THE PRIMITIVE RANK 3 EXTENSION OF THE
POINTWISE STABILIZER OF PSp(2m, q)

BY
ARTHUR YANUSHKA

Introduction

Let G be a finite transitive group of permutations of a finite set X. The rank
of G is by definition the number of orbits of the stabilizer of a point. The
transitive group G is primitive if the stabilizer of a point is a maximal subgroup
of G. Let H be a finite transitive group of permutations of a finite set Y. Then
(G, X) is a primitive rank 3 extension of (H, Y) if G is a primitive rank 3 per-
mutation group on X and if there is an orbit D of G,, the pointwise stabilizer of
a € X such that (G,, D) = (H, Y) as permutation groups. Several sporadic
simple groups have been discovered as rank 3 extensions of certain known groups.

In this paper we consider a rank 3 extension problem related to the projective
symplectic group PSp(2m, q). This group is primitive of rank 3 when con-
sidered as a group of permutations of the points of a projective space P of
dimension 2m — 1 over the field of g elements. Indeed for v € P, the group
PSp(2m, q), has 3 orbits on P, namely {v}, the set of all points of P unequal to v
which are perpendicular to v, which we denote A(v), and the set of all points of P
which are not perpendicular to ». We show that the only primitive rank 3 exten-
sion of PSp(2m, q), on A(v) is the natural one of PSp(2m, q) on P. A precise
statement is the following.

THEOREM A. Let G be a finite transitive group of permutations of a finite set X.
Let P be a projective space of dimension 2m — 1 over the field of q elements.
For v € P let A(v) denote the set of all elements of P which are unequal to v and
perpendicular to v. Suppose (G, X) is a primitive rank 3 extension of

(PSp(2m, q),, Av)).
Then X = P and G = PSp(2m, q).
A key step in the proof of this theorem is the determination of the structure of

a certain subgroup of G, for a € X. The identification of this subgroup of G,
depends on the following result about g’ subgroups of Sp(2m, q).

THEOREM B. Let W be a subgroup of Sp(2m, q) for some positive integer
m > 2 and for some prime power q. Suppose |W |, = |Sp(2m, q)|,.. Then:

(i) Form = 2 and q = 2, either W = Sp(4, 2) or Sp(4, 2)'.
(i) Form = 2 and q = 3, either W = Sp(4, 3) or |Sp(4, 3): W| = 33,
(iii) For m = 2 and q > 3 and for m > 3, the group W = Sp(2m, q).
Received July 26, 1974.
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We derived Theorem B independently of the work of G. Seitz [11]. In fact
Theorem B is an immediate corollary of a theorem of Seitz on flag-transitive
subgroups of Chevalley groups because the group W which satisfies the hypoth-
esis of Theorem B is flag-transitive. Our method of proof differs from Seitz’s
and involves the determination of the possible structure of W, for a vector v.
We include a proof of Theorem B in this paper since it follows easily from the
lemmas needed for the proof of Theorem A. The method of proof of Theorem
B generalizes to prove similar statements about g’ subgroups for the other
Chevalley groups.

1. The proof of Theorem B

The purpose of this section is to prove Theorem B. The proof is by induction
on m. Let W < Sp(2m, q) such that

Wl = 1Sp(2m, @)l

A key step in the proof is the determination of the structure of W,, the subgroup
of W which fixes the vector v. The proof of the theorem involves matrix com-
putation and consists of a sequence of lemmas, some of which will be used in the
proof of Theorem A.

LeMMA 1.1.  Let W be a subgroup of SL(2, q). Suppose |W |, = |SL(2, q)l,-
Then:

(i) Ifq = 2, either W = SL(2, 2) or W is cyclic of order 3.

(i) If q = 3, either W = SL(2, 3) or W/Z is dihedral of order 4, where Z
denotes the center of SL(2, q).

(iii) Ifq = 5, either W = SL(2, 5) or W|Z is the alternating group of degree 4.

(iv) Ifq =1, either W = SL(2,7) or W|Z is the symmetric group of degree 4.

) If q = 11, either W = SL(Q2, 11) or W/Z is the alternating group of
degree 5.

i) Ifqé¢{2,3,5,7, 11}, the group W = SL(2, q).

Proof. The lemma follows from an examination of Dickson’s complete list
of nontrivial subgroups of PSL(2, g). See [8].

Remark. Since SL(2, q) =~ Sp(2, q), Lemma 1.1 gives a list of the ¢’
subgroups of Sp(2, q).

For the prime power g let F denote the Galois field of g elements. Let V,,
denote a 2m-dimensional vector space over F with ordered basis

{el’ €2y 0t ns €y €y oy €2y e..l}
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Let V%, denote the set of nonzero points of V,,. Let f be an alternating form
defined by f(e;, e-;) = 1 = —f(e_;, e;); all other products are zero. Then the
matrix J of the form f with respect to the given basis is

0,
where O, =

-0,
1

Note that a blank in a matrix indicates that the entry is zero. By definition the
symplectic group

where A’ denotes the transpose of 4 and GL(2m, q) denotes the general linear
group of matrices of size 2m over F. Denote Sp(2m, q) simply as S. Let S;
denote S5, the subgroup of S which fixes the vector {e;»>. Then

a r d
S1=

C a‘cir
-1

The group S is primitive of rank 3 in its action on the 1-dimensional subspaces

of V,,.. Indeed for a subspace {(v), S, has nontrivial orbits

a
{Kw): flo,w) = 0, w # v},
which we denote A(v) and {<w): f(v, w) # 0}.

ta,de F,re Vyp-1y, CeSp(m — 1), q) }.

Notation. Let m > 2. Let M(a, B, d, C) denote the matrix

a B d
C a'CJB
a1
where a, de Fand a # 0; B € V,,—1y; C € Sp(2(m — 1), 9).
We have the following rule for multiplication:
M(a, B,d, C)- M(e, F, h, G)
= M(ae, aF + BG, ah + e " 'BGJF' + de™!, CG).
Note thatif g = M(a, B, d, C), theng™! = M(a™?, —a"'BC~!, —d, C™Y).

Notation. Let N denote {M(a, B,d,I):a,de F; Be V,4,—y)}. Let U
denote {M(a, 0,d, I): a,de F}. Let T denote {M(1,0,d,I):de F}. Let Q
denote {M(a, 0,0, I): a € F}.

Then N, U, T, and Q are subgroups of S;. The group T consists of the
symplectic transvections with center e; and (T*:s5se€S) = S. Clearly
Q<U<NandN < §;.
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Define a natural map o: Sp(2m, q)¢.,5 — Sp(2(m — 1), q) by
M(a, B, d, C) - C.

Then ¢ is an epimorphism with kernel N.
In order to prove Theorem B, we must determine the structure of W, =
W n S;. We do this by first finding the structure of W, n N and then W,.

LemMA 1.2. Let X be a subgroup of S, such that Q < X n N.

() IfXnN<U,theneither X" N=UorXn N=0.

() If X n N £ U and if 6(XN) is transitive on V3, _,,, then X n N = N
if m, q) # (2, 2). If (m, q) = (2, 2), then either X " N = N or

IN: X nN| =2.

Proof. (i) The group U is a Frobenius group with kernel 7 and complement
Q. The group Q is a maximal subgroup of U.

(ii) Let B € o(XN). Let x5 be a preimage or inverse image of Bin X. Then
Xg = M(a, C, d, B) for some a, C, d. which depend on B. If w e X n N, then
xz'wxge X n N for all Be o(XN) because X " N<2 X. Since X" N £ U,
there is an element w = M(4, R, D,)e X n N with R# 0. Let y =
w-M(A"%,0,0,I). Theny = M(1, R, AD,I)e X n N. So

xplyxg = M(1,a"*RB,a"?AD + 2a"?RBJC',I)e XN N

where a, C, d depend on B € 6(XN). To eliminate partially this dependence,
compute for g € F*,
o)) z = M(a, 0,0, Dx; 'yxzM(a'g, 0,0, ).
Then
z = M(g, RB,g" (4D + 2RBJC"),)e XN N

for all Be 6(XN) and g € F*. Since R # 0 and 6(XN) is transitive on V3, _ ),
the element RB runs through V3, _,, as B runs through ¢(XN). Now

MQ, —R,d, 1) M(g, R, b,I) = M(g,0,b + g~ 'd, )eX N

for some b, de F. So M(a, C,b,I) e X n Nforallae F* for all C € V,(,_,,
and for some b € F where b depends on a and C.

Now we claim that b can be chosen arbitrarily for (m, ¢) # (2, 2). Indeed
thereisay = M(—1, R, b,I) e X n Nwithb # 0. Otherwise M(—1, R, b, I)
has b = 0 always. For R = (10...0) and r = (0...01),

M(-'ls R9 05 I)M(_ls r, 0$ I) = M(19R - r 1’ I),

a contradiction. If ¢ is odd, then y> = M(1,0, —2b,I) € T and y* # 1.
If g is even, then y = M(1, R, b, I) with b # 0. If R # 0, then recompute
zof (1) tofind z = M(g, RB,g™'b,I) e X n N. Then

zy = M(g,gR + RB,(g + g )b + RBJR,I)e X n N.
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If ¢ # 2, pick g € F* such that g # g~!, then pick Be a(XN) such that
RB = gR. So zx = M(g,0,(g + g )b, )€ X n N with (g + g~ )b # 0.
If ¢ = 2, then z = M(1, RB, 1, I) for all Be 6(XN). For R = (10...0) and
r = (010...0), if m > 3, then RJr' = 0 and

MQA, R 1,D)- M1, r,1,I) = M, R + 1,0, 1).
Then

M(U,R+r0ID -MA,R+r1,I)=M(101,I)eXnN.

