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1. Introduction

Let I" denote the 2 x 2 modular group; that is, the group of 2 x 2 matrices
with integer entries and determinant in which a matrix is identified with its
negative. Let F(n) denote the principal congruence subgroup of level n; that is,
the subgroup of I" consisting of all matrices congruent mod n to + I where I is
the identity matrix. A subgroup G of F is called a congruence subgroup of level
n if G contains F(n) and n is the smallest such integer. Let LF(2, n)=
SL(2, n)/+ I where SL(2, n) is the special linear group of degree two with co-
efficient in Z,, the integers mod n. Then LF(2, n) is isomorphic to F/F(n).
The congruence subgroups of F and hence the groups LF(2, n) play an impor-
tant role in the study of elliptic modular functions and so the structure of both
F and LF(2, n) have been studied in some detail (cf. the bibliography for some
examples). In particular, in [5] D. McQuillan determined the automorphisms
of and explicit representatives for the conjugacy classes of LF(2, pn), p an odd
prime. In this paper, we determine explicit representatives for the conjugacy
classes of LF(2, 2n) in Section 2 and determine the automorphisms of LF(2, 2n)
in Section 3.
The following notation will be standard. Hn LF(2, 2n). An element A in

Hn will be written +(a, b, c, d). will denote the natural homomorphism
from H, to Hr, < r < n, defined by reducing all the entries in a matrix in
Hn mod 2r. K7 will denote the kernel of " and it is well known that the order
of K" 2a("-) if r - and 23"-4 if r 1. Let X be a set of representatives,
including 1, for VV2 where Vis the set of units in Z2.. u will denote an arbitrary
element in X.

2. The eonjugaey classes

LF(2, 2) has order 6 and LF(2, 4) has order 24 and the representatives of the
conjugacy classes in these groups are easily obtained by listing the elements and
calculating. For LF(2, 2), one has _/, -t- (0, 1, 1, 1), -t- (0, 1, 1, 0); for
LF(2, 4), one has +/, +(1, 2, 0, 1), + (0, 1, 1, 0), +(1, 1, 0, 1), + (0, 1, 1, 1).
So we consider H,, n > 3. The following result, analogous to Lemma in [5]
will be useful.

LEMMA 1. Let N, be the number ofsolutions of the congruence

Ax 2 + Bxy + Cy2 =- D (mod2) (1)
where A, B, C, D are integers, D 0 (mod 2) and r > 3. Then N 2 aNa.
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Proof. The proof is by induction on r with the case r 3 obvious. Suppose
r > 3 and (a, b) is a solution to (1) mod 2"-1. If B 0 (mod 2), then (a, b)
generates two solutions to (1) mod 2". To see this, consider

A(a + 2’-1t)2 + B(a + 2"-2t)(b + 2’-1s) + C(b + 2’-1s)2 D (mod 2")

and observe there are precisely two solutions for (t, s) since at least one of a and
b is odd. So N, 2.N,_2. If B-- 0(mod2), then (a,b) generates eight
solutions to (1) mod 2r. To see this, consider

A(a + 2r-2t)2 + B(a + 2-2t)(b + 2-2s) + C(b + 2’-2s)2 D (mod 2’)

which has two solutions for (t, s). The eight solutions are then given by

(a + 2"-2t + 2-1e, b + 2"-2s +
where e, e’ are in {0, ). However, these same eight solutions to (1) rood 2 are
also generated by the solutions

(a + 2’-2, b),(a,b + 2"-2) and (a + 2’-2,b + 2’- 2)
to (1) mod
SON,=

First we will classify the elements of Hn K’. Note that if A (a, b, c, d)
is in Hn K, then, by conjugating by +(0, -1, 1, 0) if necessary, we may
assume that b - 0 (mod 2"). Let

s trace of + (a, b, c, d) +(a + d).

Let N(t, u) +(1, u, t, + ut) where 2 divides t.

THEOREM 1. Suppose A _+(a, b, c, d) is in Hn, n > 3, A is not in K,
b 0 (mod 2n) and 2 divides s2 4. Then A is conjugate to N(t, u) where u is
chosen such that b-2u is a quadratic residue and is chosen such that

tu s 2 (mod 2n).

