{\gamma-\delta} F}{S_{\mu-\delta}} .
$$

But then the expression on the right is in canonical form, so $v=\mu-\delta$ and $g=B S_{\gamma-\delta} F$. Thus

$$
\left\|\frac{f}{S_{\mu}}\right\|=\|g\|+v(T) \leq\left\|S_{\delta} g\right\|+(v+\delta)(T)=\|f\|+\mu(T)
$$

(3) will follow easily once we show that $\|\cdot\|$ is subadditive. Suppose f / S_{μ}, $g / S_{v} \in N$ are in reduced form. Then

$$
\begin{aligned}
\left\|\frac{f}{S_{\mu}}+\frac{g}{S_{\mu}}\right\| & =\left\|\frac{f S_{v}+g S_{\mu}}{S_{\mu+v}}\right\| \\
& \leq\left\|f S_{v}+g S_{\mu}\right\|+\mu(T)+v(T) \\
& \leq\left\|f S_{v}\right\|+\left\|g S_{\mu}\right\|+\mu(T)+v(T) \\
& =\left\|\frac{f}{S_{\mu}}\right\|+\left\|\frac{g}{S_{v}}\right\|
\end{aligned}
$$

To prove (4) we show that $\|\cdot\| \geq d(\cdot, 0) \geq \frac{1}{2}\|\cdot\|$. Now suppose that $f / S_{\mu} \in N$ is in reduced form. Then

$$
\begin{aligned}
d\left(\frac{f}{S_{\mu}, 0}\right)= & \lim _{r \rightarrow 1} \frac{1}{2} \pi \int_{0}^{2 \pi} \log \left(1+\left|\frac{f}{S_{\mu}\left(r e^{i t}\right)}\right|\right) d t \\
= & \lim _{r \rightarrow 1} \frac{1}{2} \pi \int_{0}^{2 \pi} \log \left(\left|S_{\mu}\left(r e^{i t}\right)\right|+\left|f\left(r e^{i t}\right)\right|\right) d t \\
& -\frac{1}{2} \pi \int_{0}^{2 \pi} \log \left|S_{\mu}\left(r e^{i t}\right)\right| d t \\
= & \lim _{r \rightarrow 1} \frac{1}{2} \pi \int_{0}^{2 \pi} \log \left(\left|S_{\mu}\left(r e^{i t}\right)\right|+\left|f\left(r e^{i t}\right)\right|\right) d t \\
& -\log \left|S_{\mu}(0)\right| \\
\leq & \lim _{r \rightarrow 1} \frac{1}{2} \pi \int_{0}^{2 \pi} \log \left(1+\left|f\left(r e^{i t}\right)\right|\right) d t+\mu(T) \\
= & \left\|\frac{f}{S_{\mu}}\right\| .
\end{aligned}
$$

In [6, Theorem 3.1], it is shown that $\lim _{a \rightarrow 0} d\left(a f / S_{\mu}, 0\right)=\mu(T)$ where f / S_{μ} is in reduced form. It follows that $d\left(f / S_{\mu}, 0\right) \geq \mu(T)$. Observe also that since $\left|S_{\mu}(z)\right| \leq 1$ for all $z \in U$,
$\lim _{r \rightarrow 1} \frac{1}{2} \pi \int \log \left(\left|S_{\mu}\left(r e^{i t}\right)\right|+\left|f\left(r e^{i t}\right)\right|\right) d t$

$$
\begin{aligned}
& \geq \lim _{r \rightarrow 1} \frac{1}{2} \pi \int \log \left(\left|S_{\mu}\left(r e^{i t}\right)\right|\left(1+\left|f\left(r e^{i t}\right)\right|\right) d t\right. \\
& =\|f\|+\frac{1}{2} \pi \int \log \left|S_{\mu}\left(r e^{i t}\right)\right| d t
\end{aligned}
$$

Thus by (2.5) $d\left(f / S_{\mu}, 0\right) \geq\|f\|$. But then

$$
d\left(\frac{f}{S_{\mu}}, 0\right) \geq \max \{\|f\|, \mu(T)\} \geq \frac{1}{2}\left\|\frac{f}{S_{\mu}}\right\|
$$

Corollary 2.2. (1) If $\left\langle f_{n} \mid S_{\mu_{n}}\right\rangle$ is a sequence of functions in N written in reduced form, then $\lim _{n \rightarrow \infty} f_{n} / S_{\mu_{n}}=0$ if and only if $\lim _{n \rightarrow \infty} f_{n}=0$ and $\lim _{n \rightarrow \infty} \mu_{n}(T)=0$.
(2) ρ is a complete metric.