So in all cases except (m, q) = (2, 2), there is y = M(g,0,b. ) e X n N
with b # 0. By (i), (Q,y> = U < X n N. Then

MQ1,0,B,I)-M(a,C,b,I) = M(a,C,b + Ba™',)e XN
where b depends on @ and C and where a, B, C are arbitrary. So
M@ C,B,)eXnN

for all @, Be Fand all Ce V,,—4y. Thus X n N = Nif (m, q) # (2,2). If
(m, q) = (2, 2), then either X n N = N or

XAN={,MQUr1,D:reV.

This completes the proof of Lemma 1.2.

LemMA 1.3. Let X be a subgroup of S, such that Q < X n N < U. Let
B e o(XN) and let xg = M(a, r, d, B) be a preimage of B which lies in X, where
a, r, d depend on B.

G) If q # 2, thenr =0 and xg = M@a,0,d,B). If Q = X N and if
q > 3,thend = 0 and xg = M(a, 0, 0, B).

Gii)) If q = 3, assume o(XN) = Sp2m — 1),3). If Q = X N and if
m > 3, thend = 0 and xz = M(a, 0, 0, B).

(iii) If g = 2, assume o(XN) = Sp(2(m — 1), 2). Then there is n € N such
that for all Be 6(X), x" = M(1,0,d,B). If X" N =1 and if m > 4, then
there is n € N such that x" = M(1, 0, 0, B).

Proof. (i) Fix Be o(XN). Let x5 = M(a, r, d, B) be a fixed preimage of B
which lies in X, where a, r, d depend on B. Let x5-: = M(4, R, D, B ') bea
fixed preimage of B~! which lies in X, where 4, R, D depend on B~!. Since
Q < X n N, the element M(g,0,0, I) € X for all g € F*. So
xBM(g, 0, 0’ I)xB"l

= M(agA, agR + rB~',agD + A 'rB™'JR' + dg~*A ', N e X n N.
Since X n N < U, it follows that agR + rB~! = Oforallg € F*. Forgq # 2
it follows that R = 0 and so x5 = M(a, 0, d, B).

Now assume X n N = Q. Then for all g € F*,

xgM(g, 0,0, Dxg-1 = M(agA, 0, agD + dg~'A~*, ) e Q.
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SoagD + dg~'A™! = O for all g € F*. For q # 3 it follows that D = 0 and
so x5 = M(a, 0, 0, B).

(ii) Let Be o(XN). Since X" N = Q, let x3 = M(1, 0, d, B) be a pre-
image of B which lies in X where d depends on B. Suppose yz = M(1, 0, D, B)
is another preimage of B which lies in X. Then

yp'xg = MQ1,0,d — D,)eXnN=Q.

So d = D and d is uniquely determined by B when the (1, 1) entry of the matrix
xp is chosen to be 1. In this case denote the unique d by dy. Then xp =
M(1, 0, dg, B). For C € o(XN), let

Xc = M(l, 0, dc, C) and Xpc = M(l, 0, dBC’ BC).
Then
x;clexC = M(l, 0, dB + dC e dBc,I)GXﬁ N = Q.

So dgc = dg + dc. By assumption 6(XN) = Sp(2(m — 1), 3). Thus the rule
B — dy defines a homomorphism 6 from Sp(2(m — 1), 3) into F a group of
order 3. If m > 2, then PSp(2(m — 1), 3) is a simple group. Since ker § =
Sp(2(m — 1), 3), it follows that 6 = 0 if m > 2. So xz = M(l, 0, 0, B) if
m > 2. If m = 2, then ker § = Sp(2, 3) or a Sylow 2 subgroup of Sp(2, 3).

(iii) For g = 2 and for Be 6(XN) = Sp(2(m — 1),2),let xz = M(1, r, d, B)
be a preimage of B in X where r and d depend on B. Let y; = M(l, R, D, B)
be another preimage of Bin X. Then

ygixg = M(1,r + R,d+ RJr' + D,)eXn N < U.

So r + R = 0 and r is uniquely determined by B. Denote the unique r by rp.
Then x5 = M(1, rg, d, B). For C € 6(XN), let

Xc=M(,rc, e, C) and xgc = M, rge, f, BC).
Then
X B¢ XpXc
= MQ, rc + rgC + rgc, e + rgCIré + d + rpcdré + rgeC ™ Yrg + f, 1)
eXnN.

So rgc = rc + rgC. Thus the rule B — rp defines a derivation r from
Sp(2(m — 1), 2) into V,(,-1y. We claim that r is an inner derivation. If 7 is
inner, then there is R € V), ) such that

rg = R + RB for all Be Sp(2(m — 1), 2).

Set n = M(1, R,0,I). Then ne N and x5 = M(1,0,d + RBJR', B). If in
addition X n N = I, then x} = M(1, 0, dg, B) where dg is uniquely deter-
mined by B. The rule B — dj defines a homomorphism é from Sp(2(m — 1), 2)
into F, a group of order 2. If m > 4, then Sp(2(m — 1), 2) is a simple group
and so ker 6 = SpQ2(m — 1), 2). If m = 3, then ker 6 = Sp(4, 2) or Sp(4, 2)'.
If m = 2, then ker 6 = Sp(2, 2) or Sp(2,2)’. If m > 4, then x5 = M(1,0,0, B).
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It remains to show that r is inner. If m = 2, then r is inner because the
F-dimension of the first cohomology group of SL(2, 2) with coefficients in V,
is zero by a theorem of D. Higman [4]. If m > 2, then the F-dimension of the
first cohomology group of Sp(2(m — 1), 2) with coefficients in Vj,_ 1, is one
by a theorem of H. Pollatsek [10]. In fact there is an outer derivation
u: Sp(2(m — 1), 2) - Vy(,—;) With the property that if T is a symplectic non-
orthogonal transvection with center x, then u(7T) = x.

For m > 2 assume that r is outer. There is an inner derivation i such that
ir = u. Since i is inner, there is R € V), such that i(B) = RB + B for all
BeSp2m — 1),2). Let n = M(1, R,0,I). Then X" satisfies the same
hypotheses as X and xj = M(1, ug, d, B). So without loss of generality,
assumen = Iand r = w.

Let B be the transvection with center e, and C be the transvection with
center e_,. Then ry = e, and r¢ = e_,. Note

1 1
1
1

1

B = and C =

1 1

Then rge = e, + e_, = regand reg + rgcCB = e,. But
XpcXcg = M(1, rgc, d, BC) - M(1, rcg, e, CB)
= .M(l, rCB + rBCCB, e + chcBJréB + d, I)GX(‘\ N.

Since X n N < U, it follows that rog + rgcCB = 0, a contradiction. So r is
not outer and this finishes the proof of the lemma.

LemMa 1.4. Let X be a subgroup of S, such that XN = S;and Q < X n N.
If (m, q) # (2, 2), then X is one of the following three subgroups:
(i) {M(a,O, ds, B): a,dge F;Be Sp(2q(m — 1), q)} where dy is determined
by Band dy = 0if (m, q) # (3, 2), (2, 3),
(i) {M(a,0,d, B):a,deF, Be Sp(2(m — 1), q)}, or
(i) S;.
If (m, @) = (2, 2), then X is one of the following four subgroups:
@ {MQ1,0,ds, B):dgeF, Be Sp(2,2)},
(i) {M(1,0,d, B):deF, Be Sp(2, 2)},
(i) {MQ,r,dg,, B):dg,€F, reV,, BeSp2,?2)} where dg, is uniquely
determined by B and r, or
i) S;.

Proof. Assume (m, q) # (2,2). Note o(XN) = Sp(2(m — 1), q). By
Lemma 1.2, either X" N=Q,U, or N. If Xn N = Q, then for Be
Sp(2(m — 1), q), a preimage in X has the form Xz = M(a, 0, d, B) where a
and d; depend on B and where dg = 0if (m, ) # (3, 2), (2, 3) by Lemma 1.3.
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Then
{xp, Q: Be Sp2(m — 1), q))
= {M(a, 0, dy, B): a,dg € F; Be Sp(2(m — 1), q)}

is a subgroup of X of order (¢ — 1)|SpQ2(m — 1), g¢)| = |X]. So Xis of type (i)
fXnN=0Q.

If X n N = U, then xz = M(a, 0, d, B) where a, d depend on B by Lemma
13. Let n= M@ ',0, —d,I)eU < X. Then xpn = M(1,0,0,B)e X
and

<{M(1,0,0, B), U: Be Sp(2(m — 1), 9))
= {M(aa 09 d, B)° a, de F;Be Sp(2(m - l)’ Q)}

is a subgroup of X of order (g — 1)q|Sp(2(m — 1), q)] = |X]. So X is of type
G ifXnN=U.

If Xn N=N, then Xz = M(a, r, d, B) where a, r, d depend on B. Let
n=M@?' —a'r,—d,I)e N < X. Then xzn = M(1, 0, 0, B) € X and

<M(1’ O, 05 B)a N:Be SP(Z(m - l)’ q)> = Sl'

IfXnN=N,then X = §,.
Now assume (m, ¢) = (2, 2). By Lemma 1.2, either

XAN=LU{MQ1r,1,D,I:reV}} or N.

If X n N = I, then X is conjugate to a subgroup of type (i) by Lemma 1.3 (iii).
If X n N = U, then X is of type (ii). If

XaN={M(QUr1,I),I:reV;},

letxz = M(1,r,d, Byandyg = M(1, r, e, B) be preimages in X of Be Sp(2, 2).
Then
xgyg' = M(1,0,d + e,])e XN N.