Proof We need B _(y, v, w, x) such that BA N(t, u)B.
to the following congruences (mod 2n)

This leads

w =- u-l(y(a 1) / cv) (1)

x u- l(v(d 1) + by) (2)

aw + cx---- ty + w + tuw

bw + dx =- tv + x + tux

(3)

(4)

(1), (2), and (5) in turn give

by" + (d- a)yv cv =- u (mod 2n). (6)

yx- vw. (5)
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Pick the u such that b-1/2 is a quadratic residue mod 2n. Then v 0 and
y --= (b-l/2)1/2 (mod 2n) is a solution to (6) and with chosen such that tu =-
s 2, the y, v, w, and x from (1), (2), and (5) also satisfy (3) and (4).

COROLLARY 1. If 2 s, then A is conjugate to exactly one element in N
{N(t, u)" 8 } and the conjugacy class ofA has order 3" 22n-J’.

Proof. By selecting the proper sign, we may assume s 2 and hence is
divisible by 8 since exactly one of s 2 or -s 2 is. By Theorem l, A is
conjugate to some element in N. If N(t, u) is conjugate to N(t’,/2’), then by
comparing traces either tu =- t’u’ (mod 2n) or tu + 2 -t’/2’ 2 (mod 2n).
In the second case, -4 t’u’ + tu (mod 2n) which is impossible since 8
divides and t’. In the first case, reducing mod 8, we see that + (1,/2, 0, 1) is
conjugate to +(1,/2’, O, l) in Ha which implies that /2 /2’. But then
t’ (mod 2n). So N(t,/2) is conjugate to N(t’,/2’) if and only if t’ and/2 u’.
So A is conjugate to exactly one element in N. To find the elements
+(y, v, w, x) in the normalizer of N(t, u), use the argument of Theorem and
solve y2 + yvt + l)2Ut (mod 2n). This has 25 solutions mod 8 and so by
Lemma l, 2n/2 solutions mod 2n. So there are 2+ elements in the normalizer
of iV(t,/2) and 3 22n-4 elements in its conjugacy class.

Since there are 2n-N(t,/2) in N1(2n-3 choices for t and 4 choices for u), this
accounts for 3.2an- 5 elements in H.

COROLLARY 2. /f 4Is, then A is conjugate to exactly one element in N2
{N(t, 1)" 2 t} and the conjugacy class ofA has order 3.22n-a.

Proof. Applying Theorem and its proof, we see that with 2 and t’,
N(t, u) is conjugate to N(t’, u’) if and only if uu’ or 5 (mod 8) and tu =_

t’u’(mod2n) or uu’=- 3 or 7(modS) and tu + t’u’---4(mod2n). By
Theorem 1, A is conjugate to N(t, u) for some t, u with 2 and by the previous
comment/2 can be chosen to be 1. For the normalizer of N(t, u), we must solve
y2+ yvt + v2t (mod 2n) which has 2n+l solutions. So there are 2
elements in the normalizer of iv(t,/2) and 3.22n-a elements in its conjugacy
class.

Since there are 2 2 elements in N2, there are 2 2 distinct conjugacy classes
represented here accounting for 3 2an- 5 elements of Hn.
THEOREM 2. Suppose A +_(a, b, c, d) has S2 4 5 (mod 8). Then A

is conjugate to +_ (0, 1, 1, s) and the conju#acy class ofA has 22- elements in
it. +_ (0, 1, 1, s) is conjugate to + (0, 1, 1, s’) if and only if s’ +_ s.

Proof. We need to find B -I-(y, v, w, x) such that BA +__ (0, 1, 1, s). B.
It is sufficient to solve w -ay- cv, x -by- dr, yx- vw all
mod 2 which yield

cv2 + (a- d)yv- b2 (mod2).
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Since (a d)2 + 4bc 3’2 4 5 (mod 8), b, c, and (a d) have to be
odd. Then cv2 / (a d)yv by2 is solvable mod 8 and so is solvable
mod 2n. For the normalizer of + (0, 1, 1, s), we must solve 3;

2 yVS + V2

(mod 20 which has 4.3 .solutions mod 8 and so, by Lemma l, 3.2"-1 solu-
tions mod 2". So there are 22n-1 elements in its conjugacy class. The usual
calculations show that +(0, -1, l, s) is conjugate to +(0, -1, 1, s’) if and
only if s’ +s.

