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Introduction

Let G be a finite transitive group of permutations of a finite set X. The rank
of G is by definition the number of orbits of the stabilizer of a point. The
transitive group G is primitive if the stabilizer of a point is a maximal subgroup
of G. Let H be a finite transitive group of permutations of a finite set Y. Then
(G, X) is a primitive rank 3 extension of (H, Y) if G is a primitive rank 3 per-
mutation group on X and if there is an orbit D of G, the pointwise stabilizer of
a X such that (G, D)- (H, Y) as permutation groups. Several sporadic
simple groups have been discovered as rank 3 extensions ofcertain known groups.

In this paper we consider a rank 3 extension problem related to the projective
symplectic group PSp(2m, q). This group is primitive of rank 3 when con-
sidered as a group of permutations of the points of a projective space P of
dimension 2m over the field of q elements. Indeed for v e P, the group
PSp(2m, q)o has 3 orbits on P, namely {v}, the set of all points of P unequal to v
which are perpendicular to v, which we denote A(v), and the set of all points of P
which are not perpendicular to v. We show that the only primitive rank 3 exten-
sion of PSp(2m, q) on A(v) is the natural one of PSp(2m, q) on P. A precise
statement is the following.

THEOREM A. Let G be afinite transitive group ofpermutations ofafinite set X.
Let P be a projective space of dimension 2m over the field of q elements.
For v P let A(v) denote the set of all elements of P which are unequal to v and
perpendicular to v. Suppose (G, X) is a primitive rank 3 extension of

(PSp(Em, q)o, A(v)).

Then X - P and G - PSp(2m, q).

A key step in the proof of this theorem is the determination of the structure of
a certain subgroup of G for a X. The identification of this subgroup of G.
depends on the following result about q’ subgroups of Sp(2m, q).

THEOREM B. Let W be a subgroup of Sp(2m, q) for some positive integer
rn >_ 2 andfor some prime power q. Suppose [W[q, [Sp(2m, q)[,. Then:

(i) For m 2 and q 2, either W Sp(4, 2) or Sp(4, 2)’.
(ii) For m 2 and q 3, either W Sp(4, 3)or [Sp(4, 3): W[ 3a.
(iii) For m 2 and q > 3 andfor rn > 3, the group W Sp(2m, q).
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We derived Theorem B independently of the work of G. Seitz [11]. In fact
Theorem B is an immediate corollary of a theorem of Seitz on flag-transitive
subgroups of Chevalley groups because the group W which satisfies the hypoth-
esis of Theorem B is flag-transitive. Our method of proof differs from Seitz’s
and involves the determination of the possible structure of Wv for a vector v.
We include a proof of Theorem B in this paper since it follows easily from the
lemmas needed for the proof of Theorem A. The method of proof of Theorem
B generalizes to prove similar statements about q’ subgroups for the other
Chevalley groups.

1. The proof of Theorem B

The purpose of this section is to prove Theorem B. The proof is by induction
on m. Let W <_ Sp(2m, q) such that

Wl, ISp(2m, q)l,.

A key step in the proof is the determination of the structure of Wv, the subgroup
of W which fixes the vector v. The proof of the theorem involves matrix com-
putation and consists of a sequence of lemmas, some of which will be used in the
proof of Theorem A.

LEMMA 1.1.
Then

Let W be a subgroup of SL(2, q). Suppose Wl, ISL(2, q)l,.

(i) Ifq 2, either W SL(2, 2) or W is cyclic of order 3.
(ii) If q 3, either W SL(2, 3) or W/Z is dihedral of order 4, where Z

denotes the center of SL(2, q).
(iii) Ifq 5, either W SL(2, 5) or W/Z is the alternating group ofde#tee 4.
(iv) lfq 7, either W SL(2, 7) or W/Z is the symmetric group ofdegree 4.
(v) If q 11, either W SL(2, 11) or W/Z is the alternating group of

degree 5.
(vi) If q {2, 3, 5, 7, 11 }, the group W SL(2, q).

Proof. The lemma follows from an examination of Dickson’s complete list
of nontrivial subgroups of PSL(2, q). See [8].

