AN ESTIMATE FOR LINE INTEGRALS AND AN APPLICATION TO DISTINGUISHED HOMOMORPHISMS

BY
John B. Garnett ${ }^{1}$
We prove an inequality similar to Melnikov's estimate for Cauchy integrals over closed curves [4]. As an application we prove a result relating asymptotic values to the distinguished homomorphisms defined in [3].

1. Let Γ be a smooth Jordan arc in the plane. Parametrize Γ by arc length: $\Gamma=\{\zeta(s): 0 \leq s \leq l(\Gamma)\}$ where $l(\Gamma)$ is the length of Γ. We assume that $\zeta^{\prime}(s)$ is Dini continuous: $\zeta^{\prime}(s)$ has modules of continuity $\omega(\delta)$ where

$$
\begin{equation*}
\chi_{0}(\Gamma)=\int_{0}^{l(\Gamma)} \frac{\omega(\delta)}{\delta} d \delta<\infty \tag{1.1}
\end{equation*}
$$

Also let K be a compact set and denote by $A(K, M)$ the set of functions analytic on $S^{2} \backslash K$ such that $|f(z)| \leq M, z \in S^{2} \backslash K$; and $f(\infty)=0$. The analytic capacity of K is

$$
\gamma(K)=\sup \left\{\lim _{z \rightarrow \infty}|z f(z)|: f \in A(K, 1)\right\}
$$

Theorem 1. Let Γ be a Jordan arc satisfying (1.1), let K be a compact set, $K \cap \Gamma=\emptyset$, and let $f \in A(K, 1)$. Then

$$
\begin{equation*}
\left|\int_{\Gamma} f(\zeta) d \zeta\right| \leq C(\Gamma) \gamma(K) \log \left(2+\frac{l(\Gamma)}{\gamma(K)}\right) \tag{1.2}
\end{equation*}
$$

where $C(\Gamma)$ depends only on $\chi_{0}(\Gamma)$.
Inequality (1.2) is sharp; this can be seen by taking K to be a disc

$$
\left\{\left|z-z_{0}\right| \leq \delta\right\}
$$

where dist $\left(z_{0}, \Gamma\right)=\left|z_{0}-\zeta(0)\right|=2 \delta$ and letting $f=\delta\left(z-z_{0}\right)^{-1}$.
Theorem 1 is a fairly routine consequence of Davie's extension [1] of Melnikov's Theorem:

$$
\begin{equation*}
\left|\int_{\Gamma} f(\zeta) d \zeta\right| \leq C^{\prime}\left(\chi_{0}(\Gamma)\right) \gamma(K) \tag{1.3}
\end{equation*}
$$

where Γ is assumed to satisfy (1.1) and Γ is closed. The proof follows the reasoning on pp. 163-166 of [4]. Throughout the proof C_{1}, C_{2}, \ldots are universal constants and $C_{j}(\Gamma)$ denote constants depending only on $\chi_{0}(\Gamma)$.
${ }^{1}$ This work was supported by a National Science Foundation grant.

Proof. Since $\chi_{0}(\Gamma)$ and both sides of (1.2) are dilation invariant, we may assume $l(\Gamma)=1$. We may also assume $\gamma=\gamma(K)$ is small.

Partition the plane into squares S_{j} of side γ and let V_{j} be an open square concentric with S_{j} but having side $5 \gamma / 4$. Write $K_{j}=K \cap \bar{V}_{j}, \gamma_{j}=\gamma\left(K_{j}\right)$. On p. 157 of [4] it is shown that

$$
\begin{equation*}
\sum \gamma_{j} \leq C_{1} \gamma \tag{1.4}
\end{equation*}
$$

and as on pp. 148-151 of [4] we can write $f=\sum f_{j}, f_{j} \in A\left(K_{j}, C_{2}\right)$. The inequality

$$
\begin{equation*}
\left|f_{j}(z)\right| \leq \frac{C_{2} \gamma_{j}}{\operatorname{dist}\left(z, K_{j}\right)} \tag{1.5}
\end{equation*}
$$

a consequence of Schwarz's Lemma, is on p. 145 of [4].
We estimate $\Sigma_{j}\left|\int_{\Gamma} f_{j}(\zeta) d \zeta\right|$ by taking three cases.
Case (i). If dist $\left(K_{j}, \Gamma\right) \geq \gamma$, then by (1.5) we have

$$
\begin{equation*}
\left|\int_{\Gamma} f_{j}(\zeta) d \zeta\right| \leq C_{2} \gamma_{j} \int_{\Gamma} \frac{d s}{\operatorname{dist}\left(\zeta(s), K_{j}\right)} \leq C_{1}(\Gamma) \gamma_{j} \log \frac{1}{\gamma} \tag{1.6}
\end{equation*}
$$