Since 3" is odd, there are 2"-z distinct conjugacy classes with representatives
_+ (0, 1, 1, 3’) accounting for 2a"- 3 elements in H,. Any element in H, Kf
is conjugate to one of N(t, u) with 8 dividing or 2 t or to one of (0, 1, 1, 3’)
since the number of elements in their conjugacy classes is

3.23n-5 + 3" 23n-5 + 23n-3 5" 23n-4

which is the order of H, K’.
Now we must determine representatives for the conjugacy classes in K[’. Since

K, is normal in H, and KT+ _c K,", < r < n 1, K," K,"+I splits in H.
into complete classes of conjugate elements. K,_ has four conjugacy classes
represented by

+__L +__(1 +2"-1,0,0,1+2"-1), +__(1, 2"-, 2"-1,1) and _(1, 2"-x, 0,1).

Now consider the following sets of matrices in K," K"/ for 2 < r < n 2"
(1) P(m, r, u) +(1, Tu + 2"+1 T+lm, + 22"+2m + 22"+1mu) where
<m <2n--l"

(2) M(w, r, u) _(1, 2’w, 2"wu, + 22"w2u) where < w < 2"-’and
(w, 2) 1;

(3) Q(a, r)= +(1 + 2" + 2’+2a, 2’+1, 2"+1, -2’ + T+2d)where
< a < 2"-’-2 and d is chosen so that the determinant is +
(4) D(x) +(x, O, O, x-1) wherel < x < 2" andx-- (mod20, x

(mod 2’+ 1).
To see that an element in one of these sets is not conjugate to any element in

a different set, reduce mod 2’+ 2 and observe that in K+ 2 K++ 2, their images
belong to the sets corresponding to the original sets. Then a straightforward
calculation shows that these images are not conjugate and so the original
elements could not be conjugate.

PROPOSITION 1.

element order of conju#acy class

(i) D(x) 3.22n-2"-3

(ii) Q(a, r) 22. 2,- 3

(iii) P(m, r, u) 3" 22"-2"-a
3 22n-2r-4

(iv) M(w, r, u) 3" 22"-2’-2
3 22"- 2,- a

ifm =- or 2 (mod 4)
/fro 0 (mod 4)
if u =- or 5 (mod 8) and w (mod8)
if u =- 3 or 7 (mod 8) and
w or 3 (mod 8)
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Proof (i) -i- (a, b, c, d) is in the normalizer ofD(x) if and only ifbx bx
and cx cx-1 (mod 2"). Since D(x) is in K; K+ 1, D(x) can be written

_+(u + 2"p, O, O, u 2’p)

where 2 does not divide # and u2- 22’/2-- (mod2"). So x-x -1

2"+1# (mod 2n) and __(a, b, c, d) is in the normalizer if and only if 2"-’-1

divides both b and c. Since b and c are both even and ad bc (mod 2"), a
has to be odd and d a-l(1 + bc) (mod 2"). So there are 2"+2, elements in
the normalizer of D(x) and 3.22"-2"- a elements in its conjugacy class.

(ii)

___
(x, y, w, z) is in the normalizer of Q(a, r) if and only if

2’+y 2’+lw (1)

2"+ix + 2"+dy-- 2’+y + 2’+ay + 2’+lz (mod2) (2)

xz- yw =- 1. (3)

(1) implies that w y (mod 2"-’-) and then (2) implies that

x--y(1 + 2a- 2d) + z (mod2"-’-l).
Now solving (3) mod 8 and using Lemma 1, one obtains 3" 2"+z" elements in
the normalizer of Q(a, r) and 2z"- z’- a elements in its conjugacy class.
The proofs of (iii) and (iv) are similar.

THEOREM 3. A complete set of representatives for the conju#acy classes in

K] K+1, 2 < r < n- 2, is given by"
(i) {D(x) x -t-y -1 for any two D(x), D(y)};
(ii) {O(a, r)};
(iii) {P(m, r, u)" ifm 0 or (mod 4), then u is arbitrary;/fm 2 (mod 4)

then u or 3(mod 8)};
(iv) {M(w,r,u)’ifu or5(mod8),thenw (mod8);/fu 3or,

7 (mod 8), then w or 3 (mod 8)}.