Remark. Since SL(2, q) Sp(2, q), Lemma 1.1 gives a list of the q’
subgroups of Sp(2, q).

For the prime power q let F denote the Galois field of q elements. Let V2,
denote a 2m-dimensional vector space over F with ordered basis

{el, e2,..., era, e-m,..., e-2, e-l}
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Let Vm denote the set of nonzero points of V2m. Letfbe an alternating form
defined byf(ez, e_ ) -f(e_ i, ez); all other products are zero. Then the
matrix J of the formfwith respect to the given basis is

where 0

1
1

Note that a blank in a matrix indicates that the entry is zero. By definition the
symplectic group

Sp(2m, q) {A GL(2m, q): AJA’ J},

where A’ denotes the transpose of A and GL(2m, q) denotes the general linear
group of matrices of size 2m over F. Denote Sp(2m, q) simply as S. Let S
denote S<,>, the subgroup of S which fixes the vector (e). Then

a r d
S C a-CJr a, d F, r Vo_, C Sp(2(m 1),q)/.a-1

The group S is primitive of rank 3 in its action on the 1-dimensional subspaces
of V. Indeed for a subspace v), S has nontrivial orbits

{(w) f(v, w) O, w v v},

which we denote A(v) and {(w):f(v, w) 0}.

Notation. Let m > 2. Let M(a, B, d, C) denote the matrix

a B d
C a-XCJB

-1a

where a, d F and a 4: 0; B Vz(m-x); C Sp(2(m 1), q).
We have the following rule for multiplication"

M(a, B, d, C). M(e, F, h, G)
M(ae, aF + BG, ah + e-XBGJF + de-x, CG).

Note that ify M(a, B, d, C), then #-x M(a-X, _a-XBC-X, -d, C-X).

Notation. Let N denote {M(a,B,d,I)’a,dF;BVz(m_x)}. Let U
denote {M(a, O, d, I)" a, d F}. Let T denote {M(1, 0, d, 1)" d F}. Let Q
denote {M(a, O, O, I)" a F}.
Then N, U, T, and Q are subgroups of Sx. The group T consists of the

symplectic transvections with center e and (T" st S)= S. Clearly
Q_< u< NandN_< Sx.
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Define a natural map a" Sp(2m, q)(el) "+ Sp(2(m 1), q) by

M(a, B, d, C) C.

Then (r is an epimorphism with kernel N.
In order to prove Theorem B, we must determine the structure of
W c $1. We do this by first finding the structure of W1 c N and then

LEMMA 1.2. Let X be a subgroup of $1 such that Q < X c N.
(i) IfX c N < U, then either X N U or X N Q.
(ii) IfX N U and if a(XN) is transitive on V(m-X), then X c N N

if (m, q) (2, 2). If (m, q) (2, 2), then either X c N N or

IN:XcNI 2.

Proof (i) The group U is a Frobenius group with kernel Tand complement
Q. The group Q is a maximal subgroup of U.

(ii) Let B a(XN). Let xB be a preimage or inverse image of B in X. Then
xB M(a, C, d, B) for some a, C, d. which depend on B. If w X c N, then
XIwxB . X (’ N for all B a(XN) because X c N _< X. Since X c N U,
there is an element w M(A,R,D,I)XcN with R 4: 0. Let y
w. M(A-1, O, O, I). Then y M(1, R, AD, I) X c N. So

xayxn M(1, a-IRB, a-2AD + 2a-2RBJC’, I) X c N

where a, C, d depend on B a(XN). To eliminate partially this dependence,
compute for 9 F*,

(1) z M(a, 0, 0, I)x ayxnM(a-lg, 0, 0, I).