Case (ii). Let E be the endpoints of Γ. Assume $\operatorname{dist}\left(K_{j}, \Gamma\right) \leq \gamma$ but dist $\left(K_{j}, E\right)>2 \gamma$. We can continue Γ to a closed curve $\tilde{\Gamma}$ such that $\tilde{\Gamma}$ satisfies (1.1) with $\chi_{0}(\tilde{\Gamma}) \leq C_{3} \chi_{0}(\Gamma)+C_{4}$ and such that $\operatorname{dist}\left(K_{j}, \tilde{\Gamma} \backslash \Gamma\right) \geq \gamma$. Then $\int_{\tilde{\Gamma} \backslash \Gamma} f_{j}(\zeta) d \zeta$ can be estimated as in case (i), and using (1.3) we get (1.6) in this case also.

Case (iii). The remaining K_{j} satisfy dist $\left(K_{j}, E\right) \leq 2 \gamma$. Because of the smoothness of Γ there is a subset F_{j} of Γ such that

$$
\operatorname{dist}\left(K_{j}, \Gamma \backslash F_{j}\right)>2 \gamma \quad \text { and } \quad l\left(F_{j}\right) \leq C_{2}(\Gamma) \gamma
$$

We get

$$
\left|\int_{\Gamma} f_{j}(\zeta) d \zeta\right| \leq\left|\int_{F_{j}}\right|+\left|\int_{\Gamma \backslash F_{j}}\right| \leq C_{2} C_{2}(\Gamma) \gamma+C_{1}(\Gamma) \gamma \log \frac{1}{\gamma_{j}}
$$

just as with case (i).
Now there are at most $50 K_{j}$ for which case (iii) applies, and when we sum (1.6) over the other indices and use (1.4), we obtain (1.2).
2. $H^{\infty}(D)$ denotes the bounded analytic functions on a plane domain D. Let $z_{0} \in \partial D$ and let A_{n} be the annulus $\left\{2^{-n-1} \leq\left|z-z_{0}\right| \leq 2^{-n}\right\}$. In [3] the Melnikov condition

$$
\begin{equation*}
\sum_{n=0}^{\infty} 2^{n} \gamma\left(A_{n} \mid D\right)<\infty \tag{2.1}
\end{equation*}
$$

was seen to be equivalent to the existence of a unique homomorphism ϕ_{0} of $H^{\infty}(D)$ satisfying:
(i) $\quad \phi_{0}(f)=f\left(z_{0}\right)$ if f extends continuously to z_{0};
(ii) there is a positive measure μ on D such that

$$
\begin{equation*}
\phi_{0}(f)=\int f d \mu, \quad f \in H^{\infty}(D) \tag{2.2}
\end{equation*}
$$

Some time ago M. Behrens and T. W. Gamelin asked me the following question:
Problem 1. If (2.1) holds for $z_{0} \in \partial D$ and if $f \in H^{\infty}(D)$ has limit L along some curve in D terminating at z_{0}, then is $L=\phi_{0}(f)$?

Although the problem in general is unsolved we can give an affirmative answer when the curve is sufficiently smooth.

Theorem 2. Assume (2.1) holds at $z_{0} \in \partial D$. Let Γ be a Jordan arc in $D \cup\left\{z_{0}\right\}$ with endpoint z_{0}. Assume Γ satisfies (1.1). If $f \in H^{\infty}(D)$, and if $\lim _{\Gamma \ni \zeta \rightarrow z_{0}} f(\zeta)=$ L, then $L=\phi_{0}(f)$.

Proof. We assume $|f(z)| \leq 1$. We begin with a well known localization procedure [2, II 1.7]. Let $\widetilde{A}_{n}=A_{n-1} \cup A_{n} \cup A_{n+1}$. Choose $\psi_{n} \in C_{0}^{\infty}\left(\widetilde{A_{n}}\right)$ such that $0 \leq \psi_{n} \leq 1$, $\left|\operatorname{grad} \psi_{n}\right| \leq C_{1} 2^{n}, \sum \psi_{n}=1$ on $\bigcup A_{n}$. Define $f=0$ on $C \backslash D$ and write

$$
F_{n}(z)=\frac{1}{\pi} \iint \frac{f(w)-f(z)}{w-z} \frac{\partial \psi_{n}}{\partial \bar{w}} d u d v
$$