So d = e and d is uniquely determined by r € V, and B € Sp(2, 2). Let x5 =
M(Q,r,d, B). If r # 0, then

n=M({0,r,1,B)e X and xzn = M(1,0,1 + d, B)e X.
Then
{(M(1,0,d, B), X n N: Be Sp(2, 2))
= {M(,r, d, g B):reV,, Be Sp_2, 2)}

where d, p is uniquely determined by r and B. This group is a subgroup of X
of order 2%|Sp(2, 2)] = |X| and X is of type (iii). If X " N = N, then X = S,
and 1.4 holds.
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LemMMA 1.5. Let W be a subgroup of S such that W is transitive on V%, and
o(W,N) = Sp(2(m — 1), q). Then
W, £ {M(a,0,d, B):a,de F; Be Sp(2(m — 1), q)}.
Proof. Suppose not. Suppose
W, < {M(a,0,d, B):a,de F; Be Sp2Q(m — 1), q)}.

Let (@abc) € V3, wherea,ce F, ¢ # 0; b € Vy(,_). Since W is transitive on
V%, there is w € W such that w(e,) = (a b c¢)’. Let

a d g
b E h

c f i
where g,ie F; d', f', h € V4,1, and where g, i, d, f, h, E depend on a, b, c.
We claim that 4 = zb for some z € F.

Indeed let K € 6(W,;N) such that K(b) = b. Then

w =

a dK g
M(1,0,0, K "YhYwM(1,0,0,K) = |b K 'EK K 'h|.
c fK i

Sow™*M(1,0,0, K~ YwM(1, 0,0, K) € W, and this element equals M (I, 0, m, R)
for some I, m € F; R € Sp2(m — 1), g). Then

M(1,0,0, K- HYwM(1, 0,0, K) = wM(l, 0, m, R)

al dR am + gl™!
bl ER bm + hi™!
cd fR cm+il™!

Sol=1,m = 0since c # 0and K~ 'h = h. If Ke s(W;N) = Sp(2(m — 1), q)
such that K(b) = b, then K(h) = h. So {b, h} is a linearly dependent set of
vectors of V(1) since Sp(2(m — 1), q) is primitive in its action on the lines
of Vo(m-1). So there is z € F such that & = zb.

Since w is a symplectic transformation, wJw’ = J. Then

a (az — gb'JE ¢
b E zb
¢ (cz—-0DbJE i

I

2 w =

where ai — ¢g = 1 and E € Sp(2(m — 1), q) for some g, z, i, E which depend
ona,b, c.

Let u € W such that u(e;) = (@b c) where a,ce F,c # 0 and be V5, _,,.
Then
a (az — gb'JE ¢
b E zb
¢ (cz—-ibJE i

u =
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for some g, z, i, E which depend on a, b, c. Let v e W such that v(e,) =
(—z 0 1)’ where z is determined by u. Then by (2),

-z k
H
1 /

v =

for some k, / € F; H € Sp(2(m — 1), q) which depend on —z, 0, 1. Now

g — az (az — g)b'JEH ak + gl
EH -b
i—cz (cz—iJEH ck + il

uy = eWw

where b # 0. But (uv)(e;) = (9 —az 0 i— cz). Ifi — cz = 0, then
weW, < {M(,0,d, B)}.

So (az — g)b’JEH = 0. Since E, H e Sp(2(m — 1), q) and b # 0, it follows
that az — g = 0 and (uv)(e;) = (0 0 0), a contradiction. So i — ¢z # 0 and
(wo)(e)) = (g —az 0 i— cz). By (2),

g — az n
M
i—cz r

uv =

for some M, n, r. This contradiction completes the proof.
Notation. For a natural number i, let v; = (¢° — 1)/(g — 1).

LeMMA 1.6. Let W be a subgroup of S such that |W/|, = |S|,. Then W is
transitive on V3%,
l6(WiN)l = ISpQ0m — 1), @)l and Wy A Nl =g — 1.
Proof. Note |W: W;| < v,,. Now compute |[a(W;N)|,.
lo(W,N)lgy = [Wily - IW, n Nig!
> [Wlg vz - INIG?
= |SpQ2(m — 1), 9)ly

since | W], = IS, So [o(W,N)l,r = [Sp@(m — 1), @)lg» IW, 0 Nl = [Nl
and |W: Wy| = v,,. To see that [W: W, | = ¢®™ — 1, use the natural map
0y: S, = Sp(2(m — 1), q) defined by the rule M(l,r,d, B) > B. So 1.6
holds.

We can now begin the proof of Theorem B, which proceeds by induction
on m.

Lemma 1.7.  Let W be a subgroup of Sp(4, q). Suppose |W |, = |Sp(4, @)|,.
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Then:
(i) For q # 2, 3, the group W = Sp(4, q).
(i) For q = 3, either W = Sp(4, 3) or |Sp(4, 3): W| = 33,
(iii)) For q = 2, either W = Sp(4, 2) or Sp(4, 2)'.

Proof. (i) By Lemma 1.6, W is transitive on V},
lo(WiN)lg» = |Sp(2, g)l; and Wy A N|, =q— 1

Since N is solvable, the g’-Hall subgroup of W; n N is conjugate to Q by an
element n of N. Clearly W" is transitive on V and [6(WiN)|, = |Sp(2, )|,
So without loss of generality, assume W; n N > Q. By Lemma 1.1, W,N = S,
with possible exceptions if g € {2, 3, 5, 7, 11}. By Lemmas 1.5 and 1.4, W, =
S, if ¢ # 2, 3. Since |W: W,| = v,, it follows that W = S. To complete the
proof of (i), we must show that the possibility that (W, N) is a proper subgroup
of Sp(2, q) does not occur for g € {3, 5, 7, 11}.

Indeed suppose o(W;N) < Sp(2, q) for ge {3,5,7, 11}. We claim that
o(W,N) is transitive on V5. Indeed let E = o(W,N). By hypothesis |[E| =
g% — 1. So E contains Z, the center of Sp(2, g). Now

|E1| | (ISP2, @4l |ED) = g — 1.
Since g € {3, 5, 7, 11}, it follows that |E;| = 2 or ¢ — 1. If |E;| = 2, then

|E: Ey| = (¢* = /2| 1Sp2, 9): Sp(2, )1l = ¢ + 1,
which does not occur for g € {5, 7, 11}. So |E;| = ¢ — 1 and E, is conjugate

to the subgroup
{ 1X€E F*}

of 2 x 2 diagonal matrices. Thus |E: E,,| = g — 1 and ¢(W,N) is transitive
on V. If W, AN £ U, then W, n N = N for ge {3, 5,7, 11} by Lemma
1.2 (ii)). So W, > T and since W is transitive on V}, it follows that W =
Sp(4, q) and a(W,N) = Sp(2, q), a contradiction. So W, n N < U. If W, n
N = U, then W; > T, which leads to a contradiction. So W; n N = Q.

For B e a(W;N), let wg = M(a, r, d, B) be a preimage of B which lies in
W,, where a, r, d depend on B. If g€ {5, 7, 11}, then r = 0 and d = 0 by
Lemma 1.3 (i). Then

W, = {M(a, 0,0, B): ae F*, Be o(W,N)}.

If ¢ = 3, then wy = M(a, 0, d, B) where a, d depend on B € o(W,N). Since
W, n N = Q, we can choose a = 1 and then d is uniquely determined by B.
In this case denote the unique d by dg. From the proof of Lemma 1.3 (ii), it
follows that the rule B — dg defines a homomorphism from ¢(W;N) which has
order 8 into F which has order 3. So dy = O for all B € 6(W;N) and

W, = {M(a, 0,0, B): ae F*, Be o(W,N)}.

X

x-—l
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If g € {3, 5, 7, 11}, then |Sp(4, q): W| = q*. But Sp(4, q) has no subgroup of
index g* by a theorem of H. Mitchell [9]. This is a contradiction.

(ii)) Suppose g = 3 and o(W,;N) = Sp(2, 3). So W;N = S,. By Lemma 1.4
either W, = S, in which case W = § since W is transitive or

W, = {M(a,0,d, B): a,de F, Be Sp(2, 3)}
in which case a contradiction results by Lemma 1.5 or
W, = {M(a, O, dg, B): a, dy € F; Be Sp(2, 3); ker d = Sp(2, 3) or Sp(2, 3)'}.

If ker d = Sp(2, 3), then a contradiction results by Lemma 1.5. So ker d =
Sp(2, 3) and |Sp(4, 3): W| = 33. Note Sp(4, 3) has a subgroup of index 3° by
a theorem of H. Mitchell [9].

(iii) Suppose g = 2and 6(W;N) = Sp(2, 2). So W,N = S,. Apply Lemma
14. If W, = S;,then W = S. If

Wy = {MQ,r d,p B):d, geF,reV, BeSp_,2)}

then |S: W| = 2. Since Sp(4, 2) is the symmetric group of degree 6, it follows
that W is the alternating group of degree 6. If

W, = {M(a,0,d, B):a,de F, Be Sp(2, 2)},
then W, > T and so W = S, a contradiction. If
W, = {M(a, 0, dg, B): a,dg e F; Be Sp(2,2); kerd = Sp(2, 2) or Sp(2, 2)'}

then |S: W| = 2% But the symmetric group of degree 6 has no subgroup of
index 2* by a theorem in B. Huppert [8].

Now suppose o(W;N) < Sp(2, 2). Then o(W,N) is transitive on V5. If
Wi n N £ U, then by Lemma 1.2 either W, n N = N in which case W, > T
and so W = S, a contradiction or |[N: W; n N| = 2 in which case |W,| =
2%2-3 and |S: W| = 22. But the symmetric group of degree 6 has no subgroup
of index 22 [8]. If W, n N < U, then either W, n N = U = T in which case
W, > T and W = S, a contradiction or W; n N = I in which case |W;| = 3
and |S: W| = 2*. But the symmetric group of degree 6 has no subgroup of
index 2*. This completes the proof of 1.7.