In [6, Theorem 2.1] it is shown that if $\omega \in T, f / S_{\mu}, g / S_{v} \in N$ are in reduced form, and $\mu(\{\omega\})>v(\{\omega\})$, then there exists a set $V \subset N$ which is both closed and open such that $f / S_{\mu} \in V$ and $g / S_{v} \in V^{c}$. If μ is a measure on T, then μ is said to be continuous (or nonatomic) if $\mu(\{\omega\})=0$ for every $\omega \in T$. We now let
(2.6) $K=\left\{\frac{f}{S_{\mu}}: f \in N^{+}, \mu\right.$ is a continuous nonnegative singular measure $\}$.

Proposition 2.3. K is a closed subgroup of N which contains the component of the origin.

Proof. By the above remarks K is the intersection of subsets of N which are both closed and open. Thus K is closed and K contains the component of the origin. It is easily verified that K is a group.

In this paper we shall prove that K is the component of the origin in N and, in particular, that every open ball (with metric ρ) is connected. In [7], M. Stoll shows that $K=F^{+} \cap N$ thus obtaining a different formulation of K. For a definition of the class of analytic functions F^{+}see [8].

3. K is the component of the origin

If $C=\left\langle f_{i}\right\rangle, 1 \leq i \leq n$, is a finite sequence in N with $f=f_{1}, g=f_{n}$, and for some $\varepsilon>0, \rho\left(f_{i}, f_{i+1}\right)<\varepsilon, 1 \leq i \leq n-1$, then C is called an ε-chain from f to g. Throughout this section we will adopt the somewhat abusive convention of identifying a finite sequence with its range. If $E \subset N$ and $\varepsilon>0$,
then we say that E is ε-chainable if for every $f, g \in E$ there exists an ε-chain C from f to g such that $C \subset E$.

Our method of attack will be to show that every ball in K of ρ-radius r is ε-chainable for every $\varepsilon>0$. We will then use this fact to prove that every such ball is connected. This will show that K is both connected and locally connected. Since we already know that K contains the component of the origin, it will follow that K is the component of the origin.

Proposition 3.1. For every $\varepsilon>0$, every open ball in K is ε-chainable.

Proof. Let $\varepsilon>0$ and let B be the ball centered at the origin with ρ-radius r. Further let $f / S_{\mu} \in B$ with f / S_{μ} in reduced form. Since μ is a continuous measure on the unit circle T, there exists open intervals I_{i} and closed intervals J_{i} in T, $1 \leq i \leq n$, such that
(i) $J_{i} \subset I_{t}$ for $1 \leq i \leq n$,
(ii) $\bigcup_{i=1}^{n} J_{i}=T$, and
(iii) $\mu\left(I_{i}\right)<\varepsilon / 2$.

Now let μ_{i} denote the measure μ restricted to the interval I_{i}. Then the support of $\mu-\mu_{i}$ is contained in $T \cap I_{i}^{c}$. Thus by a well known theorem [3, p. 68], $S_{\mu-\mu_{i}}$ is continuous everywhere in the plane except at points in $T \cap I_{i}^{c}$. Since $S_{\mu-\mu_{i}}$ is nonzero in the closed disc off $T \cap I_{i}^{c}, S_{\mu-\mu_{i}}$ is bounded away from zero on the sector L_{i} determined by J_{i}, i.e., $L_{i}=\left\{r e^{i \theta}: \theta \in J_{i}\right\}$. Thus $\left|S_{\mu-\mu_{i}}\right| \geq$ $\delta_{i}>0$ on L_{i}. Since $U \subset \bigcup_{i=1}^{n} L_{i}, \sum_{i=1}^{n}\left|S_{\mu-\mu_{i}}\right| \geq \delta$ where $\delta=\min \left\{\delta^{i}\right.$: $1 \leq i \leq n\}$. But then by the corona theorem [1, p. 202] there exist functions $s_{i} \in H^{\infty}$ such that $\sum_{i=1}^{n} s_{i} S_{\mu-\mu_{i}}=1$. Letting $g_{i}=f s_{i}$ we have $g_{i} \in N^{+}$and $\sum_{i=1}^{n} g_{i} S_{\mu-\mu_{i}}=f$. Now let L be the at most n dimensional subspace of N^{+} generated by $\left\{g_{i} S_{\mu-\mu_{i}}: 1 \leq i \leq n\right\}$ and let B_{0} denote the ball of radius $r-\mu(T)$ in L. Note that $f \in B_{0}$. Since B_{0} is an open connected set in L, there exist functions K_{1}, \ldots, K_{m} such that for each K_{j} there exists i such that $K_{j}=$ $\varepsilon_{j} g_{i} S_{\mu-\mu_{i}}$ with ε_{i} complex such that
(a) $\left\|K_{j}\right\|<\varepsilon / 2$,
(b) $\sum_{j=1}^{p} K_{j} \in B_{0}$ for $1 \leq p \leq m$, and
(c) $\sum_{j=1}^{m} K_{j}=f$.

