THE AUTOMORPHISMS AND CONJUGACY CLASSES OF LF($2,2^{n}$)

BY
Joseph B. Dennin, Jr.

1. Introduction

Let Γ denote the 2×2 modular group; that is, the group of 2×2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. Let $\Gamma(n)$ denote the principal congruence subgroup of level n; that is, the subgroup of Γ consisting of all matrices congruent $\bmod n$ to $\pm I$ where I is the identity matrix. A subgroup G of Γ is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. Let $L F(2, n)=$ $S L(2, n) / \pm I$ where $S L(2, n)$ is the special linear group of degree two with coefficients in Z_{n}, the integers $\bmod n$. Then $L F(2, n)$ is isomorphic to $\Gamma / \Gamma(n)$. The congruence subgroups of Γ and hence the groups $L F(2, n)$ play an important role in the study of elliptic modular functions and so the structure of both Γ and $L F(2, n)$ have been studied in some detail (cf. the bibliography for some examples). In particular, in [5] D. McQuillan determined the automorphisms of and explicit representatives for the conjugacy classes of $L F\left(2, p^{n}\right), p$ an odd prime. In this paper, we determine explicit representatives for the conjugacy classes of $L F\left(2,2^{n}\right)$ in Section 2 and determine the automorphisms of $L F\left(2,2^{n}\right)$ in Section 3.

The following notation will be standard. $H_{n}=L F\left(2,2^{n}\right)$. An element A in H_{n} will be written $\pm(a, b, c, d)$. ϕ_{r}^{n} will denote the natural homomorphism from H_{n} to $H_{r}, 1 \leq r \leq n$, defined by reducing all the entries in a matrix in $H_{n} \bmod 2^{r}$. K_{r}^{n} will denote the kernel of ϕ_{r}^{n} and it is well known that the order of $K_{r}^{n}=2^{3(n-r)}$ if $r \neq 1$ and $2^{3 n-4}$ if $r=1$. Let X be a set of representatives, including 1 , for V / V^{2} where V is the set of units in $Z_{2^{n}} . u$ will denote an arbitrary element in X.

2. The conjugacy classes

$L F(2,2)$ has order 6 and $L F(2,4)$ has order 24 and the representatives of the conjugacy classes in these groups are easily obtained by listing the elements and calculating. For $L F(2,2)$, one has $\pm I, \pm(0,-1,1,1), \pm(0,1,-1,0)$; for $L F(2,4)$, one has $\pm I, \pm(1,2,0,1), \pm(0,1,-1,0), \pm(1,1,0,1), \pm(0,-1,1,1)$. So we consider $H_{n}, n \geq 3$. The following result, analogous to Lemma 1 in [5] will be useful.

Lemma 1. Let N_{r} be the number of solutions of the congruence

$$
\begin{equation*}
A x^{2}+B x y+C y^{2} \equiv D \quad\left(\bmod 2^{r}\right) \tag{1}
\end{equation*}
$$

where A, B, C, D are integers, $D \not \equiv 0(\bmod 2)$ and $r \geq 3$. Then $N_{r}=2^{r-3} N_{3}$.
Received October 28, 1974.

Proof. The proof is by induction on r with the case $r=3$ obvious. Suppose $r>3$ and (a, b) is a solution to $(1) \bmod 2^{r-1}$. If $B \not \equiv 0(\bmod 2)$, then (a, b) generates two solutions to (1) mod 2^{r}. To see this, consider
$A\left(a+2^{r-1} t\right)^{2}+B\left(a+2^{r-1} t\right)\left(b+2^{r-1} s\right)+C\left(b+2^{r-1} s\right)^{2} \equiv D\left(\bmod 2^{r}\right)$
and observe there are precisely two solutions for (t, s) since at least one of a and b is odd. So $N_{r}=2 \cdot N_{r-1}$. If $B \equiv 0(\bmod 2)$, then (a, b) generates eight solutions to (1) mod 2^{r}. To see this, consider
$A\left(a+2^{r-2} t\right)^{2}+B\left(a+2^{r-2} t\right)\left(b+2^{r-2} s\right)+C\left(b+2^{r-2} s\right)^{2} \equiv D\left(\bmod 2^{r}\right)$ which has two solutions for (t, s). The eight solutions are then given by

$$
\left(a+2^{r-2} t+2^{r-1} \varepsilon, b+2^{r-2} s+2^{r-1} \varepsilon^{\prime}\right)
$$

where $\varepsilon, \varepsilon^{\prime}$ are in $\{0,1\}$. However, these same eight solutions to (1) $\bmod 2^{r}$ are also generated by the solutions

$$
\left(a+2^{r-2}, b\right),\left(a, b+2^{r-2}\right) \text { and }\left(a+2^{r-2}, b+2^{r-2}\right)
$$

to (1) $\bmod 2^{r-1}$ and by no other pair (c, d) which is a solution to $(1) \bmod 2^{r-1}$. So $N_{r}=2 \cdot N_{r-1}$.