Then
z M(g, RB, g-I(AD + 2RBJC’), I) X c N

for all B a(XN) and 9 F*. Since R 4:0 and a(XN) is transitive on V’(m-1),
the element RB runs through V’<m-a) as B runs through a(XN). Now

M(1, -R, d, I). M(g, R, b, I) M(g, O, b + g-ld, I) X c N

for some b, d F. So M(a, C, b, I) X c N for all a F*, for all C V2(,n- 1)
and for some b F where b depends on a and C.
Now we claim that b can be chosen arbitrarily for (m, q) 4: (2, 2). Indeed

there is a y M(- 1, R, b, I) X c Nwith b - 0. Otherwise M(- 1, R, b, I)
hasb 0always. ForR (10...0) andr (0...01),

M(-1, R,O,I).M(-1, r,O,I) M(1, R- r, 1, I),

a contradiction. If q is odd, then y2 M(1, 0, -2b, I) T and y2 & 1.
If q is even, then y M(1, R, b, I) with b 4= 0. If R - 0, then recompute

z of (1) to find z M(g, RB, g-lb, I) X c N. Then

zy M(9, oR + RB, (9 + 9-1)b + RBJR’, I) X N.
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If q 4: 2, pick g F* such that g 4: g-t, then pick B tr(XN) such that
RB gR. So zx M(g, O, (g + g-1)b, I) X c N with (g +g-a)b # 0.
Ifq 2, thenz M(1, RB, 1, I) forallBa(XN). ForR (10...0) and
r (010... 0), ifm > 3, then RJr’ 0 and

M(1, R, 1, I). M(1, r, 1, I) M(1, R + r, 0, I).
Then

M(1, R + r,O,I).M(1, R + r, 1, I) M(1, 0, 1, I)XcN.

So in all cases except (m, q) (2, 2), there is y M(g, O, b. I) X c N
withb 4: 0. By(i),(Q,y) U< XcN. Then

M(1, O, B, I). M(a, C, b, I) M(a, C, b + Ba-1, I) X c N

where b depends on a and C and where a, B, C are arbitrary. So

M(a, C, B, I) X c N

for alla, BFandall CV2t,,_I). ThusXcN= Nil(re, q) # (2, 2). If
(m, q) (2, 2), then either X c N N or

X N {I, M(1, r, 1, I)" r V}.
This completes the proof of Lemma 1.2.

LEMMA 1.3. Let X be a subgroup of Sa such that Q < X c N < U. Let
B a(XN) and let xn M(a, r, d, B) be a preima#e ofB which lies in X, where
a, r, d depend on B.

(i) If q # 2, then r 0 and xn M(a, O, d, B). If Q X c N and if
q > 3, then d 0 and xn M(a, O, O, B).

(ii) If q 3, assume tr(XN) Sp(2(m- 1),3). If Q XcN and if
m > 3, then d 0 andxn M(a, O, O, B).

(iii) If q 2, assume a(XN) Sp(2(m 1), 2). Then there is n N such
that for all B tr(X), x M(1,0, d,B). If X c N I and if m > 4, then
there is n N such that x M(1, 0, 0, B).

Proof (i) Fix B r(XN). Let xB M(a, r, d, B) be a fixed preimage of B
which lies in X, where a, r, d depend on B. Let xB-I M(A, R, D, B-a) be a
fixed preimage of B-a which lies in X, where A, R, D depend on B-a. Since
Q < x c N, the element M(#, 0, 0, I) X for all t7 F*. So

xnM(g, 0, 0, I)xn-,
M(agA, agR + rB -a a#D + A-arB-aJR + dff-lA -1, I) X c N.

Since X c N < U, it follows that a#R + rB- 0 for all t7 F*. For q # 2
it follows that R 0 and so xn M(a, O, d, B).
Now assume X c N Q. Then for all t7 F*,

xnM(tT, O, O, I)xn-t M(agA, O, agD + dff-lA -1, I) Q.



5 I0 ARTHUR YANUSHKA

So agD +dg- A- 0 for all # e F*. For q 3 it follows that D 0 and
so xB M(a, O, O, B).

(ii) Let Bea(XN). Since XcN= Q, let xB M(1,0, d,B) be a pre-
image of B which lies in X where d depends on B. Suppose y M(1, 0, D, B)
is another preimage of B which lies in X. Then

ylxn M(1,0, d- D,I)XcN= Q.

So d D and d is uniquely determined by B when the (1, 1) entry of the matrix

xn is chosen to be 1. In this case denote the unique d by d. Then xB
M(1, 0, dn, B). For C a(XN), let

Then
Xc M(1, O, dc, C) and Xc M(1, O, dac, BC).

XcXnXc M(1, O, dn + dc dnc, I)e X c N Q.