The proof of this assertion is precisely the same as the argument used to show that any two points contained in an open connected set in n-dimensional space can be connected by polygonal arcs. We now let f_{j} and v_{j} be defined by $v_{j}=\mu_{i}$ and $f_{j}=\varepsilon_{j} g_{i}$ where $K_{j}=\varepsilon_{j} g_{i} S_{\mu-\mu_{i}}$. Thus we have $K_{j}=f_{j} S_{\mu-v_{j}}$ and $\left\|K_{j}\right\|=$ $\left\|f_{j}\right\|$. Hence
(1) $\sum_{j=1}^{m} f_{j} / S_{v_{j}}=\sum_{j=1}^{m} f_{j} S_{\mu-v_{j}} / S_{\mu}=\sum_{j=1}^{m} K_{j} / S_{\mu}=f / S_{\mu}$.
(2) $\left\|\sum_{j=1}^{p} f_{i} / S_{v_{j}}\right\|=\left\|\sum_{j=1}^{p} K_{j} / S_{\mu}\right\| \leq\left\|\sum_{j=1}^{p} K_{j}\right\|+\mu(T)<r-\mu(T)+$ $\mu(T)=r$.

$$
\begin{equation*}
\left\|f_{j} / S_{v j}\right\| \leq\left\|f_{j}\right\|+v_{j}(T)<\varepsilon / 2+\varepsilon / 2=\varepsilon . \tag{3}
\end{equation*}
$$

Thus the sequence $\left\langle\sum_{j=1}^{p} f_{j} \mid S_{v_{j}}\right\rangle$ with $1 \leq p \leq m$ is an ε-chain from the origin to f / S_{μ}. Since any two points in B have ε-chains to the origin, any two points in B have ε-chains connecting them.

Lemma 3.2. If B is an open ball of ρ-radius r in $K, \varepsilon>0$ and $f, g \in B$, then there exists an ε-chain $C=\left\{f_{1}, \ldots, f_{n}\right\}$ such that $f=f_{1}, g=f_{n}$, and there exist balls B_{i} each centered at f_{i} for $2 \leq i \leq n-1$ such that $f_{i-1}, f_{i+1} \in B_{i}$, each B_{i} has radius less than ε, and $\bigcup_{i=1}^{n} \mathrm{cl}\left(B_{i}\right) \subset B$.

Proof. Without loss of generality we may assume that B is centered at the origin. Let $\delta=r-\max \{\|f\|,\|g\|\}>0$. Now let $\varepsilon_{0}=\min \{\varepsilon, \delta / 2\}$ and let B_{0} be the ball centered at the origin of radius $r-\delta / 2$. Then, $f, g \in B_{0}$, and there exists an ε_{0}-chain, $C=\left\{f_{1}, \ldots, f_{n}\right\}$, with $f=f_{1}$ and $g=f_{n}$. It is clear that if B_{i} is the ball of radius ε_{0} about f_{i} for $2 \leq i \leq n-1$, then B_{1}, \ldots, B_{n} satisfy the conditions of the lemma.

Theorem 3.3. K is the component of the origin in N and every ρ-ball in K is connected.