Proof (i) A conjugate of D(x) has the form

+_(cdx- bcx -x, ab(x -1 x), cd(x- x-l), -bcx + adx -1)
and so D(x) is conjugate to D(y) if and only if x x- (mod 2") or ab and
cd-- O(mod2"). In the second case, one has y -x-1 since ad- bc =-
(mod 2). So D(x) is conjugate to D(y) if and only if y + x- 1.
(ii) We show that Q(a, r) is not conjugate to Q(a’, r), a - a’, by induction

on n r where r n (n r). Ifn r 2, there is only one value for a.
For n r > 2, if Q(a, r) is conjugate to Q(a’, r), their images mod 2 are
conjugate and so by the induction hypothesis, they reduce to the same element.
Soa’ a + 2"-’-3. But then

+_-(x, y, w, z). Q(a, r) Q(a’, r) +_ (x, y, w, z)
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if and only if
y-- w + 2n-r-2x (1)
z x + yt (2)

z x + wt (3)

w y + 2"-’- 2z (4)

all rood 2"-’-1, where t is odd. Then (1) and (4) imply z x (mod 2). If x
and z are even, then w and y are even which contradicts xz yw (mod 2");
if x and z are odd, (1) implies that y w + 2"-’-2 (mod 2"-’-1) and (2) and
(3) imply that y w (mod 2"-’-1) which is a contradiction. So Q(a, r) is not
conjugate to Q(a’, r).

(iii) Direct calculation shows that distinct representatives for conjugacy
classes with representatives of the form P(m, r, u) are given by P(1, n 2, 1),
P(2, n- 2, 1), and P(2, n- 2, 3) in Knn_2 Knn_ and by P(1, n- 3, u)
andP(4, n- 3, u) withu 1,3,5, or7andP(2, n- 3, u) withu or3
inK,"_3 K,"_2. Assume, < n- 4. For a fixed u,

+ (a, b, c, d)P(m, r, u) P(m’, r, u). + (a, b, c, d)

if and only if
2bin =_ (2 + u)c

(2 + u)a + 2’+lbm(u + 2) (u + 2)d
2dm 2m’a + 2’+ m’c(u + 2)

(2 + u)c + 2"+ldm(u + 2) 2bm’ + 2dm’(u + 2),

(1)

(2)

(3)

(4)

Now since all these conjugacy classes are distinct, one uses Proposition to
show that the number of elements contained in the union of these classes equals
the order of K" K"+ which is 7.23"-3’-3. {Q(a, r)}, {O(x)}, {e(m, r, u):
rn 2 (mod 4)), and {P(m, r, u): m 0 (mod 4)) each contribute 3.23"-3’-5
elements; {M(w, r, u): u or 5 (mod 8)}, {M(w, r, u): u 3 or 7 (mod 8)},
and {P(m, r, u): m (mod 4)} each contribute 3.23"-3"-4 elements. Adding,
one gets 7.33"- 3,- 3 elements as desired.

Finally we give representatives for conjugacy classes in K’ K..

all mod 2"-’. Suppose rn m’ . 0 (mod 2"-’-a). Then (1) and (4) imply
that b 0 (rood 2’) and (2) and (3) imply that a 0 (mod 2’). Therefore
ad be =- 0 (mod 2’), a contradiction. Assume that if rn (respectively m’) 0
or (mod 4), then u(u’) is arbitrary and if m(m’) 2 (mod 4), then u(u’) =-
or 3 (mod 8). If P(m, r, u) is conjugate to P(m’, r, u’), then their images under
b"+3 are conjugate in H,+3 and so u---u’ (mod 2’+3). Therefore u-= u’
(mod 8) and so u u’. Therefore, by the first part of the argument, rn m’.

(iv) One argues as in (iii) showing that if M(w, r, u) is conjugate to
M(w’, r, u’), then w2u =- w’Zu (mod 2"-’) and then applying the"+ 2 to see that
these elements are conjugate if and only if they are equal.
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PROPOSITION 2. In K K, a complete set of representativesfor the distinct
conjuyacy classes is {P(m, 1, u)" if m =_ 0 or (mod 4), then u is arbitrary; if
m 2 (mod 4), then u =- or 3 (mod 8)}.

Proof. The order of K’ K is 3 23n-6 and calculating as in Proposition
and Theorem 3, we see that the number of elements obtained from conjugacy
classes represented by the P(m, 1, u) is 3.23n-6 and that these classes are
distinct.

Note that there are no Q(a, r) and D(x) elements in K’ K and that the
M(w, 1, u) give the same classes as the P(m, 1, u).