LemMa 1.8. Let W be a subgroup of Sp(2m, q) where m > 2. Suppose
(Wl = I1Sp@2m, q)|,. Suppose Theorem B holds for 2 < m; < m. Then
W = Sp(2m, q).

Proof. By Lemma 1.6, W is transitive on V%,
lo(W N)l,» = |Sp2(m — 1), g)l, and |W; A N[, =g¢ — L.

Since N is solvable, we may assume without loss of generality that the ¢'-Hall
subgroup of W; n Nis Q. By the induction assumption,

o(WN) = SpQ(m — 1), q) if (m, q) ¢ {G, 2), 3, 3)}.
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So W,N = Sp(2m, q), if (m, q) ¢ {(3, 2), (3, 3)}. By Lemmas 1.4 and 1.5, we
have W, = Sp(2m, q),. Because |W: W,| = v,,, it follows that W = Sp(2m, q).

Suppose (m, q) = (3, 3) and o(W,N) = Sp(4, 3). Then W = Sp(6, 3) by
Lemmas 1.4 and 1.5. Suppose |Sp(4, 3): o(W,N)| = 33. From the proof of
Lemma 1.7 (i) we know that o(W, N) is transitive on V. If W, n N £ U then
by Lemma 1.2 (ii), W;, " N = N, W, > T and so W = Sp(6, 3), a contradic-
tion. If W, n N = U > T, then W = Sp(6, 3), a contradiction. So

W, nN=0Q.

For B e o(W,N) let xg = M(a, r, d, B) be a preimage of B which lies in W,.
By Lemma 1.3 (i), r = 0. From the proof of Lemma 1.3 (ii) it follows that d is
uniquely determined by B when a = 1 so that the rule B — dj defines a homo-
morphism d from ¢(W,N) into F, a group of order 3. If ker d # o(W,N), then
|o(W,N): ker d| = 3 and |Sp(4, 3): ker d| = 3*. But Sp(4, 3) has no sub-
group of index 3* by a result in B. Huppert [8]. So ker d = ¢(W,N) and x5 =
M(1, 0,0, B). Since W; n N = Q, it follows that

W, = {M(a, 0,0, B): ae F*, Be o(W,N)}.

We wish to apply Lemma 1.5 to W to derive a contradiction. Its proof holds for
o(W,N) < Sp(4, 3), if for all v e ¥} with v # e,, there is K € a(W,N),, such
that K(v) # v. Indeed this condition is satisfied because

G(WlN)el = {M(la 0, dB’ B)‘ dB € F9 B € Sp(29 3)},

where ker d is a Sylow 2 subgroup of Sp(2, 3).

Suppose (m, q) = (3, 2) and o(W,N) = Sp(4, 2) or Sp(4, 2)’. Then W,N =
S,or|S;: W,N| =2. If W, n N £ U, then by Lemma 1.2 (ii), W, n N = N,
Wy=>Tand W=S. If WnN=U, then W = S, a contradiction. So
W, n N = Iand |W,| = |Sp(4, 2)| or |Sp(4, 2)'|. Then |Sp(6, 2): W| = 2° or
25. But Sp(6, 2) has no subgroups with these indices by a theorem of J. Frame
[3]. This contradiction completes the proof of Lemma 1.8 and of Theorem B.

2. Facts about rank 3 groups

Assume (G, X) is a primitive rank 3 permutation group. For a € X denote
the G, orbits by {a}, D(a) of length k and C(a) of length /. For b € D(a) let
A = |D(a@) n D(b)|. For b e C(a) let p = |D(a) n D(b)]. We now collect the
necessary facts about rank 3 groups.

LEmMMA 2.1. Let G be a primitive rank 3 group of even order. Then:
QO wl=kk—-21-1).

(i) O<u<k

(iii) Let D = (A — p)* + 4k — p). Then D is a square.

(iv) a e D(b) iff b € D(a).

(v) D(a) and C(a) are each self-paired orbits of G,.

(vi) If b € D(a), then there is g € G such that g(a) = b and g(b) = a.
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Proof. See [5], [12].
Denote a U D(a) simply as a*. For a # b define the “line” R(ab) by

R(ab) = {z':a, bezt).
Call R(ab) totally singular (resp. hyperbolic) if b € D(a) (resp. b € C(a)).

LEMMA 2.2. Let G be a primitive rank 3 group of even order. Then:
(1) G is transitive on totally singular (resp. hyperbolic) lines.

(ii) If b € D(a) and if x € R(ab) — {a}, then R(ax) = R(ab).

(iii) If b € D(a), then x € R(ab) iff a* N x* = a* N b*.

(iv) If b € D(a), then Ggeu,, the global stabilizer of R(ab), is 2 transitive on
the points of R(ab) unless R(ab) = {a, b}.

v) If p > A+ 1, then Gy, is 2 transitive on the points of R(xy) unless
R(xy) = {x, y}.

Proof. See [5].
Denote the pointwise stabilizer in G of a* simply as T'(a).

LemMA 2.3. Let G be a primitive rank 3 group of even order. Then:

@) N{T(x): xe D@} = 1.
G) Ifu > A + 1, then |T(a)| divides (|R(af)| — 1) for f € C(a).

Proof. See [5], [6].

3. The proof of Theorem A form = 2

For the rest of the paper, we assume that (G. X) is a primitive rank 3 extension
of (PSp(2m, q),, A(v)) for m > 2 and v € P, the projective space formed from
V,m- Denote PSp(2m, q) simply as S and for a basis element e, € P denote
PSp(2m, q),, simply as S,. Fix ae X. Leti: D(a) — A(e,) be the bijection and
j: G, = S, be the isomorphism which establish the permutation isomorphism
of (G,, D(a)) and (S;, A(e,)). That is, for all x € D(a) and for all g € G,,

i(9(x)) = ((9)GE(x)).

Since S, is not faithful on A(e,), it follows that G, is not faithful on D(a) and so
T(a) # 1. Now

k = |D@)| = q(¢*" "2 — Di(g — D).

For r € N, the set of natural numbers, let v, denote (¢" — 1)/(¢ — 1). Then
k = quyp-».

The purpose of the next two sections is to prove Theorem A. First we de-
termine the parameters 1, u, and / of G and then we identify the subgroup G,
for b € D(a), f € C(a) n D(b) by Theorem B. Then we show that the number
of points of an abstract “line” R(xy) is ¢ + 1. From these results we can con-
clude that X is a projective space and that G is a group of symplectic collinea-
tions. The details of the proof differ somewhat according as m = 2 or m > 2.



A PRIMITIVE RANK 3 EXTENSION 519

The rest of Section 3 considers the case m = 2 while Section 4 considers the
case m > 2.
Now assume m = 2. Then S = PSp(4, q).

LemMA 3.1. The group S, is a transitive rank 3 group on A(e,) with sub-
degrees 1, q — 1, and q>.
Proof. Since e, € A(ey), the group S, equals

a c d
b e albc

b1 Z.a,b,c,decF;.

a—l
The group S,,; on A(e;) has orbits
{es}, {(a,b,0,0):a,beF*}, and {(c,e,b~1,0):b,c, e€ F}.

So 3.1 holds.

We wish to determine the intersection numbers A and u of the rank 3 group G.
For b € D(a) and for ¢ € D(a) n D(b), it follows that ¢ = D(a) n D(b) and
that D(a) n D(b) is a union of nontrivial G,, orbits on D(a). So

AE{O,q— 19q2aq2+q— 1}

from Lemma 3.1. In this section let b, ¢ be the fixed elements of D(a) such that
i(b) = e, and i(c) = e_,.

Lemma 3.2. A # 0.

Proof. Suppose A = 0. Now
|Gba’ Gracl = 1S2,1: 82,1, -2l = ¢°
by Lemma 2.1. Then
Gyt Goeal = Gy Guol * 1Gra? Gigel * 1Gy 2 Gl ™
= kq?|l
= pg’/(k - 1),

since by Lemma 2.1, ul = k(k — A — 1) = k(k — 1). Since k — 1 = g% +
g — 1 and pug?/(k — 1) e N, it follows that (k — 1) |u. But u <k — 1
because G is primitive. So 4 = k — 1. Then

D=(GQ—-p? +4k —p)=(k-172+4=x?

for some x e N. Then4 = (x — (k — 1))(x + (k — 1)) implies k = 5/2 or 1,
a contradiction. So A # 0 and 3.2 holds.

LemMma 3.3. A = q — 1 and ul = kq?.
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Proof. If) =q* + q— 1=k — 1, then u = 0 because
w=kk —21-1)
and thus G is imprimitive, a contradiction.

Suppose A = g2. So D(a) n D(b) equals the G,, orbit of length g?. Define
a subgroup R of G, by

R = () {G: x lies in the G, orbit of length ¢?}.
Then

J(R) = ) {Si1,2,,: v lies in the S, , orbit of length ¢2}.
It follows from matrix computation that
1 d
J(R) = 1 Z:deF),
1

where Z is the center. Note j(R) fixes A(e;) pointwise.

Since the G, orbit of length ¢ lies in D(b), the pointwise stabilizer in G, of
the D(b) orbit is a subgroup of R; that is 7(b) < R. Let t e T(b). Then
Jj() € j(R) and j(¢) fixes A(e,) pointwise. So ¢ fixes D(a) pointwise and ¢ € T(a).
Thus T'(b) < T(a). Since G is transitive on X, there is 4 € G such that A(b) = a.
Then T(b)* = T(a) and so T(b) = T(a). For x € D(a), there is g € G, such that
g(b) = x. So T(a) = T(b)! = T(x) and

T(a) = ) {T(x): x € D(a)}.
By Lemma 2.3 (i). [} {T(x): x € D(a)} = 1. So T(a) = 1. But by hypothesis
T(a) # 1, a contradiction. So A # g?>and A = ¢ — 1. So 3.3 is proved.