First we will classify the elements of $H_{n}-K_{1}^{n}$. Note that if $A= \pm(a, b, c, d)$ is in $H_{n}-K_{1}^{n}$, then, by conjugating by $\pm(0,-1,1,0)$ if necessary, we may assume that $b \not \equiv 0\left(\bmod 2^{n}\right)$. Let

$$
s=\text { trace of } \pm(a, b, c, d)= \pm(a+d)
$$

Let $N(t, u)= \pm(1, u, t, 1+u t)$ where 2 divides t.
Theorem 1. Suppose $A= \pm(a, b, c, d)$ is in $H_{n}, n \geq 3, A$ is not in K_{1}^{n}, $b \not \equiv 0\left(\bmod 2^{n}\right)$ and 2 divides $s^{2}-4$. Then A is conjugate to $N(t, u)$ where u is chosen such that $b^{-1} u$ is a quadratic residue and t is chosen such that

$$
t u \equiv s-2\left(\bmod 2^{n}\right)
$$

Proof. We need $B= \pm(y, v, w, x)$ such that $B A=N(t, u) B$. This leads to the following congruences $\left(\bmod 2^{n}\right)$:

$$
\begin{align*}
w & \equiv u^{-1}(y(a-1)+c v) \tag{1}\\
x & \equiv u^{-1}(v(d-1)+b y) \tag{2}\\
a w+c x & \equiv t y+w+t u w \tag{3}\\
b w+d x & \equiv t v+x+t u x \tag{4}\\
1 & \equiv y x-v w \tag{5}
\end{align*}
$$

(1), (2), and (5) in turn give

$$
\begin{equation*}
b y^{2}+(d-a) y v-c v^{2} \equiv u \quad\left(\bmod 2^{n}\right) \tag{6}
\end{equation*}
$$

Pick the u such that $b^{-1} u$ is a quadratic residue $\bmod 2^{n}$. Then $v \equiv 0$ and $y \equiv\left(b^{-1} u\right)^{1 / 2}\left(\bmod 2^{n}\right)$ is a solution to (6) and with t chosen such that $t u \equiv$ $s-2$, the y, v, w, and x from (1), (2), and (5) also satisfy (3) and (4).

Corollary 1. If $2 \| s$, then A is conjugate to exactly one element in $N_{1}=$ $\{N(t, u): 8 \mid t\}$ and the conjugacy class of A has order $3 \cdot 2^{2 n-4}$.

Proof. By selecting the proper sign, we may assume $s-2$ and hence t is divisible by 8 since exactly one of $s-2$ or $-s-2$ is. By Theorem $1, A$ is conjugate to some element in N_{1}. If $N(t, u)$ is conjugate to $N\left(t^{\prime}, u^{\prime}\right)$, then by comparing traces either $t u \equiv t^{\prime} u^{\prime}\left(\bmod 2^{n}\right)$ or $t u+2 \equiv-t^{\prime} u^{\prime}-2\left(\bmod 2^{n}\right)$. In the second case, $-4 \equiv t^{\prime} u^{\prime}+t u\left(\bmod 2^{n}\right)$ which is impossible since 8 divides t and t^{\prime}. In the first case, reducing mod 8 , we see that $\pm(1, u, 0,1)$ is conjugate to $\pm\left(1, u^{\prime}, 0,1\right)$ in H_{3} which implies that $u=u^{\prime}$. But then $t \equiv$ $t^{\prime}\left(\bmod 2^{n}\right)$. So $N(t, u)$ is conjugate to $N\left(t^{\prime}, u^{\prime}\right)$ if and only if $t=t^{\prime}$ and $u=u^{\prime}$. So A is conjugate to exactly one element in N_{1}. To find the elements $\pm(y, v, w, x)$ in the normalizer of $N(t, u)$, use the argument of Theorem 1 and solve $y^{2}+y v t+v^{2} u t \equiv 1\left(\bmod 2^{n}\right)$. This has 2^{5} solutions $\bmod 8$ and so by Lemma $1,2^{n+2}$ solutions mod 2^{n}. So there are 2^{n+1} elements in the normalizer of $N(t, u)$ and $3 \cdot 2^{2 n-4}$ elements in its conjugacy class.

Since there are $2^{n-1} N(t, u)$ in $N_{1}\left(2^{n-3}\right.$ choices for t and 4 choices for $\left.u\right)$, this accounts for $3 \cdot 2^{3 n-5}$ elements in H_{n}.

Corollary 2. If $4 \mid s$, then A is conjugate to exactly one element in $N_{2}=$ $\{N(t, 1): 2 \| t\}$ and the conjugacy class of A has order $3 \cdot 2^{2 n-3}$.

Proof. Applying Theorem 1 and its proof, we see that with $2 \| t$ and t^{\prime}, $N(t, u)$ is conjugate to $N\left(t^{\prime}, u^{\prime}\right)$ if and only if $u u^{\prime} \equiv 1$ or $5(\bmod 8)$ and $t u \equiv$ $t^{\prime} u^{\prime}\left(\bmod 2^{n}\right)$ or $u u^{\prime} \equiv 3$ or $7(\bmod 8)$ and $t u+t^{\prime} u^{\prime} \equiv-4\left(\bmod 2^{n}\right)$. By Theorem $1, A$ is conjugate to $N(t, u)$ for some t, u with $2 \| t$ and by the previous comment u can be chosen to be 1 . For the normalizer of $N(t, u)$, we must solve $y^{2}+y v t+v^{2} t \equiv 1\left(\bmod 2^{n}\right)$ which has 2^{n+1} solutions. So there are 2^{n} elements in the normalizer of $N(t, u)$ and $3 \cdot 2^{2 n-3}$ elements in its conjugacy class.