So dnc dB + do By assumption a(XN) Sp(2(m 1), 3). Thus the rule
B dn defines a homomorphism di from Sp(2(m 1), 3) into F a group of
order 3. If rn > 2, then PSp(2(m 1), 3) is a simple group. Since ker 6 <
Sp(2(m- 1),3), it follows that 6 0 ifrn > 2. So xn M(1,0,0, B) if
rn > 2. If rn 2, then ker 6 Sp(2, 3) or a Sylow 2 subgroup of Sp(2, 3).

(iii) For q 2 and for B a(XN) Sp(2(m 1), 2), let x M(1, r, d, B)
be a preimage of B in X where r and d depend on B. Let yn M(1, R, D, B)
be another preimage of B in X. Then

ylxn M(1, r + R, d + RJr’ + D, I) e X c N < U.

So r + R 0 and r is uniquely determined by B. Denote the unique r by rn.
Then xn M(1, rn, d, B). For C a(XN), let

Xc M(1, rc, e, C) and Xnc M(1, rBc, f, BC).
Then

XgXBXc

M(1, rc + rnC + rnc, e + rnClr: + d + rncJr: + rBcC-Xlr + f, I)

eXN.

So rnc rc + rnC. Thus the rule B rn defines a derivation r from
Sp(2(m 1), 2) into V2m-1)" We claim that r is an inner derivation. If r is
inner, then there is R e V2m_ 1) such that

rn R + RB for allBeSp(2(m- 1),2).

Setn M(1, R, 0, I). ThenneNandx] M(1,0, d+ RBJR’,B). If in
addition X c N /, then x] M(1, 0, dB, B) where dn is uniquely deter-
mined by B. The rule B dn defines a homomorphism 6 from Sp(2(rn 1), 2)
into F, a group of order 2. If rn > 4, then Sp(2(m 1), 2) is a simple group
and so ker 6 Sp(2(m 1), 2). If rn 3, then ker 6 Sp(4, 2) or Sp(4, 2)’.
If rn 2, then ker 6 Sp(2, 2) or Sp(2, 2)’. If rn > 4, then x] M(1, 0, 0, B).
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It remains to show that r is inner. If m 2, then r is inner because the
F-dimension of the first cohomology group of SL(2, 2) with coefficients in V2
is zero by a theorem of D. Higman [4]. If m > 2, then the F-dimension of the
first cohomology group of Sp(2(m 1), 2) with coefficients in V2t,,-t) is one
by a theorem of H. Pollatsek [10]. In fact there is an outer derivation
u: Sp(2(m 1), 2) V2m-t) with the property that if T is a symplectic non-
orthogonal transvection with center x, then u(T) x.
For m > 2 assume that r is outer. There is an inner derivation such that

ir u. Since is inner, there is R V2,,-t) such that i(B) RB + B for all
BSp(2(m- 1),2). Let n M(1, R, 0, I). Then X" satisfies the same
hypotheses as X and x M(1, un, d, B). So without loss of generality,
assume n =Iand r u.

Let B be the transvection with center e2 and C be the transvection with
center e_2. Then rn e2 and rc e_2. Note

and C

Then rnc e2 + e_ 2 rca and rcn + rncCB e2. But

XncXca M(1, rnc, d, BC).M(1, rcn, e, CB)

M(1, rcB + rBcCB, e + rncCBJrn + d, I) X c N.

Since X c N < U, it follows that rca + rncCB 0, a contradiction. So r is
not outer and this finishes the proof of the lemma.

LEMMA 1.4. Let X be a subgroup of St such that XN St and Q < X c N.
If (m, q) # (2, 2), then X is one of the following three subgroups:

(i) {M(a, O, dn, B): a, da F; B Sp(2(m 1), q)} where dB is determined
by B and dn 0 if (m, q) v (3, 2), (2, 3),

(ii) {M(a, O, d, B): a, d F, B Sp(2(m 1), q)), or

(iii) St.
If (m, q) (2, 2), then X is one of the followingfour subgroups:
(i) {M(1, 0, da, B): da F, B Sp(2, 2)},
(ii) {M(1, 0, d, B): d F, B Sp(2, 2)},
(iii) {m(1, r, dn, B): dn.r F, r V2, B e "Sp(2, 2)} where dn,r is uniquely

determined by B and r, or

(iv) St.