LemMA 3.4. (i) For y € D(x), the “line” R(xy) = x* n y* and |R(xy)| =
qg+ 1

(ii) For x e D(a), i(R(ax)) = {eq, i(x)> where {ey, i(x))> denotes the
projective line determined by e, and i(x).

Proof. (i) Clearly R(ab) < a* n b*, where a* n b* is the union of {a, b}
and the orbit of G, of length ¢ — 1. So i(a' N b') is the union of {e,, e,} and
the orbit of S, of length ¢ — 1 and

i(at 0 bY) = ey, e)).

Let u € a*t n b* — {a}. Then a* N u' is the union of {a, u} and the orbit of
G,, of length g — 1. So

i@ nut) = ey, i) = ey, &) = i(a* n bY)

since i(u) € {e;, e,> — {e;}. So a* nu* = a' n b' which implies u € R(ab).
So a* n b* = R(ab) and a* N b* = R(ab). Since G is a transitive group of
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rank 3, G is transitive on totally singular lines. It follows that for y € D(x), the
line R(xy) = x* n yt.

(ii) For x € D(a), the line R(ax) = a' n x* and i(R(ax)) is the union of
{ey, i(x)} and the orbit of S; ;) of length ¢ — 1. Thus i(R(ax)) = ey, i(x)D.
This completes the proof.

We wish to determine the parameter u. Since C € D(a) n C(b),

|Gbc: Gbcal = le: Gba' ' lea: Gbacl ' IGb: Gbcl_1
= kq?/l
= pg*/tk — A — 1)

= U.
Now

J(Gape) = S1,2,-2 = Y -1 Z.x,y,zeF),

x—l

a group of order ¢”'(g — 1)?q, which has index ¢? in j(G,,) = S;,, where
e=(2,q — 1). Let

0= Y ot Z:x,yeF)}.
x—l

Then Q is a g’-Hall subgroup of the solvable group S, ,.
Since G is rank 3 of even order, by Lemma 2.1 the D orbit of G, is self-paired
and there is g € G such that g(@) = b and g(b) = a. Then

B = |Gp: Gyl = |Gagiey: Gagieypl-

The g’-Hall subgroup of G, is conjugate to j~'(Q) by an element 4 € G,
Let f = hg(c). Then fe C(a) N D(b). Now p = |G,;: Gyl Where G, is
conjugate to G,,.. Also

|Gapsl = e Mg — 1)?q, |Gp: Gasl = g* and Gay = jHO).

We will determine the value of u by determining the possible structure of
J(Gay) in Sy, ,. Denote j(G,,) simply as K.

LemMMA 3.5. The group K is one of the following three groups:

@) ro z),
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X z
-1
(ii) Y - * Yz
x—l
X
y z
(iii) Z1 Z).
y -

where x, y, z € F.

Proof. Lethe K — Q. Thenhe S, , — Q. Let

X m t

-1
h=| Y T Iz
y

x-—l

where at least one of m, n, ¢ is nonzero. Since K > @, we may assume without
loss of generality that x = y = 1. If not, consider

h, = Y Z-h
y
X

Then 4 has at least e"!(¢ — 1) Q—conjugates since for u, v € F*,

u u! 1 um ut
-1 2
v v 1 v°n uvm
1 N Z = Z.
v v 1
u! u 1

Now £Q, h) 2 {Q, sh": r, s € Q}, a set of order at least
e g — 1) +e7%g - g — 1) > |K|/2.
So <Q, h) = K and exactly one of m, n, ¢ is nonzero. This implies 3.5.
LemMMA 3.6. The group K is not equal to Sy ,, _,.

Proof. Suppose K = S; , _,. Then G, = Gy and T(a) < G, <G
where f € C(a). For x € C(a) there is g € G, such that g(f) = x. Then

T@ < G{=G, and T(a) < () {G,: xe C(a)}.
But by definition T(a) = () {G,: x € a U D(a)}. So
T@) =) {G,:xeX} =1

This contradiction proves the lemma.
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LemMmA 3.7. (i) For x € D(a) n D(b),

Gaf N Ga,R(ax) = Gaxf .
(“) Gaf $ Ga,R(ab)’
(i) u=qg+ landl = q°.
(iv) Case (ii) of Lemma 3.5 does not occur.

Proof. (i) Clearly G,y < G,r 0 G, rax)- Let
g € Gop 0 Gy Reax)
Then g(x) € R(ax) n D(f). If g(x) # x, then
a € R(ax) = R(xg(x)) < f+,

a contradiction. So g(x) = x and x € G,;.

(ii) If Gaf < Ga,R(ab)’ then Gaf = Gaf N Ga,R(ab) = Ugpy and

n = lGaf: Gabfl = 1.
Then
D=(q—-2*+49g*>+q—-1)=5¢"

is a square, a contradiction. So G,; £ G, r and there is g € G,y — G, rap)
such that g ¢ G,

(i) p = |G,;: Gl = |6%|. We compute the possible values for u from
the action of G,,, on {R(ax): x € D(a)}. Now

b%s = {b} U |J {x%: there is g € G,, with g(b) = x}.
For x e D(a) N D(f)’ by (1)’ Gafx = UasR(ax) and so Gabfx = UabsR(ax): Then
[x%%7| = |Gapst Gapgzl = |Gapst Gappriam] = |R(ax)%|.

By Lemma 3.4 (ii), for x € D(a), i(R(ax)) = {ey, i(x)>. So the action of G,
on {R(ax): x € D(a)} can be computed from the action of j(G,,) = K on
{Cer, €30, <ey, Ou10):ue Fl.

In case (ii) of Lemma 3.5, on the above set K has orbits of lengths 1, 1,
(g — 1)/2, (g — 1)/2if g is odd and of lengths 1, 1, ¢ — 1 if ¢ is even. Notice
that K fixes (e, e_,) but does not fix e_,. By (i) ¢ ¢ D(@) n D(f). Since
b e D(a) n D(f), there does not exist g € G,, such that g(b) = c. Since there
does exist g € G,; — G,y by (ii), g(b) lies in an orbit of length (¢ — 1)/2 if ¢
is odd or of length ¢ — 1 if g is even. So p = (¢ + 1)/2 or g if ¢q is odd and
u = qif q is even in case (ii).

If u = (g + 1)/2, then

D=(@g—-1-(+D2*+4q"+q—(q+ 12
= (179% + 2q + 1)/4

=x2
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for some xe N. Sogq(17g + 2) = 2x — 1)(2x + 1). Since 2x — 1,2x + 1) =
1 and ¢ is a prime power, either ¢ | 2x — 1) or ¢ | (2x + 1). If there is ¢ € N such
that gt = 2x — 1, then

17 + 2 =t(gt +2) and (17 — tHg =2t — 1) > 0.

Sot € {1, 2, 3, 4} and a contradiction results in each case. If there is € N such
that gt = 2x + 1, then

179 +2=(qt — 2t and (2 —1Ng=2¢+ 1) = (t* — 17)3

because g is odd. So 53 > (3t — 2)and ¢ € {1, 2, 3, 4}. For these values of ¢,
2(t + 1) > 0 while (¢2 — 17)q < 0, a contradiction. So u # (g + 1)/2.
If 4 = q, then

D=(q@-1-g2+4¢*>+qg—-q)=1+4g%=x?

for some x € N. Then 1 = (x — 2¢9)(x + 2q), which implies 49 = 2, a con-
tradiction. So p # ¢ and case (ii) does not occur.
So case (iii) of Lemma 3.5 must occur. On

{<e1’ e2>7 <e1’ (0 ul 0)>’: ue F}a

the group K has orbits of lengths 1 and gq. Since there is g € G,; — Gy, the
parameter u = g + 1. Since ul = q3(q + 1), the parameter / = ¢3. This
completes the proof of 3.7.

Lemma 3.8. Ifq # 2, 3, then

X

j(Gaf) = { B

Z.xeF, Be SL(2, q)}.

x—l

Proof. Define M a subgroup of G, by

M= n {Ga,R(ax): X € D(a)}
By Lemma 3.5 (i), G,y n M = G,,; n M. Since i(R(ax)) = {ey, i(x)) for
x € D(a),
jM) = n {81, ¢er, 0 U € Aley)}
= {M(x,r,y,D)Z: x,ye F;reV,}
= N.
Define a map a: S; —» SL(2, g) by M(x, r, y, B)Z - B. Then ¢ is an epi-
morphism with kernel N.
Now since p = g + 1 and K = j(Guy),
l6(j(Gap)N)| = 1j(G,p): K| - K| - |K 0 N7t = |SL(2, g)I.
S0 j(G,)N = §; and G,; n N = Q. Apply Lemma 1.4 to see that 3.8 holds.
Let (G, X) be a primitive rank 3 group of even order. Associate to G a block
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design 4’ whose points are the elements of X and whose blocks are the symbols
bt, one for each b € X. A point ¢ and a block b* are defined to be incident if
ce{b} U D®) = b*. In A’, two blocks a' and b* have A + 2 points in
common if b € D(a) and u points in common if b ¢ a*. The group G is faithfully
represented as a group of collineations of 4’ when the action of g € G on the
points and blocks is defined by

a—-g@, a - (9g@).

The correspondence a <> a' defines a polarity 6 of A4’ and the collineations
induced by G commute with 9.

LEmMMA 3.9. Forye C(x), |[R(xy)l = q + 1.