Since there are 2^{n-2} elements in N_{2}, there are 2^{n-2} distinct conjugacy classes represented here accounting for $3 \cdot 2^{3 n-5}$ elements of H_{n}.

Theorem 2. Suppose $A= \pm(a, b, c, d)$ has $s^{2}-4 \equiv 5(\bmod 8)$. Then A is conjugate to $\pm(0,-1,1, s)$ and the conjugacy class of A has $2^{2 n-1}$ elements in it. $\pm(0,-1,1, s)$ is conjugate to $\pm\left(0,-1,1, s^{\prime}\right)$ if and only if $s^{\prime}= \pm s$.

Proof. We need to find $B= \pm(y, v, w, x)$ such that $B A= \pm(0,-1,1, s) \cdot B$. It is sufficient to solve $w \equiv-a y-c v, x \equiv-b y-d v, y x-v w \equiv 1$ all $\bmod 2^{n}$ which yield

$$
c v^{2}+(a-d) y v-b^{2} \equiv 1 \quad\left(\bmod 2^{n}\right)
$$

Since $(a-d)^{2}+4 b c=s^{2}-4 \equiv 5(\bmod 8), b, c$, and $(a-d)$ have to be odd. Then $c v^{2}+(a-d) y v-b y^{2} \equiv 1$ is solvable $\bmod 8$ and so is solvable $\bmod 2^{n}$. For the normalizer of $\pm(0,-1,1, s)$, we must solve $y^{2}-y v s+v^{2} \equiv$ $1\left(\bmod 2^{n}\right)$ which has $4 \cdot 3$ solutions $\bmod 8$ and so, by Lemma $1,3 \cdot 2^{n-1}$ solutions $\bmod 2^{n}$. So there are $2^{2 n-1}$ elements in its conjugacy class. The usual calculations show that $\pm(0,-1,1, s)$ is conjugate to $\pm\left(0,-1,1, s^{\prime}\right)$ if and only if $s^{\prime}= \pm s$.

Since s is odd, there are 2^{n-2} distinct conjugacy classes with representatives $\pm(0,-1,1, s)$ accounting for $2^{3 n-3}$ elements in H_{n}. Any element in $H_{n}-K_{1}^{n}$ is conjugate to one of $N(t, u)$ with 8 dividing t or $2 \| t$ or to one of $\pm(0,-1,1, s)$ since the number of elements in their conjugacy classes is

$$
3 \cdot 2^{3 n-5}+3 \cdot 2^{3 n-5}+2^{3 n-3}=5 \cdot 2^{3 n-4}
$$

which is the order of $H_{n}-K_{1}^{n}$.
Now we must determine representatives for the conjugacy classes in K_{1}^{n}. Since K_{r}^{n} is normal in H_{n} and $K_{r+1}^{n} \subseteq K_{r}^{n}, 1 \leq r \leq n-1, K_{r}^{n}-K_{r+1}^{n}$ splits in H_{n} into complete classes of conjugate elements. K_{n-1}^{n} has four conjugacy classes represented by

$$
\pm I, \quad \pm\left(1+2^{n-1}, 0,0,1+2^{n-1}\right), \quad \pm\left(1,2^{n-1}, 2^{n-1}, 1\right) \quad \text { and } \quad \pm\left(1,2^{n-1}, 0,1\right)
$$

Now consider the following sets of matrices in $K_{r}^{n}-K_{r+1}^{n}$ for $2 \leq r \leq n-2$:
(1) $P(m, r, u)= \pm\left(1,2^{r} u+2^{r+1}, 2^{r+1} m, 1+2^{2 r+2} m+2^{2 r+1} m u\right)$ where $1 \leq m \leq 2^{n-r-1}$;
(2) $M(w, r, u)= \pm\left(1,2^{r} w, 2^{r} w u, 1+2^{2 r} w^{2} u\right)$ where $1 \leq w \leq 2^{n-r}$ and $(w, 2)=1$;
(3) $Q(a, r)= \pm\left(1+2^{r}+2^{r+2} a, 2^{r+1}, 2^{r+1}, 1-2^{r}+2^{r+2} d\right)$ where $1 \leq a \leq 2^{n-r-2}$ and d is chosen so that the determinant is ± 1;
(4) $D(x)= \pm\left(x, 0,0, x^{-1}\right)$ where $1 \leq x \leq 2^{n}$ and $x \equiv 1\left(\bmod 2^{r}\right), x \not \equiv 1$ $\left(\bmod 2^{r+1}\right)$.

To see that an element in one of these sets is not conjugate to any element in a different set, reduce mod 2^{r+2} and observe that in $K_{r}^{r+2}-K_{r+1}^{r+2}$, their images belong to the sets corresponding to the original sets. Then a straightforward calculation shows that these images are not conjugate and so the original elements could not be conjugate.