Proof Assume (m, q) - (2, 2). Note a(XN) Sp(2(m- 1), q). By
Lemma 1.2, either XcN= Q, U, or N. If XcN= Q, then for Be
Sp(2(m 1), q), a preimage in X has the form Xa M(a, O, dn, B) where a
and d depend on B and where da 0 if (m, q) (3, 2), (2, 3) by Lemma 1.3.
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Then

(xn, Q" B Sp(2(m 1), q))

{M(a, O, dn, B)" a, dn F; B Sp(2(m 1), q)}

is a subgroup ofX of order (q 1)lSp(2(m 1), q)l IXI. So x is of type (i)
ifXnN= Q.

If x c N U, then xn M(a, O, d, B) where a, d depend on B by Lemma
1.3. Let n M(a-1,0, -d,I)U< X. Then xnn M(1,0,0, B)X
and

(M(1, O, O, B), U: B Sp(2(m 1), q))

{M(a, O, d, B)" a, d F; B e Sp(2(m 1), q)}

is a subgroup of X of order (q 1)qlSp(2(m 1), q)[ IXI. So X is of type
(ii) ifXoN= U.

If X c N N, then Xn M(a, r, d, B) where a, r, d depend on B. Let
n M(a-, -a-*r, -d, I) N < X. Then xnn M(1, 0, 0, B) Xand

(M(1, O, O, B), N" B e Sp(2(m 1), q)) S,.

IfXcN= N, thenX= Sx.
Now assume (m, q) (2, 2). By Lemma 1.2, either

XmN=LU,{M(1, r,I,I),I:reV} or N.

If X c N /, then X is conjugate to a subgroup of type (i) by Lemma 1.3 (iii).
If X c N U, then X is of type (ii). If

X c N {M(1, r, 1, I), I: r V},

letxn M(1, r, d, B)andyn M(1, r, e, B)bepreimagesinXofBsSp(2,2).
Then

xny M(1,0, d+ e,I) sXcN.

So d e and d is uniquely determined by r e V2 and B Sp(2, 2). Let xn
M(1, r, d, B). If r : 0, then

n M(1, r, 1, B)X and xnn M(1,0, + d,B)X.

Then

(g(1, O, d, B), X N: B Sp(2, 2))

{M(1, r, d,,n, B)" r V2, B Sp(2, 2)}

where d,,n is uniquely determined by r and B. This group is a subgroup of X
of order 221@(2, 2)1 IXI and X is of type (iii). If X ta N N, then X Sx
and 1.4 holds.
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LEMMA 1.5. Let W be a subgroup of S such that W is transitive on Vm and
a(W1U) Sp(Z(m 1), q). Then

Wx {M(a, O, d, B): a, d F; B Sp(2(m 1), q)}.

Proof. Suppose not. Suppose

Wa < {M(a, O, d, B): a, d F; B Sp(2(m 1), q)}.

Let (a b e)’ Vm where a, e 6 F, e 4: 0; b V2(m-1). Since W is transitive on
Vm, there is w W such that w(el) (a b c)’. Let

where , e F; d’, f’, h e V,(,,,_ 1 and where , i, d, f, h, E depend on a, b, c.
We claim that h b for some e F.

Indeed let K e e(W1N) such that K(b) b. Then

a dK _91hM(1, 0, 0, K-1)wM(1, O, O, K) b K-IEK K
e fK

So w- M(1, O, O, K- 1)wM(1, O, O, K) W1 and this element equals M(l, 0, m, R)
for some l, rn F; R Sp(2(m 1), q). Then

M(1, 0, 0, K-)wM(1, O, O, K) wM(t, O, m, )

al dR am +#1-1
bl ER bm + hl -x

el fR em+ il-

So 1 1, m 0 since e 0 and K-h h. If K6 or(WaN) Sp(2(m 1), q)
such that K(b) b, then K(h) h. So {b, h} is a linearly dependent set of
vectors of V2(m-1) since Sp(2(m 1), q) is primitive in its action on the lines
of V2tm-1)" So there is z F such that h zb.