Proof. Let|R(xy)l = h + 1. Sincep = A + 2, the design A’ is a symmetric
design. In a symmetric design,

2<|Rxp)I <= -G +2)/k+1 —-A+2)=qg+1

by a theorem in P. Dembowski [1]. So 2 < ¢. By Lemma 2.3 (ii), |T(a)| | A.
Since T(@) # 1, h > 1. If ¢ = 2 (resp. 3), then A = 2 (resp. 3).

Assume g > 3. Since G is primitive and p = A + 2, the group Ggeu, is
2-transitive on the points of R(ab) by Lemma 2.2. Since Ggryy,q, 5 = Gap» it
follows that |Gre.sy,q: Gayl = h. Let g € G, gy — Goy- Then g€ G, — G,
Let

Jj(g) = M(x,r,y, B)Z
where either r # Oory # 0. By Lemma 3.8, M(1,0,0, B~ %)Z € j(G,,) and so
.](g) : M(la 09 0’ B_I)Z = M('xa rB—I’ Vs I)Z ej(Ga,R(af)) N N.

Now j(G,, r@ap))N = Sy and j(G, ras)) N N = Q. If r # 0 then from Lemma
1.4, j(G,, r@apy) = S1 = J(G,) so

h = |Gg,r@py: Gagl = 1Ga: Gyl = 1 = ‘139
a contradiction as 4 < q. Sor = 0and y # 0. From Lemma 1.4,
j(Ga,R(af)) = {M(xa 0, ) B)Z° x,yeF,Be SL(Z’ (J)}

So |G,, rasy: Gagl = q = h, as claimed.

LemMA 3.10. (i) The design A’ is isomorphic to the system of points and hyper-
Dlanes of a projective space of dimension 3 over F.
(i) G = PSp@4, q).

Proof. (i) The design A’ is a symmetric design in which lines carry ¢ + 1
points by Lemmas 3.4 and 3.9. By a theorem of P. Dembowski and A. Wagner
[2], it follows that 4’ is isomorphic to the system of points and hyperplanes of a
projective space P over F. The dimension is 3 because |b*| = qv, + 1 = vj.
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(ii) The group G acts on A’ = P and G leaves the polarity b « b* invariant
for b € X. So G is a subgroup of the automorphism group of 4’, which is iso-
morphic to the group of symplectic collineations of P. The nontrivial elements
of T(b) fix the hyperplane b* pointwise and fix no point outside this hyperplane.
So these elements are symplectic elations. For each b € X =& P, the group G
contains a symplectic elation with center x. By a theorem of D. Higman and
J. McLaughlin [7], it follows that there is a subgroup H of G such that H =~
PSp(4, q). Since |G| = v4|G,| = v4|S,| = |PSp(4, q)|, it follows that G =
PSp(4, g¢). Thus 3.10 holds and Theorem A is proved for m = 2.

4. The proof of Theorem A form > 2

In this section we assume that m > 2.

LeMMA 4.1. The group S, is a transitive rank 4 group on A(e,) with sub-
degrees 1, q — 1, q*v,,,_ 4, and g*™ 2,
Proof. Since e, € A(e,), the group
Si,2 =1{M(a,r,d, B)Z:a,de€ F; r e Vy4,_1y; Be Sp2(m — 1), q).,}
where V,,, = (e;, e_;) * Vyu—1). The group S, , on A(e,) has orbits
{es}, ey, e2) — {eg, €2}, {(xyv00)': x, y € F, v € Vy(pp—2)*}

and
{(xyv10): x, y € F, v € Vyim-2)}
of respective lengths 1, ¢ — 1, qv,,,_, and ¢>™~2, as desired.
We wish to determine the intersection numbers A and p of the rank 3 group G.
For b € D(a) and for ¢ € D(a) n D(b), it follows that ¢+ <= D(a) n D(b) and
that D(a) n D(b) is a union of nontrivial G,, orbits on D(a). In this section let
b, c be the fixed elements of D(a) such that i(b) = e, and i(c) = e_,.

LemMma 4.2. 1 # 0.

Proof. The proof is similar to that of Lemma 3.2.

LemMA 4.3. (i) The G, orbit of length q*™ 2 is not contained in D(a) n D(b).
(i) A=9—1,40m-4,0r ¢*03m-0 + q — 1.

Proof. (i) Suppose this orbit of length ¢?™~2 is contained in D(a) N D(b).
We will derive a contradiction with an argument similar to that contained in
Lemma 3.3. Define a subgroup R of G, by

R = ) {G,,: x lies in the G, orbit of length ¢>™~2}.
It follows from matrix computation that
JR) ={M1,0,d, )Z: de F}
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and so j(R) fixes A(e,) pointwise. Since the G, orbit of length g>™~2 lies in
D(b), the group T'(b) < R which implies T(b) = T(a). Then T(@) =1, a
contradiction.

(ii) Since D(a) n D(b) is a union of the nontrivial G,, orbits, by (i) and
Lemma 4.2 it follows that A = g — 1, q%vy,_4 OF q%vyp_s + q — 1, as
claimed.

Lemma 44. () IfA = q — 1, then
|Gbc: Gbcal = tq2m—4 and n = va—3t

for some t € N.
(i) Ifi = q’vm-as then

1Gye: Goedl = ¢*"7% and p=q™™ % + g -1
(i) IfA = q*vum-a + g — 1, then |Gy Gyl = p.
Proof. By Lemma 4.3 (i), c € D(a) n C(b). Note

|Gap: Gapel = [S1,2: 81,2, 2| = q2m—2.
Now
|Gpe: Goeal = Gyt Gyl * 1Gap: Gapel * |Gy Gl *

= kq2m~2/l
= pg® 2k — A= 1)

since k(k — A — 1) = ul.
(i) IfA = gq — 1, then

IGbc: Gbca| = ”qzm_4/vlm—3 e N.

There is e N such that p = v,,_5¢ because (Vym—3, ¢°" %) = 1. Then
'Gbc: Gbcal = tq2m—4'
(i) If A = qvy,_4, then

Gye: Goedl = 1g™™ %/(g*" "% + g — ) eN.
There is ¢t € N such that
p=@"?+q-Dt=(g - Dogn-2 + q)t
because (g2~ 2 + g — 1, g*™~2) = 1. Since G is primitive,

p=0q9 — Dogm—y + @)t <k = qvyp—»,

which implies # = 1.
(i) If A = q%vyu—4 + q — 1, then |Gy.: Gyol = p. This completes the
proof of the lemma.
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We wish to determine the parameter u by determining the possible structure
of GY,. for g € G. Now

j(Gabc) = Sl,z, -2 = {M(X, (OI'O), Z, C)Z' X, Z € Fa re V2(m—2)

and
C = M(y,0,0, B) whereye F* Be Sp2(m — 2), q)}.
Define
0y 7: 81,2 = SpQ2(m - 2), q)

by the rule that for s € S| ,, ©(s) is the matrix of size 2(m — 2) obtained from s
by deleting the rows and the columns of s indexed by +1 and +2. Then 7 is an
epimorphism. Let M be ker t. Then M is a solvable group of order

B_l(q _ 1)2q4m—5.

Let Q be the ¢g’-Hall subgroup of M which consists of diagonal matrices. Note
©(Sy,2,-2) = Sp2(m — 2),q)and S, ,,_, " M = Q.

Since G is rank 3 of even order, the D orbit of G, is self-paired and there is
g € G such that g(a) = b and g(b) = a. Because j(Gu)M = S5, it follows
that j(Gupye)M < Sy,,. Since

T(j(Gaby(c))M) < Sp(z(m - 2)9 q)

lj(Gabg(v))l = s_l(q - l)2q2m—3|Sp(2(m - 2)9 q)la
it follows that

and

lj(Gabg(c)) N Mlq’ = a_l(q - 1)2

lt(j(Gaby(c))M)lq' = |Sp(2(m - 2)9 q)lq"
The g’-Hall subgroup of j(Gu,) N M is conjugate to Q by an element
meM < S,,, Letfe(j '(m)(g(c). Then fe C(a) n D(b) and G, is
conjugate to G, by an element of G. Note

)] [Gye: Gocal = [Gup: Gapygl.

We will determine the possible structure of j(G,,,), a subgroup of S, , of
index ¢?"~% and of order & (g — 1)2¢*™3|Sp(2(m — 2), q)| such that
J(Guyp) N M > Q. Denote j(G,,) simply as K.

Now KM < S , such that [7(KM)|,, = |Sp(2(m — 2), q)|,. By Theorem B
and Lemma 1.1, KM = S, ,if m > 5,if m = 4and g # 2,3 orif m = 3 and
q+#23,5711 Form=3andq = 5,7, 11 assume KM = S; ,. We will
show that the cases KM < § , do not occur later in Lemma 4.13. Assume for
m=3,q%# 2,3 and for m = 4, q # 2,3. We will discuss these excluded
cases later.

Define

(3) o: PSp(2m, q)(e;),(ez) g Sp(2(m - l)s q)(ez>

and
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by M(a, r,d, B)Z - B where a,de F; r € V,,_;, and Be Sp2(m — 1), q),
and where V,,, = ey, e_;>* Vy(u—1). For s€ S ,, a(s) is the matrix of size
2(m — 1) obtained from s by deleting the rows and the columns of s indexed
by +1. Note the map ¢ defined by (3) is a restriction of the map o of Section 1
to the group S ,.

LemMA 4.5. o(K) equals one of the following three subgroups:
@) {M(» 0,0, B):yeF, Be Sp(2m — 2), q)},
(ll) {M(y, 0’ z, B); Y, Z€ F’ Be SP(2(m - 2)’ (I)},
("l) {M(ya v, z, B) Y, Z€ Fa re I/2(m—2)’ Be SP(2(m - 2)’ q)}

Proof. Wehave KM = S, , where Kn M > Q. So

o(K)o(M) = Sp(2(m — 1), q),
and

o(K) no(M) > {M(»,0,0,I): ye F*}.