Proposition 1.

element order of conjugacy class

(i)	$D(x)$	$3 \cdot 2^{2 n-2 r-3}$	
(ii)	$Q(a, r)$	$2^{2 n-2 r-3}$	
(iii)	$P(m, r, u)$	$3 \cdot 2^{2 n-2 r-3}$	if $m \equiv 1$ or $2(\bmod 4)$
		$3 \cdot 2^{2 n-2 r-4}$	if $m \equiv 0(\bmod 4)$
(iv)	$M(w, r, u)$	$3 \cdot 2^{2 n-2 r-2}$	if $u \equiv 1$ or $5(\bmod 8)$ and $w \equiv 1(\bmod 8)$
		$3 \cdot 2^{2 n-2 r-3}$	if $u \equiv 3$ or $7(\bmod 8)$ and

Proof. (i) $\pm(a, b, c, d)$ is in the normalizer of $D(x)$ if and only if $b x \equiv b x^{-1}$ and $c x \equiv c x^{-1}\left(\bmod 2^{n}\right)$. Since $D(x)$ is in $K_{r}^{n}-K_{r+1}^{n}, D(x)$ can be written

$$
\pm\left(u+2^{r} \mu, 0,0, u-2^{r} \mu\right)
$$

where 2 does not divide μ and $u^{2}-2^{2 r} \mu^{2} \equiv 1\left(\bmod 2^{n}\right)$. So $x-x^{-1} \equiv$ $2^{r+1} \mu\left(\bmod 2^{n}\right)$ and $\pm(a, b, c, d)$ is in the normalizer if and only if 2^{n-r-1} divides both b and c. Since b and c are both even and $a d-b c \equiv 1\left(\bmod 2^{n}\right), a$ has to be odd and $d \equiv a^{-1}(1+b c)\left(\bmod 2^{n}\right)$. So there are $2^{n+2 r}$ elements in the normalizer of $D(x)$ and $3 \cdot 2^{2 n-2 r-3}$ elements in its conjugacy class.
(ii) $\pm(x, y, w, z)$ is in the normalizer of $Q(a, r)$ if and only if

$$
\begin{gather*}
2^{r+1} y \equiv 2^{r+1} w \tag{1}\\
2^{r+1} x+2^{r+2} d y \equiv 2^{r+1} y+2^{r+2} a y+2^{r+1} z \quad\left(\bmod 2^{n}\right) \tag{2}\\
x z-y w \equiv 1 \tag{3}
\end{gather*}
$$

(1) implies that $w \equiv y\left(\bmod 2^{n-r-1}\right)$ and then (2) implies that

$$
x \equiv y(1+2 a-2 d)+z \quad\left(\bmod 2^{n-r-1}\right)
$$

Now solving (3) mod 8 and using Lemma 1 , one obtains $3 \cdot 2^{n+2 r}$ elements in the normalizer of $Q(a, r)$ and $2^{2 n-2 r-3}$ elements in its conjugacy class.

The proofs of (iii) and (iv) are similar.
Theorem 3. A complete set of representatives for the conjugacy classes in $K_{r}^{n}-K_{r+1}^{n}, 2 \leq r \leq n-2$, is given by:
(i) $\left\{D(x) \mid x \neq \pm y^{-1}\right.$ for any two $\left.D(x), D(y)\right\}$;
(ii) $\{Q(a, r)\}$;
(iii) $\{P(m, r, u):$ if $m \equiv 0$ or $1(\bmod 4)$, then u is arbitrary; if $m \equiv 2(\bmod 4)$ then $u \equiv 1$ or $3(\bmod 8)\}$;
(iv) $\{M(w, r, u)$: if $u \equiv 1$ or $5(\bmod 8)$, then $w \equiv 1(\bmod 8)$; if $u \equiv 3$ or, $7(\bmod 8)$, then $w \equiv 1$ or $3(\bmod 8)\}$.

Proof. (i) A conjugate of $D(x)$ has the form

$$
\pm\left(c d x-b c x^{-1}, a b\left(x^{-1}-x\right), c d\left(x-x^{-1}\right),-b c x+a d x^{-1}\right)
$$

and so $D(x)$ is conjugate to $D(y)$ if and only if $x \equiv x^{-1}\left(\bmod 2^{n}\right)$ or $a b$ and $c d \equiv 0\left(\bmod 2^{n}\right)$. In the second case, one has $y=-x^{-1}$ since $a d-b c \equiv$ $1\left(\bmod 2^{n}\right)$. So $D(x)$ is conjugate to $D(y)$ if and only if $y= \pm x^{-1}$.
(ii) We show that $Q(a, r)$ is not conjugate to $Q\left(a^{\prime}, r\right), a \neq a^{\prime}$, by induction on $n-r$ where $r=n-(n-r)$. If $n-r=2$, there is only one value for a. For $n-r>2$, if $Q(a, r)$ is conjugate to $Q\left(a^{\prime}, r\right)$, their images $\bmod 2^{n-1}$ are conjugate and so by the induction hypothesis, they reduce to the same element. So $a^{\prime}=a+2^{n-r-3}$. But then

$$
\pm(x, y, w, z) \cdot Q(a, r)=Q\left(a^{\prime}, r\right) \cdot \pm(x, y, w, z)
$$

if and only if

$$
\begin{align*}
y & \equiv w+2^{n-r-2} x \tag{1}\\
z & \equiv x+y t \tag{2}\\
z & \equiv x+w t \tag{3}\\
w & \equiv y+2^{n-r-2} z \tag{4}
\end{align*}
$$