Proof. By Proposition 3.1 we need only show that the open ρ-balls are connected. Let B be an open ρ-ball in K and let $f, g \in B$. Further let $\left\langle\varepsilon_{n}\right\rangle$ be a monotone decreasing sequence of positive numbers such that $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$. By Lemma 3.2 there exists an ε_{1}-chain $C_{1}=\left\{f_{1}, \ldots, f_{m}\right\}$ from f to g in B and there exist balls B_{i} each centered at $f_{i}, 2 \leq i \leq m-1$ and each with ρ-radius less than ε_{1} such that $f_{i-1}, f_{i+1} \in B_{i}$, and $\mathrm{cl}\left(B_{i}\right) \subset B$. Now let $E_{1}=\bigcup_{i=1}^{m} B_{i}$. Observe that $C_{1} \subset E_{1}, \mathrm{cl}\left(E_{1}\right)$ can be finitely covered by balls of ρ-radius ε_{1}, and $\mathrm{cl}\left(E_{1}\right) \subset B$. Now each pair f_{i}, f_{i+1} is contained in one of the balls B_{j} for $j=i$ or $j=i+1$. Thus by the same procedure we can obtain an ε_{2}-chain from f_{i} to f_{i+1} in B_{j} with corresponding balls of radius less than ε_{2} and with closures inside B_{j}. If we let C_{2} denote the chain obtained by unioning (juxtaposing) the $m-1 \varepsilon_{2}$-chains and if we let E_{2} be the union of the balls, then C_{2} is an ε_{2}-chain, $C_{1} \subset C_{2}, C_{2} \subset E_{2}, \mathrm{cl}\left(E_{2}\right)$ can be finitely covered by ε_{2}-balls, and $E_{2} \subset E_{1}$. Continuing inductively we obtain ε_{n}-chains C_{n} and sets E_{n} such that $C_{n} \subset C_{n+1}, E_{n+1} \subset E_{n}, C_{n} \subset E_{n}$, and each cl $\left(E_{n}\right)$ can be finitely covered by ε_{n}-balls. If we let $E=\mathrm{cl}\left(\bigcup_{n=1}^{\infty} C_{n}\right)$, then $E \subset \mathrm{cl}\left(E_{n}\right)$ for each n. Thus E is totally bounded and $E \subset B$. Since (K, ρ) is a complete metric space, E is compact. Also $f, g \in E$. By its construction E is ε-chainable for every $\varepsilon>0$. Since a compact metric space is connected if and only if it is ε-obtainable for every $\varepsilon>0, E$ is connected [4, Theorem 5.1, p. 81]. But then for $f \in B, B$ can be written as a union of connected sets containing f. Hence B is connected. This completes the proof.

4. Remarks

We note that K is arcwise connected since it is a connected, locally connected, complete metric space [2, Theorem 3-17, p. 118].

The question of characterizing the component of the origin in $N\left(U^{n}\right)$ is still
open in the case $n>1$. The component of the origin in $N\left(U^{n}\right)$ is definitely not $N^{+}\left(U^{n}\right)$. This follows since if we define $\phi: U^{n} \rightarrow U$ by $\phi\left(z_{1}, \ldots, z_{n}\right)=z_{1}$, then the map $C_{\phi}: N \rightarrow N\left(U^{n}\right)$ defined by $C_{\phi}(f)=f \circ \phi$ isometrically embeds N in $N\left(U^{n}\right)$. In particular $C_{\phi}(K)$ is connected in $N\left(U^{n}\right)$ but is not contained in $N^{+}\left(U^{n}\right)$.

The spaces N / K and K / N^{+}could be of interest for further study. N / K is totally disconnected but is not discrete. K / N^{+}is connected and locally connected, but by [6] every finite dimensional subspace of K / N^{+}has the discrete topology. Hence neither of these is trivial and their study might shed more light on the space N.

References

1. P. L. Duren, Theory of H^{p}-spaces, Academic Press, New York, 1970.
2. J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961.
3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.
4. M. H. A. Newman, Elements of topology of plane sets of points, Cambridge University Press, 1951.
5. W. Rudin, Function theory in polydiscs, W. A. Benjamin, New York, 1969.
6. J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna class, to appear.
7. M. Stoll, A characterization of $F^{+} \cap N$, to appear.
8. N. Yanagihara, The containing Fréchet space for the class N^{+}, Duke Math. J. 40 (1973), pp. 93-103.

University of South Carolina
Columbia, South Carolina