Now Lemma 1.4 implies the result.
Define

@ v: PSp(2m, q)e,y,cery = SPR(M — 1), @)¢eyy

by the rule that for s € S; ,, v(s) is the matrix of size 2(m — 1) obtained from s
by deleting the rows and the columns of s indexed by 2. Let N, be the sub-
group of S, , defined by

N2 = {M(x’ (Ory)9 z, I)Z' X, Vs ZEF’ re V2(m—2)}'

LeMMA 4.6. Let Y be a subgroup of S, ,, such that Y > Q and ©(Y) is transi-
tive on V3, _,. Then Y N N, is one of the following 6 subgroups:

(l) N21

@) {M(x, (0r0), z, NZ: x,z€ F, r € Vyiu_3)},

(i) {M(x, (00y), z, )Z: x, y, z € F},

@(iv) {M(x,0,z, NZ: x, z € F},

(v) {M(x, (00y), 0, NZ: x, y € F},

i) {M(x,0,0,)Z: x € F*}.

Proof. By Lemma 1.2if v(Y n N,) £ U, then (Y n N,) = v(IV,) and

YN N, 2 {M(x,(Orc), z, DZ: x, z, c€ F, r € Va_2y}
where ¢ depends on x, r, z. If ¢ # O for some x, r, z, then for
B = M(y_la 0’ 0’ I) € Sp(2(m - 1)’ q))

the element M (1, 0, 0, B)Z € Y and so
M(, 0,0, B~YM(x, (Orc), z, NM(1, 0, 0, B)Z

= M(x, Orcy),z, )€ Y n N,
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where ¢y is any element of F*. It follows from matrix computation that
YN N,=N,. Ifc=0forall x, r, c,then Y n N, is of type (ii).
Assume now that v(Y n N,) = U. So

YN N, 2 {M(x, (00c),z,INZ: x, z, ce F}

where ¢ depends on x, z. If ¢ # O for some x, z, then ¥ n N, is of type (iii).
If ¢ = 0 for all x, z, then ¥ n N, is of type (iv).

If (YN N, ={M(x,0,0,I): x € F*}, then Y n N, is of type (v) or (vi).
This completes the proof of the lemma.

LemmA 4.7. (i) In case (i) of Lemma 4.5, K = S 5, _,.
(i) K # Siz,-2

Proof. In case (i), |[K n N,| = ¢” (g — 1)¢g®>™ 3 because ker ¢ = N, and
6(K) 2 K/K n N,. Note 7(K) = Sp(2(m — 2),q). By Lemma 4.6, since
m > 2,

Kn N, = {M(x, (0r0),z, N)Z: x,z€ F, r € Vypu—_2)}.

For C € 6(K) let k¢ = M(a, (0rz), d, C)Z be a pre-image of C which lies in K
where a, (Orz), d depend on C. Then

ke M@, 0 —a~'r0), —d, NZ = M(1, (00z), 0, C)Z € K.

We claim that z = 0 for all C € o(K).
Indeed for C € a(K) let k¢ be the pre-image

M(1, (00z), 0, C)Z
which lies in K and let /; be the pre-image

M(1, (00y), 0, C)Z
which lies in K; then

kClEI = M(L (0, 0, z — y)C_l, 0, I) eKn N2~

So z is uniquely determined by C when k¢ = M(1, (00z), 0, C)Z. Denote this
unique z by zc.
Since K " N, > Q,
M(x, 0,0, DkcM(x~1,0,0,NZ = M(1, (0, 0, xz), 0, C)Z

andso zp, = 0if g > 2.
If ¢ = 2, then 6(K) = {M(1,0, 0, B): Be Sp(2(m — 2), 2)}. Then the map
defined by the rule C — z; is a homomorphism from
o(K) = Sp2(m — 2), 2)

into F, a group of order 2. Since m > 5, Sp(2(m — 2), 2) is simple. Since the
kernel is a normal subgroup, it follows that z, = 0.
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Now k¢ = M(1, 0,0, C)Z € K and
K> (M(1,0,0,C)Z, K N: Ce a(K)) = Sy,2, -2

Since |K| = |Sy,,, -2/, it follows that K = §; , _,.
(i) If K = S;,,, -5, then the proof of Lemma 3.6 works for m > 2 to yield
T(a) = 1, a contradiction. So 4.7 holds.

LemMA 4.8. Case (ii) of Lemma 4.5 does not occur.

Proof. Suppose
G(K) = {M(y’ Oa z, B)' Y, Z€ F,Be Sp(2(m - 2)9 4)}-

Note ©(K) = Sp(2(m — 2), q). Then|[K n N,| = ¢ Y(qg — Dg*™ % If m > 3,
then K n N, is not equal to any of the six possible subgroups of Lemma 4.6, a
contradiction. If m = 3, then

Kn N, = {M(x, (00y),z, DZ: x,y, z€ F}.

For C € o(K) let k¢ = M(x, (Ory), z, C)Z be a pre-image which lies in K where
x, (Ory), z are determined by C. Apply v and then Lemma 1.3 to conclude that
r= 0. So k¢ = M(x, (00y), z, C)Z and

kcM(x~1, (00 — x~1y), —z,N)Z = M(1,0,0, C)Z e K.
So
K=<{M(1,0,0,C)Z, K n N,: Ce a(K))

= {M(x, (00y), z, C)Z: x, y, z € F, C € 6(K)}.

Let P be a p-Sylow subgroup of K. Then P is abelian. Let R be a p-Sylow sub-
group of Sy , _,. Then |R'| = ¢”'¢>. Since G, is conjugate to G, it follows
that j ~!(P) is conjugate to j~'(R). This contradiction proves the lemma.

LemMa 49. K= {M(x,0,0, C)Z: x e F*, C e o(K)}
where o(K) = {M(y, r,z, B): y,z€ F, r € Vy_3), Be Sp2(m — 2), q)}.

Proof. By Lemmas 4.7 and 4.8, o(K) = {M(y, r, z, B)}. Then |K n N,| =
¢ (g — 1). Since K > Q, it follows that

Kn N, ={M(x,0,0,)Z: x € F*}.

For Ce a(K) let k¢ = M(a, r, d, C)Z be a pre-image of C which lies in K
where a, r, d depend on C. By Lemma 1.3 (i) forq # 2,7 = Oandd = 0. So
kc = M(a, 0,0, C)Z and M(1,0,0, C)Z e K. So

K=<{M(1,0,0,C)Z, Kn N,: Cea(K))
= {M(x,0,0, C)Z: x € F*, C € 6(K)}.
Forg = 2,1let C = M(l, s, z, B) € o(K) and let
ke =MQ1,0,r,d),f,C)Z
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be a pre-image in K where d, f€ F, r € V,(,_,, and where r, d, f depend on C.
Apply the map v of (4) and then Lemma 1.3 (iii) to conclude that there is
v(n) € v(Sy,,) such that v(k)'™ = M(1,0, 0, B). Sincene S;,, = j(G,), the
group GJ, ;™ satisfies the same conditions as G,,, and we may assume without
loss of generality that n = 1. So

kC = M(la (OOd), 09 C)Z,

where d depends on C. We claim that d = 0. Indeed since KN N, = I, d is
uniquely determined by C. Denote this unique d by d¢. Then the map d defined
by the rule C — d. is a homomorphism from ¢(K) =~ SpQ2(m — 1), 2), into F,
agroupoforder2. LetL = kerd. LetN = {M(l,r,z,I): z€ F, r € Vypu—2)}.
If N < L, then

L/N < Sp2(m — 1), 2),/N = SpQ2(m — 2), 2),

which is a simple group form > 5. So L = SpQ2(m — 1), 2),. If N £ L, then
LN = Sp(2(m — 1), 2);. Now Lemma 1.4 yields a contradiction. So 4.9 is
proved.

LEMMA 4.10. (i) ). = qZUZm_4 + q - 1 = va-—Z - 2andu = Uzm_z.
(ll) j(Gaf) = {M(x9 0,0, B) X € F*a Be Sp(z(m - 1)’ Q)}
Proof. By Lemma 4.9,
K = j(Guyp) = {M(x,0,0, B): x € F*, Be Sp(2(m — 1), q),}.
Define a: S; - Sp2(m — 1), q) by the rule M(x, r, y, B)Z - B. Then
a(K) = Sp2(m — 1), )2 < 0(j(G,p)) < 0(j(Gp) = Sp2(m — 1), q).
Now Sp(2(m — 1), q), is a maximal subgroup of Sp(2(m — 1), g) because
Sp(2(m — 1), q) is primitive in its action on the lines of V7, _,), Either
0(j(G,p)) = Sp(2(m — 1), @), or 6(j(G,p)) = Sp2(m - 1), q).
If 6(j(G,y)) = Sp(2(m — 1), g),, then
j(Gaf) < {M(x, ry, C)Z' X,y € F’ re V2(m—1)’ Ce Sp(2(m - 1)’ q)l}
= S1,<1,2>-
Now
1Gag? Gangl = 1B%7] = [i(bY ) < |e§<12] = g.
Let
g = M(x, (yrz), w, C)Z € j(G,y)
where x, y, z, w € F, r € Vy,—5y and C € Sp(2(m — 1), q),. Assume y # 0 for
some g € j(G,,). Since j(G,) = K > Q, for all u € F¥*,
M, 0,0,DZ-g = M(ux, (uy ur uz), uw, C)Z € j(G,).
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Then |ef%?| = g. If y = 0 for all g € j(G,,), then
j(Gaf) < S1’2 and lejz(G“f)l = 1.