all $\bmod 2^{n-r-1}$, where t is odd. Then (1) and (4) imply $z \equiv x(\bmod 2)$. If x and z are even, then w and y are even which contradicts $x z-y w \equiv 1\left(\bmod 2^{n}\right)$; if x and z are odd, (1) implies that $y \equiv w+2^{n-r-2}\left(\bmod 2^{n-r-1}\right)$ and (2) and (3) imply that $y \equiv w\left(\bmod 2^{n-r-1}\right)$ which is a contradiction. So $Q(a, r)$ is not conjugate to $Q\left(a^{\prime}, r\right)$.
(iii) Direct calculation shows that distinct representatives for conjugacy classes with representatives of the form $P(m, r, u)$ are given by $P(1, n-2,1)$, $P(2, n-2,1)$, and $P(2, n-2,3)$ in $K_{n-2}^{n}-K_{n-1}^{n}$ and by $P(1, n-3, u)$ and $P(4, n-3, u)$ with $u=1,3,5$, or 7 and $P(2, n-3, u)$ with $u=1$ or 3 in $K_{n-3}^{n}-K_{n-2}^{n}$. Assume $r \leq n-4$. For a fixed u,

$$
\pm(a, b, c, d) P(m, r, u)=P\left(m^{\prime}, r, u\right) \cdot \pm(a, b, c, d)
$$

if and only if

$$
\begin{gather*}
2 b m \equiv(2+u) c \tag{1}\\
(2+u) a+2^{r+1} b m(u+2) \equiv(u+2) d \tag{2}\\
2 d m \equiv 2 m^{\prime} a+2^{r+1} m^{\prime} c(u+2) \tag{3}\\
(2+u) c+2^{r+1} d m(u+2) \equiv 2 b m^{\prime}+2 d m^{\prime}(u+2) \tag{4}
\end{gather*}
$$

all $\bmod 2^{n-r}$. Suppose $m-m^{\prime} \not \equiv 0\left(\bmod 2^{n-r-1}\right)$. Then (1) and (4) imply that $b \equiv 0\left(\bmod 2^{r}\right)$ and (2) and (3) imply that $a \equiv 0\left(\bmod 2^{r}\right)$. Therefore $a d-b c \equiv 0\left(\bmod 2^{r}\right)$, a contradiction. Assume that if $m\left(\right.$ respectively $\left.m^{\prime}\right) \equiv 0$ or $1(\bmod 4)$, then $u\left(u^{\prime}\right)$ is arbitrary and if $m\left(m^{\prime}\right) \equiv 2(\bmod 4)$, then $u\left(u^{\prime}\right) \equiv 1$ or $3(\bmod 8)$. If $P(m, r, u)$ is conjugate to $P\left(m^{\prime}, r, u^{\prime}\right)$, then their images under ϕ_{r+3}^{n} are conjugate in H_{r+3} and so $u \equiv u^{\prime}\left(\bmod 2^{r+3}\right)$. Therefore $u \equiv u^{\prime}$ $(\bmod 8)$ and so $u=u^{\prime}$. Therefore, by the first part of the argument, $m=m^{\prime}$.
(iv) One argues as in (iii) showing that if $M(w, r, u)$ is conjugate to $M\left(w^{\prime}, r, u^{\prime}\right)$, then $w^{2} u \equiv w^{\prime 2} u^{\prime}\left(\bmod 2^{n-r}\right)$ and then applying ϕ_{r+2}^{n} to see that these elements are conjugate if and only if they are equal.

Now since all these conjugacy classes are distinct, one uses Proposition 1 to show that the number of elements contained in the union of these classes equals the order of $K_{r}^{n}-K_{r+1}^{n}$ which is $7 \cdot 2^{3 n-3 r-3}$. $\{Q(a, r)\},\{D(x)\},\{P(m, r, u)$: $m \equiv 2(\bmod 4)\}$, and $\{P(m, r, u): m \equiv 0(\bmod 4)\}$ each contribute $3 \cdot 2^{3 n-3 r-5}$ elements; $\{M(w, r, u): u \equiv 1$ or $5(\bmod 8)\},\{M(w, r, u): u \equiv 3$ or $7(\bmod 8)\}$, and $\{P(m, r, u): m \equiv 1(\bmod 4)\}$ each contribute $3 \cdot 2^{3 n-3 r-4}$ elements. Adding, one gets $7 \cdot 3^{3 n-3 r-3}$ elements as desired.

Finally we give representatives for conjugacy classes in $K_{1}^{n}-K_{2}^{n}$.

Proposition 2. In $K_{1}^{n}-K_{2}^{n}$, a complete set of representatives for the distinct conjugacy classes is $\{P(m, 1, u)$: if $m \equiv 0$ or $1(\bmod 4)$, then u is arbitrary; if $m \equiv 2(\bmod 4)$, then $u \equiv 1$ or $3(\bmod 8)\}$.

Proof. The order of $K_{1}^{n}-K_{2}^{n}$ is $3 \cdot 2^{3 n-6}$ and calculating as in Proposition 1 and Theorem 3, we see that the number of elements obtained from conjugacy classes represented by the $P(m, 1, u)$ is $3 \cdot 2^{3 n-6}$ and that these classes are distinct.