3. The automorphisms

The elements S __+ (1, 1, 0, 1) of order 2" and T __+ (0, 1, 1, 0) of order
2 generate H, and ST _(1, 1, 1, 0) has order 3. Aut (H1) H1 since H1
is isomorphic to $3. Suppose n > 2. The center of H, is

{_(1 + 2n-l, 0, 0, + 2n-l), +I)

and so the group In of inner automorphisms has order 1/2lnnl. Let Ui
is an automorphism+(ui, 0, 0, 1) for ui X, ui - 1. Then fi(B) UiBUi

of Hn, not an inner automorphism, andf is in In sincef is the inner auto-
morphism given by +(ui, O,O,ul). For n 2, let G2 12 flI2. The
following will show G2 Aut (H2). For n > 3, let Gn In flln W f2I, U
f3In. Then G, is a subgroup of Aut (H,) of order 21n,I. This follows from the
facts that In is a normal subgroup of Aut (Hn) and so is normal in Gn and that
(ffj.)(B) A "fk(B)" .4 -1 where uiuy Uka2 and A +(a, 0, 0, a-l).

LEMMA 2. If a is an arbitrary automorphism of H., n >_ 2, there is an auto-
morphism z in G. such that

ztr(S) N(t, 1), ztr(T) +_(0, b, c, O)

where =- O (mod 4) and c + bt =- +_1. If n >_ 3, then O (mod 8).

Proof. Since a(S) has order 2n, there exists an inner automorphism which
sends a(S) to N(t, ui) for some t, ui where 41 since {N(t, u)" 41 t} is a com-
plete set of representatives for conjugacy classes of elements of order 2n. If
n > 3, by Corollary 1, t can be chosen so that 8 t. But then

f(N(t, u))= +(1_ U2i’ tu , + tu)
which is conjugate to (1, 1, tu, + tu). So there is an element p in G, such
that pa(S) _+(1, 1, t, + t) for some t. Now pa(ST) has order 3 and so
trace while pa(T) has order 2, is not in K, and so has trace 0. Let pa(T)
_+ (a, b, c, -a). Then the trace of pa(S)pa(T) is c + (b a)t (mod 2")
so that c is odd. By a simple calculation for LF(2, 4), there exists an m such
that

N(t, 1)-mpa(T)N(t, 1) _+(0, b, c, 0) for some b, e.
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Now K,"_ is a characteristic subgroup of H, since it is the only normal sub-
group of H, of order 8 so the proof can proceed by induction on n. Since ptr
induces an automorphism on H,_ 1, one uses the induction hypothesis and then
comes back up to H, to get

N(t, 1)-rpa(T)N(t, 1)’ _-+(a, b, c, -a)

where a 0 (mod 2"-1). If a 0 (mod 2"), we are done. If a 0 (mod 2"),
then conjugate by N(t, 1)2"-’ _(1, 2"-1, 0, 1) to get

N(t, 1)-r-2"-lpa(T)N(t, If+2"-1 +_(a + 2n-lc, b, c, -a + 2"-1c)

+_ (0, b, , O)

since c is odd. As seen earlier in the proof, since the image of ST has trace l,
c + bt-- _+1 (mod2").

If t-- 0(mod2"), then ztr is the identity and so triG,. Suppose t-- 0
(mod2v) but 0(mod2v+l) where 3 _< v < n- 1. We set v(t) v and
make the following definition.

DEFINITION. A mapping p of H, has weight v if p(S) N(t, 1), p(T)
_(0, b, c, 0) where c + bt _+ (mod 2") and v(t) v.

To determine the automorphisms of H, we use the following unpublished
fact communicated to us by J. G. Sunday.

LEMMA 3. A presentation of H, is given by generators A, B and relations
A2" B 2 (AB)3 (AqBAIB)2 where 5q -= (mod 2").

Reduced mod 4, N(t, 1) and _+ (0, b, c, 0) with c + bt _+ (mod 2") and
8 generate H2. Therefore, using Theorem 8 of [1], one sees that they generate
H,. With A N(t, 1) and B +_(0, b, c, 0), the relations ,4 2"-- B2--

(,4B)3 are easily seen to be satisfied. So p is an automorphism of weight v
if and only if (AqBAIB)2 1.

THEOREM 4. For n > 7, there are no automorphisms of weight <n 5 and
all mappings p of weight >_ n 4 are automorphisms. For n 6, 5, or 4, all
mappings of weight >_ n 3, n 2, or n l, respectively are automorphisms.