S0 |G,p: Gyl = 1organd |Gys: Guppl = |Gyt Gpeol by (2). From Lemma 4.4,
it follows that

A= qsm-s +q—1 and |Gy: Gugl = p.

We claim that the cases A = q2v,,,_4 + ¢ — L,p = land 1 = q%vy,_4 +
q — 1, p = q do not occur. Indeed assume first 4 = 1. Then

D = (q%vsm-a + 9)* + HqVzm-2 — D
= q*V3n-3 + 2¢"7%?

is a square. Thereisz € Nsuchthatv?,_, + (2™ %)* = z%. Since gis a prime
power and v,,,_5 is odd, (z, v,,,-3) = 1 and

gt = (2 — Vyn-3)2° (2 + Vyp-3)/2.

Sol = (z — vy,-3)/2and ¢*™* = (z + Vym_3)/2. Thenl + v,,_3 = ¢*™~ 4,
a contradiction.
Now assume u = q. Then

D = (q%0sm-s — 1)* + 4@Vom-2 — @) = @%V2m-s + D> + 2" 1)* = 22
for some z € N. Since g is a prime power and ¢2v,,,_, + 1 is odd,

(z, qZUZm—‘t + 1) =1
and

""" = (2 = (@*vgm-a + D)2 (2 + q*0ypm-s + D)2.

So 1 =(z— (q*vym-s + 1))/2 and ¢*™ % = (z + q%vyp,-4 + 1)/2. Then
g*™~2 = 2 + q%v,,,_4, a contradiction.
Thus 6(j(G,y)) = Sp2(m — 1), q) and j(G,;)N = S; where

N={Mx,ry, )Z:x,ye F,re Vyu_y} = kero.

Note j(G,;) = K > {M(x,0,0, )Z: x € F*}. Apply Lemma 1.4. If j(G,;) =
S, = j(G,)then! = 1and u = k(k — A — 1), which does not occur since G is
primitive. If

j(Gaf) = {M(xa 0, Y, B)Z X, Y€ F9 Be Sp(2(m - l)s q)}a

then by Lemma 4.10 (ii), |G,/: Gapsl = qUsm—, While [b%/| = |ef%9)| = v, _,,
a contradiction. So

J(Gap) = {M(x,0,0, B)Z: x € F*, Be Sp2(m — 1), q)}.
Then |G,;: Gupsl = V3p—, = |€f%]. From Lemma 4.4, it follows that
A=qm s+ q—1=0y,_,—2 and p = vy,

This completes the proof of 4.10.
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LemMaA 4.11. (i) For y € C(x), |[R(xy)| = q¢ + 1.
(i) Forye D(x), |R(xy)| = q + 1.

Proof. (i) The proof is similar to that of Lemma 3.9.
(ii) Since A’ is a symmetric design,

2<|R@) <m—-QA+2PKk+1—-A+2)=q+ 1.

Note R(ab) — {a} < D(a) n b*. Now u € R(ab) iff a* N ut = a* ~ b* iff the
union of {a, u} and the orbits of G,, of lengths ¢ — 1 and g*v,,,_, equals the
union of {a, b} and the orbits of G, of lengths ¢ — 1 and g?v,,,_,. This occurs
iff the union of {e,, i(«)} and the orbits of S; ;) of lengths ¢ — 1 and G 0pm—a
equals the union of {e;, e,} and the orbits of S, , of lengths ¢ — 1and ¢%v,,,_4.
For v € {e,, ;) — {e;, e,}, it follows from matrix computation that the orbit
of Sy, of length g2v,,,_, equals the orbit of S, , of length ¢?v,,,_, and that the
union of {e;, v} and the orbit of S, , of length g — 1 equals the union of {e,, e,}
and the orbit of S, , of length ¢ — 1. So i~ !(v) € R(ab) and |R(ab)| = q + 1,
as claimed.

LemMa 4.12. (i) The design A’ is isomorphic to the system of points and
hyperplanes of a projective space of dimension 2m — 1 over F.
(i) G =@ PSp(2m, q).

Proof. The proofis similar to that of Lemma 3.10. The dimension is 2m — 1
since |bt| = qvypm-, + 1 = v,,,_;. So Theorem A holds for m > 5; m = 4,
qg=>3;m=3,qg> 11

LemMma 4.13. If m = 3 and g = 5,7, or 11, the cases KM < S, , do not
occur.

Proof. If KM < S, ,, then ©(KM) < SL(2, q) of index g and of order
g% — 1. From the proof of Lemma 1.7, it follows that t(KM) is transitive on
V. Now

oK) = {M(»,0,0,I): ye F, Ie SL(2, q)}

and |Sp4, q),: 6(KM)| = q. It follows from Lemmas 1.2 and 1.3 that o(K)
equals one of the following three subgroups of Sp(4, g),:
@ {M(», 0,0, B):yeF* Betu(K)},
i) {M(», 0,z B):y, ze F* Be1(K)},
Gii) {M(y,r,z, B):y,ze F¥, reV,, Be 1(K)}.
In case (i), |[K 0 N,| = ¢ (g — 1)g* = |N,|. Then

K={M(x, Orz),w,C)Z: x,z,we F,reV,, CedK)}.

Let P be a p-Sylow subgroup of K. Then |P’| = ¢~ 1q. Let R be a p-Sylow sub-
group of S; , _,. Then |R'| = ¢"'¢> Since G,,, = j'(K) is conjugate to
Gae = J~'(Sy,2, -2), a contradiction results.
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In case (ii), |[K n N,| = ¢" (g — 1)q3. By Lemma 4.6,
Kn N, = {M(x,(0r0),z, DZ: x,z€ F, reV,}.
It follows by a proof similar to that of Lemma 4.7 (i) that
K = {M(x, (0r0), w, C)Z: x,we F, r e V,, C € 1(K)}.

If P is a p-Sylow subgroup of K, then |P’| = ¢~ !¢, a contradiction.
In case (iii), |K N N,| = ¢ (¢ — 1)q. By Lemma 4.6, either
(@ Kn N, ={M(x,0,w,NZ: x,we F}, or
(b)) Kn N, = {M(x, (00w),0, N)Z: x, we F}.

In case (a) it follows by Lemma 1.3 (i) that

K={M(x,0,w, C)Z: x,weF, Ceo(K)}

If P is a p-Sylow subgroup of K, then |P’| = ¢~ !¢, a contradiction. In case (b)
it follows by an argument similar to that in Lemma 4.8 that

K = {M(x, (00w), 0, C)Z: x, w € F, C € a(K)}.

If P is a p-Sylow subgroup of K, then |P’| = &~ !¢, a contradiction. This finishes
the proof of 4.13.
Note Lemma 4.13 implies that Theorem A holds form = 3,¢q = 5,7, or 11.

LeMMA 4.14. Theorem A holds for the cases (m, q) = (3, 2), (4, 2), (3, 3),
4, 3).

Proof. (i) Assume (m, q) = (3,2). By Lemma 4.3 (ii), A = 1, 12, or 13.
We claim 4 = 13. If A = 1, then by Lemma 4.4 4 = 7¢ for some ¢t € N. Since
u < k=230,te{l,2 3,4}. But for each ¢ the parameter D = (1 — p)® +
4(k — p) is not a square. So A # 1. If A = 12, then by Lemma 3.4 u = 17
and D = 77. So A = 13,

We claim ¢ = 15. Now

D= (13 — w? + 4330 — p) = (u — 15)* + 2°

is a square and u/ = 2°-15. Letx = |u — 15|. Then there is y € N such that
x2 4+ 25 = (x + ¥)%. S02% = 2xy + y*> and y = 2z for some z € N. Then
2* = (x + z)z. Forsome be{0,1,2,3,4},z=2"and x = 2*7% — 2%, So
=15+ (2*° — 2% and u| 2% 15. Since 0 < u < k = 30, it follows that
b =2and u = 15. So A’ is a symmetric design. Now apply Lemmas 4.11 and
4.12 to see that Theorem A holds.

(ii) Assume (m, q) = (4, 2). The argument is similar to that of (i).

(iii)) Assume (m, ¢) = (3, 3). By Lemma 4.3, 1 = 2, 36, or 38. We claim
A = 38. If A = 2, then by Lemma 4.4 u = 13¢ for some ¢ € N. Then

D = (13t — 2)* + 4120 — 13¢) = (13t — 4)* + 3613 = z2

forsomeze N. Letx = (z — (13t — 4), z + 13t — 4) Itfollowsthatx = 2
or 6. If x = 2, then

32 13=0+4—-13t)2-(z+ 13t —4)/2=1-1070r9-13.
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In the first case, 13t — 4 = 106 and in the second case, 13t — 4 = 4, a con-
tradiction. If x = 6, then

13=(z+4—130)/6-(z + 13t — 4)/6

and (13t — 4)/3 = 12, a contradiction. So A # 2. If A = 36, then by Lemma
34 u = 83 and D = 2,357, a nonsquare. So A = 38.
We claim ¢ = 40. Now

D=(38 — p)? + 4(120 — p) = (u — 40)* + 4-3*

is a square and pu/ = 3°-40. Let x = |u — 40|. There is y € N such that
x% 4+ 4-3* = (x + )% So 4-3* = 2xy + y? and y = 2z for some z e N.
Then 3* = (x + z)z. Forsomebe {0, 1,2, 3,4},z = 3°and x = 3*7b — 3,
Sou =40 4+ (3*7® — 3% and u | 3° - 40. Since 0 < p < k = 120, it follows
that b = 2 and u = 40. So A’ is a symmetric design. Apply Lemmas 4.11 and
4.12 to see that Theorem A holds.

(iv) Assume (m, g) = (4, 3). The argument is similar to that of (iii). This
completes the proof of the lemma and of Theorem A for m > 2.
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