Note that there are no $Q(a, r)$ and $D(x)$ elements in $K_{1}^{n}-K_{2}^{n}$ and that the $M(w, 1, u)$ give the same classes as the $P(m, 1, u)$.

3. The automorphisms

The elements $S= \pm(1,1,0,1)$ of order 2^{n} and $T= \pm(0,-1,1,0)$ of order 2 generate H_{n} and $S T= \pm(1,-1,1,0)$ has order 3. Aut $\left(H_{1}\right) \cong H_{1}$ since H_{1} is isomorphic to S_{3}. Suppose $n \geq 2$. The center of H_{n} is

$$
\left\{ \pm\left(1+2^{n-1}, 0,0,1+2^{n-1}\right), \pm I\right\}
$$

and so the group I_{n} of inner automorphisms has order $\frac{1}{2}\left|H_{n}\right|$. Let $U_{i}=$ $\pm\left(u_{i}, 0,0,1\right)$ for $u_{i} \in X, u_{i} \neq 1$. Then $f_{i}(B)=U_{i} B U_{i}^{-1}$ is an automorphism of H_{n}, not an inner automorphism, and f_{i}^{2} is in I_{n} since f_{i}^{2} is the inner automorphism given by $\pm\left(u_{i}, 0,0, u_{i}^{-1}\right)$. For $n=2$, let $G_{2}=I_{2} \cup f_{1} I_{2}$. The following will show $G_{2}=$ Aut $\left(H_{2}\right)$. For $n \geq 3$, let $G_{n}=I_{n} \cup f_{1} I_{n} \cup f_{2} I_{n} \cup$ $f_{3} I_{n}$. Then G_{n} is a subgroup of Aut $\left(H_{n}\right)$ of order $2\left|H_{n}\right|$. This follows from the facts that I_{n} is a normal subgroup of Aut $\left(H_{n}\right)$ and so is normal in G_{n} and that $\left(f_{i} f_{j}\right)(B)=A \cdot f_{k}(B) \cdot A^{-1}$ where $u_{i} u_{j}=u_{k} a^{2}$ and $A= \pm\left(a, 0,0, a^{-1}\right)$.

Lemma 2. If σ is an arbitrary automorphism of $H_{n}, n \geq 2$, there is an automorphism τ in G_{n} such that

$$
\tau \sigma(S)=N(t, 1), \quad \tau \sigma(T)= \pm(0, b, c, 0)
$$

where $t \equiv 0(\bmod 4)$ and $c+b t \equiv \pm 1$. If $n \geq 3$, then $t \equiv 0(\bmod 8)$.
Proof. Since $\sigma(S)$ has order 2^{n}, there exists an inner automorphism which sends $\sigma(S)$ to $N\left(t, u_{i}\right)$ for some t, u_{i} where $4 \mid t$ since $\{N(t, u): 4 \mid t\}$ is a complete set of representatives for conjugacy classes of elements of order 2^{n}. If $n \geq 3$, by Corollary $1, t$ can be chosen so that $8 \mid t$. But then

$$
f_{i}\left(N\left(t, u_{i}\right)\right)= \pm\left(1, u_{i}^{2}, t u_{i}^{-1}, 1+t u_{i}\right)
$$

which is conjugate to $\pm\left(1,1, t u_{i}, 1+t u_{i}\right)$. So there is an element ρ in G_{n} such that $\rho \sigma(S)= \pm(1,1, t, 1+t)$ for some t. Now $\rho \sigma(S T)$ has order 3 and so trace 1 while $\rho \sigma(T)$ has order 2 , is not in K_{1}^{n}, and so has trace 0 . Let $\rho \sigma(T)=$ $\pm(a, b, c,-a)$. Then the trace of $\rho \sigma(S) \rho \sigma(T)$ is $c+(b-a) t \equiv \pm 1\left(\bmod 2^{n}\right)$ so that c is odd. By a simple calculation for $\operatorname{LF}(2,4)$, there exists an m such that

$$
N(t, 1)^{-m} \rho \sigma(T) N(t, 1)^{m}= \pm(0, b, c, 0) \text { for some } b, c
$$

Now K_{n-1}^{n} is a characteristic subgroup of H_{n} since it is the only normal subgroup of H_{n} of order 8 so the proof can proceed by induction on n. Since $\rho \sigma$ induces an automorphism on H_{n-1}, one uses the induction hypothesis and then comes back up to H_{n} to get

$$
N(t, 1)^{-r} \rho \sigma(T) N(t, 1)^{r}= \pm(a, b, c,-a)
$$

where $a \equiv 0\left(\bmod 2^{n-1}\right)$. If $a \equiv 0\left(\bmod 2^{n}\right)$, we are done. If $a \not \equiv 0\left(\bmod 2^{n}\right)$, then conjugate by $N(t, 1)^{2^{n-1}}= \pm\left(1,2^{n-1}, 0,1\right)$ to get

$$
\begin{aligned}
N(t, 1)^{-r-2^{n-1}} \rho \sigma(T) N(t, 1)^{r+2^{n-1}} & = \pm\left(a+2^{n-1} c, b, c,-a+2^{n-1} c\right) \\
& = \pm(0, b, c, 0)
\end{aligned}
$$

since c is odd. As seen earlier in the proof, since the image of $S T$ has trace 1 , $c+b t \equiv \pm 1\left(\bmod 2^{n}\right)$.