Then $F_{n} \in A\left(E_{n}, C\right)$ where $E_{n}=\tilde{A_{n}} \backslash D$, and we have

$$
\begin{equation*}
\left|F_{n}(z)\right| \leq \frac{C_{3} \gamma\left(E_{n}\right)}{\operatorname{dist}\left(z, E_{n}\right)} \tag{2.3}
\end{equation*}
$$

which is really the same inequality as (1.5). By Theorem 1, p. 166 of [4], for example, (2.1) yields

$$
\begin{equation*}
\sum 2^{n} \gamma\left(E_{n}\right)<\infty \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) follow

$$
\begin{gather*}
\sum_{|n-k| \geq 3}\left|F_{n}(z)\right| \leq C_{4} \sum_{|n-k| \geq 3} 2^{n} \gamma\left(E_{n}\right), \quad z \in A_{k}, \tag{2.5}\\
\sum_{n \geq n_{0}}\left|F_{n}\left(z_{0}\right)\right| \leq C_{4} \sum_{n \geq n_{0}} 2^{n} \gamma\left(E_{n}\right) \tag{2.6}
\end{gather*}
$$

Let $\varepsilon>0$, take n_{0} so that

$$
\begin{equation*}
\sum_{n>n_{0}} 2^{n} \gamma\left(E_{n}\right)<\varepsilon \tag{2.7}
\end{equation*}
$$

and set $g=\sum_{n \geq n_{0}} F_{n}$. Then by (2.5), $g \in H^{\infty}(D)$ and by (2.2) and (2.5),

$$
\phi_{0}(g)=\sum_{n \geq n_{0}} \phi_{0}\left(F_{n}\right)=\sum_{n \geq n_{0}} F_{n}\left(z_{0}\right) .
$$

Hence $\left|\phi_{0}(g)\right| \leq C \varepsilon$ by (2.6). Moreover, $f-g$ is analytic on each $A_{k}, k>n_{0}$ by II 1.7 of [2]. The singularity at z_{0} is then removable and we have

$$
\lim _{\Gamma \ni \rightarrow z_{0}}(f(\zeta)-g(\zeta))=\phi_{0}(f)-\phi_{0}(g)
$$

To complete the proof it is therefore enough to show

$$
\begin{equation*}
\lim _{\Gamma \ni \zeta \rightarrow z}|g(\zeta)| \leq C \varepsilon \log \frac{1}{\varepsilon} \tag{2.8}
\end{equation*}
$$

Let Γ_{k} be the last arc of Γ joining the two boundary curves of A_{k}. By (2.5) and (2.7)

$$
\sum_{n \geq n_{0},|n-k| \geq 3}\left|F_{n}(z)\right|<C \varepsilon \quad \text { on } \Gamma_{k} .
$$

For $|n-k|<3$ we apply Theorem 1 to obtain

$$
\left|2^{k} \int_{\Gamma_{k}} F_{n}(\zeta) d \zeta\right| \leq C(\Gamma) 2^{k} \gamma\left(E_{n}\right) \log \frac{1}{2^{k} \gamma\left(E_{n}\right)}
$$

Hence

$$
\left|2^{k} \int_{\Gamma_{k}} g(\zeta) d \zeta\right| \leq C \varepsilon \log \frac{1}{\varepsilon},
$$

and because Γ is smooth this is the same as (2.8).
3. The proof of Theorem 2 shows that the hypothesis (1.1) can be weakened to $\lim \inf _{k \rightarrow \infty} \chi_{0}\left(\Gamma_{k}\right)<\infty$. More seriously, the proof shows that Problem 1 is almost equivalent to the following question.

Problem 2. Let Γ be a continuous curve joining $|z|=\frac{1}{2}$ to $|z|=1$. Let E be a compact subset of $\{|z| \leq 4\}, E \cap \Gamma=\emptyset$, and let $f \in A(E, 1)$. Assume $\gamma(E)<\delta, \sup _{\Gamma}|f(\zeta)-L|<\varepsilon$. If δ and ε are small, must L be small, uniformly in Γ ?

Clearly a yes answer to Problem 2 would solve Problem 1. If Problem 2 has a counterexample in which Γ joins $\frac{1}{2}$ to 1 and in which $E \subset\left\{\frac{1}{2}<|z|<1\right\}$ we would have a negative answer to Problem 1.

References

1. A. M. Davie, Analytic capacity and approximation problems, Trans. Amer. Math. Soc., vol. 169 (1972), pp. 409-444.
2. T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
3. T. Gamelin and J. Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math., vol. XCII (1970), pp. 455-474.
4. A. G. Vitushkin, Analytic capacity of sets and problems in approximation theory, Russian Math. Surveys, vol. 22 (1967), pp. 139-200.

University of California
Los Angeles, California