We do the proof for n > 10 and indicate the necessary modifications in the
calculations for the cases of smaller n. First we find b and c specifically.

LEMMA 4. For n >_ 10 and mappings of weight > n 5, for n 8 or 9 and
weight >_ n 4,for n 6 or 7 and weight > n 3 andfor n 4 or 5 and weight
>_n 2, b _+(t- 1) and c +_(t + 1). For n 9 and weight n 5
and for n 7 and weight n 4, b +_(t 1) and c + _+(1 + t2).
For n 8 and weight n 5, b _+(t + 2"-1) and c +_(1 + t2).
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Proof. Consider

c + bt _+1 (mod2") and bc -1 (mod2").

Then +_b bZt -= -1 (mod 2"). Let b 2r + and 2"-5x for some
r, x. Then one has

-I-2r +_ 2n-3rZx 2"-arx 2"-rx + 0 (mod 2").

Consider the plus value and note that if n > 10, then 8 (r + 1). So one has

2(r + 1) 2"- 5x ---- 0 (mod 2").

So r 2n-6x- (mod 2"-a) which implies that b --- 2"-5x
(mod 2"). Then + (mod 2"). Similarly for the minus value, one gets

b-= -(t- l)(mod2") and e -(1 + t)(mod2").

So the proof is done for n > 10 and mappings of weight > n 5. By appro-
priately modifying the form of t, the other cases are done in an analogous
fashion.

As in [5-],

N(t, 1)’ (1 + ()t + (r+1)4 zr+’ (r+ 1)t+3 (r +2)5 tz’

(r+ 1),2 1 + (r+ 1),+ (r+2) t2) (modt3).rt +
3 2 4

THEOREM 5. /f n >_ 8, there are no automorphisms of weight n 5 and any
mapping ofweight >_ n 4 is an automorphism. For n 4, 5, 6, 7, any mapping
of weight >_ 3 is an automorphism.

Proof Suppose 2"1 2 and B _+(0, 1, + 1, 0). This is the situa-
tion unless n 8 or 9 and weight n 5 or n 7 and weight n 4.
Now

(AqBAIB)= _+(lOq-1 +I20q+(131) q + 10(q+l)+(121)-(q2)13
-q + IlO q(l) (q - 1)lt,
10+ I20+ (131)+
-1-
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which is not in K’ so that it has order 2 if and only if its trace is 0. But 5q -=
(mod 2") and so q can be written as

22 q- 24 + 22t (mod 2")

so that the trace of (.4qB41B) is

(-63- 1/3(2q2- 1))t-- 16(t)(-17)/3 (mod 2")

For n > l0 this is congruent to 0 if and only if 2"-4 t. For smaller values of n,
the trace is easily calculated from this formula. For the special cases n 9
and 8, weight n 5 and n 7, weight n 4, one uses the form for B
given in Lemma 4 and retains the 2 term in A to get that"

for n 9, trace (AqBA B) 28 (mod 29);
for n 8, trace (AqBAIB) 27 (mod 28);
for n 7, trace (AqBAIB) 0 (mod 27).

COROLLARY 1. There are no automorphisms of weight < n 5.

Proof Since 8 t, we may assume n > 8 and for n 8, the corollary is true
by Theorem 5. If a is an automorphism of weight x on H,, n > 8, 3 < x _<
n 5, then a induces an automorphism of weight x (x + 5) 5 on H+
which contradicts Theorem 5.

The proof of Theorem 4 is now complete. Using Lemma 2, Theorem 4 and
the following Proposition, one obtains Aut (H,).

PROPOSITION 2. Suppose p, tr are automorphisms of H, of weight v and I)2

respectively (vl may equal v2). Then

Proof If G,p G,a, then p zfa for some z an inner automorphism,
f -t-(u, 0, 0, 1). Let p(S) N(t, 1) and a(S) N(t’, 1) with : t’. Then

’-1,1 +t’)fa(S) __+ (1, ui, u
which is conjugate to +__(1, u, t", + t") where t"u t’ (mod 2"). But by
Corollary to Theorem 1, N(t, 1) is not conjugate to N(t", u) and so is not
conjugate to fa(S). Therefore there is no inner automorphism z such that
p zfa.
THEOREM 6. Aut (H.) 6.p, p an automorphism of H, of weight

>n-4.
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