If $t \equiv 0\left(\bmod 2^{n}\right)$, then $\tau \sigma$ is the identity and so $\sigma \in G_{n}$. Suppose $t \equiv 0$ $\left(\bmod 2^{v}\right)$ but $t \not \equiv 0\left(\bmod 2^{v+1}\right)$ where $3 \leq v \leq n-1$. We set $v(t)=v$ and make the following definition.

Definition. A mapping ρ of H_{n} has weight v if $\rho(S)=N(t, 1), \rho(T)=$ $\pm(0, b, c, 0)$ where $c+b t \equiv \pm 1\left(\bmod 2^{n}\right)$ and $v(t)=v$.

To determine the automorphisms of H_{n} we use the following unpublished fact communicated to us by J. G. Sunday.

Lemma 3. A presentation of H_{n} is given by generators A, B and relations $A^{2^{n}}=B^{2}=(A B)^{3}=\left(A^{q} B A^{10} B\right)^{2}=1$ where $5 q \equiv 1\left(\bmod 2^{n}\right)$.

Reduced $\bmod 4, N(t, 1)$ and $\pm(0, b, c, 0)$ with $c+b t \equiv \pm 1\left(\bmod 2^{n}\right)$ and $8 \mid t$ generate H_{2}. Therefore, using Theorem 8 of [1], one sees that they generate H_{n}. With $A=N(t, 1)$ and $B= \pm(0, b, c, 0)$, the relations $A^{2^{n}}=B^{2}=$ $(A B)^{3}=1$ are easily seen to be satisfied. So ρ is an automorphism of weight v if and only if $\left(A^{q} B A^{10} B\right)^{2}=1$.

Theorem 4. For $n \geq 7$, there are no automorphisms of weight $\leq n-5$ and all mappings ρ of weight $\geq n-4$ are automorphisms. For $n=6,5$, or 4 , all mappings of weight $\geq n-3, n-2$, or $n-1$, respectively are automorphisms.

We do the proof for $n \geq 10$ and indicate the necessary modifications in the calculations for the cases of smaller n. First we find b and c specifically.

Lemma 4. For $n \geq 10$ and mappings of weight $\geq n-5$, for $n=8$ or 9 and weight $\geq n-4$, for $n=6$ or 7 and weight $\geq n-3$ and for $n=4$ or 5 and weight $\geq n-2, b= \pm(t-1)$ and $c= \pm(t+1)$. For $n=9$ and weight $=n-5$ and for $n=7$ and weight $=n-4, b= \pm(t-1)$ and $c+ \pm\left(1+t-t^{2}\right)$. For $n=8$ and weight $=n-5, b= \pm\left(t-1+2^{n-1}\right)$ and $c= \pm\left(1+t-t^{2}\right)$.

Proof. Consider

$$
c+b t \equiv \pm 1\left(\bmod 2^{n}\right) \quad \text { and } \quad b c \equiv-1\left(\bmod 2^{n}\right)
$$

Then $\pm b-b^{2} t \equiv-1\left(\bmod 2^{n}\right)$. Let $b=2 r+1$ and $t=2^{n-5} x$ for some r, x. Then one has

$$
\pm 2 r \pm 1-2^{n-3} r^{2} x-2^{n-3} r x-2^{n-r} x+1 \equiv 0 \quad\left(\bmod 2^{n}\right)
$$

Consider the plus value and note that if $n \geq 10$, then $8 \mid(r+1)$. So one has

$$
2(r+1)-2^{n-5} x \equiv 0\left(\bmod 2^{n}\right)
$$

So $r \equiv 2^{n-6} x-1\left(\bmod 2^{n-1}\right)$ which implies that $b \equiv 2^{n-5} x-1 \equiv t-1$ $\left(\bmod 2^{n}\right)$. Then $c \equiv 1+t\left(\bmod 2^{n}\right)$. Similarly for the minus value, one gets

$$
b \equiv-(t-1)\left(\bmod 2^{n}\right) \quad \text { and } \quad c \equiv-(1+t)\left(\bmod 2^{n}\right)
$$

So the proof is done for $n \geq 10$ and mappings of weight $\geq n-5$. By appropriately modifying the form of t, the other cases are done in an analogous fashion.

As in [5],

$$
\begin{aligned}
N(t, 1)^{r} \equiv \pm\left(1+\binom{r}{2} t+\binom{r+1}{4} t^{2}, r+\binom{r+1}{3} t+\binom{r+2}{5} t^{2}\right. \\
\left.r t+\binom{r+1}{3} t^{2}, 1+\binom{r+1}{2} t+\binom{r+2}{4} t^{2}\right)\left(\bmod t^{3}\right)
\end{aligned}
$$

Theorem 5. If $n \geq 8$, there are no automorphisms of weight $n-5$ and any mapping of weight $\geq n-4$ is an automorphism. For $n=4,5,6,7$, any mapping of weight ≥ 3 is an automorphism.

Proof. Suppose $2^{n} \mid t^{2}$ and $B= \pm(0, t-1, t+1,0)$. This is the situation unless $n=8$ or 9 and weight $=n-5$ or $n=7$ and weight $=n-4$. Now

$$
\begin{aligned}
&\left(A^{q} B A^{10} B\right)= \pm\left(10 q-1+\left[20 q+\binom{11}{3} q+10\binom{q+1}{3}+\binom{11}{2}-\binom{q}{2}\right] t\right. \\
&-q+\left[10-q\binom{10}{2}-\binom{q+1}{3}\right] t \\
& 10+\left[20+\binom{11}{3}+\binom{q+1}{2}-q\right] t \\
&\left.-1-\left[\binom{10}{2}+\binom{q+1}{2}\right] t\right)
\end{aligned}
$$

which is not in K_{1}^{n} so that it has order 2 if and only if its trace is 0 . But $5 q \equiv 1$ $\left(\bmod 2^{n}\right)$ and so q can be written as

$$
1-2^{2}+2^{4}-\cdots+2^{2 t}\left(\bmod 2^{n}\right)
$$

so that the trace of $\left(A^{q} B A^{10} B\right)$ is

$$
\left(-63-1 / 3\left(2 q^{2}-1\right)\right) t \equiv 16(t)(-17) / 3 \quad\left(\bmod 2^{n}\right)
$$

For $n \geq 10$ this is congruent to 0 if and only if $2^{n-4} \mid t$. For smaller values of n, the trace is easily calculated from this formula. For the special cases $n=9$ and 8 , weight $=n-5$ and $n=7$, weight $=n-4$, one uses the form for B given in Lemma 4 and retains the t^{2} term in A to get that:

$$
\begin{aligned}
& \text { for } n=9, \operatorname{trace}\left(A^{q} B A^{10} B\right) \equiv 2^{8}\left(\bmod 2^{9}\right) \\
& \text { for } n=8, \operatorname{trace}\left(A^{q} B A^{10} B\right) \equiv 2^{7}\left(\bmod 2^{8}\right) \\
& \text { for } n=7, \operatorname{trace}\left(A^{q} B A^{10} B\right) \equiv 0\left(\bmod 2^{7}\right)
\end{aligned}
$$

Corollary 1. There are no automorphisms of weight $\leq n-5$.
Proof. Since $8 \mid t$, we may assume $n \geq 8$ and for $n=8$, the corollary is true by Theorem 5. If σ is an automorphism of weight x on $H_{n}, n>8,3 \leq x \leq$ $n-5$, then σ induces an automorphism of weight $x=(x+5)-5$ on H_{x+5} which contradicts Theorem 5.

The proof of Theorem 4 is now complete. Using Lemma 2, Theorem 4 and the following Proposition, one obtains Aut $\left(H_{n}\right)$.

Proposition 2. Suppose ρ, σ are automorphisms of H_{n} of weight v_{1} and v_{2} respectively (v_{1} may equal v_{2}). Then $G_{n} \rho \neq G_{n} \sigma$.

Proof. If $G_{n} \rho=G_{n} \sigma$, then $\rho=\tau f_{i} \sigma$ for some τ an inner automorphism, $f_{i}= \pm\left(u_{i}, 0,0,1\right)$. Let $\rho(S)=N(t, 1)$ and $\sigma(S)=N\left(t^{\prime}, 1\right)$ with $t \neq t^{\prime}$. Then

$$
f_{i} \sigma(S)= \pm\left(1, u_{i}, t^{\prime} u_{i}^{-1}, 1+t^{\prime}\right)
$$

which is conjugate to $\pm\left(1, u_{i}, t^{\prime \prime}, 1+t^{\prime \prime}\right)$ where $t^{\prime \prime} u \equiv t^{\prime}\left(\bmod 2^{n}\right)$. But by Corollary 1 to Theorem $1, N(t, 1)$ is not conjugate to $N\left(t^{\prime \prime}, u_{i}\right)$ and so is not conjugate to $f_{i} \sigma(S)$. Therefore there is no inner automorphism τ such that $\rho=\tau f_{i} \sigma$.

Theorem 6. Aut $\left(H_{n}\right)=\bigcup_{\rho} G_{n} \rho, \rho$ an automorphism of H_{n} of weight $\geq n-4$.

Bibliography

1. J. Dennin, Subgroups of $L F\left(2,2^{n}\right)$, to appear.
2. J. Gierster, Die Untergruppen der galois'schen Gruppe der Modulargleichungen fur den Fall eines primzahligen Transformationsgrades, Math. Ann., vol. 18 (1881), pp. 319-365.
3. - Uber die galois'sche Gruppe der Modulargleichungen, wenn der Transformationsgrad die Potenz einer Primzahl > 2 ist, Math. Ann., vol. 26 (1886), pp. 309-368.
4. D. MCQuillan, Classification of normal congruence subgroups of the modular groups, American J. Math., vol. 87 (1965), pp. 285-296.
5. , Some results on the linear fractional group, Illinois J. Math., vol. 10 (1966), pp. 24-38.
6. M. Newman, The structure of some subgroups of the modular group, Illinois J. Math., vol. 6 (1962), pp. 480-487.
7. --, Normal congruence subgroups of the modular group, American J. Math., vol. 85 (1963), pp. 419-427.
8. -_, Classification of normal subgroups of the modular group, Trans. Amer. Math. Soc., vol. 126 (1967), pp. 267-277.

University of Connecticut
Storrrs, Connecticut