Since w is a sympleetie transformation, wJw’ J. Then

(2) w E zb
(cz- i)b’JE

where ai c9 and E
_
Sp(2(m 1), q) for some tT, z, i, E which depend

on a, b, c.
Let u W such that u(el) (a b c) where a, c e F, c 0 and b e V’(._ 1).

Then
a (az #)b’JE #

u= b E zb
c (cz- i)b’JE
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for some #, z, i, E which depend on a, b, c. Let v W such that v(el)
(-z 0 1)’ where z is determined by u. Then by (2),

V

--Z

H

for some k, 1 F; H Sp(2(m 1), q) which depend on -z, 0, 1. Now

uv [-az (az-#)b’JEHEH ak+#ll_b W
cz (ez- i)b’JEH ck + il

whereb 0. But(uv)(el) (- az 0 i- cz)’. If i- cz 0, then

uv Wx <_ {M(a, O, d, B)}.

So (az g)b’JEH 0. Since E, H Sp(2(m 1), q) and b # 0, it follows
that az # 0 and (uv)(ea) (0 0 0), a contradiction. So cz # 0 and
(uv)(ei) (#- az 0 i- cz). By(2),

UV

for some M, n, r. This contradiction completes the proof.

Notation. For a natural number i, let vi (q 1)/(q 1).

LEMMA 1.6. Let W be a subgroup of S such that Wl,
transitive on Vm,

Then W is

la(WN)I, ISp(2(m 1), q)l, and IW1 c NI, q 1.

Proof Note W: Wll V2m. Now compute la(WaN)lq,.

la(WxN)l, IWxI" IW c NI
-> IWl, -x

"V2m "lNl
ISp(2(m 1),

since IWl, ISl,. So la(WxN)I, ISp(2(m 1), q)l,, IW m NI, INI,
and W: Wll v2,,. To see that W: We,[ q2, 1, use the natural map
a’Sel Sp(2(m- 1),q) defined by the rule M(1, r,d,B)B. So 1.6
holds.
We can now begin the proof of Theorem B, which proceeds by induction

on m.

LEMMA 1.7. Let W be a subgroup of Sp(4, q). Suppose Wla, ISp(4, q)lq’.
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Then
(i) For q 2, 3, the group W Sp(4, q).
(ii) For q 3, either W Sp(4, 3) or ISp(4, 3)" WI 33.
(iii) For q 2, either Be Sp(4, 2) or Sp(4, 2)’.

Proof. (i) By Lemma 1.6, W is transitive on V,
]a(WN)I, [Sp(2, q)[, and IW c NI, q 1.

Since N is solvable, the q’-Hall subgroup of W c N is conjugate to Q by an
element n of N. Clearly W is transitive on V and Ir(WN)l, ISp(2, q)l,.
So without loss of generality, assume W c N _> Q. By Lemma 1.1, WN S
with possible exceptions if q {2, 3, 5, 7, 11}. By Lemmas 1.5 and 1.4, W
S if q # 2, 3. Since [W: W[ v, it follows that W S. To complete the
proof of (i), we must show that the possibility that a(WN) is a proper subgroup
of Sp(2, q) does not occur for q {3, 5, 7, 11}.

Indeed suppose a(WN)< Sp(2, q) for q e {3, 5, 7, 11}. We claim that
a(WN) is transitive on V. Indeed let E a(WN). By hypothesis IEI
q 1. So E contains Z, the center of Sp(2, q). Now

IEII(ISp(2, q)x[, IEI) q 1.

Since q {3, 5, 7, 11}, it follows that levi 2 or q 1. If IExl 2, then

[E" EI (q2 1) q)" Sp(2, q)[ q + 1,

which does not occur for q {5, 7, 11}. So [E[ q and E is conjugate
to the subgroup

f x
x-

"xF*

of 2 x 2 diagonal matrices. Thus [E: Eel[ q2 and a(W1N) is transitive
on V’. If W1 cNg U, then W1 cN= Nfor q{3,5,7, 11} by Lemma
1.2 (ii). So W > T and since IV is transitive on V, it follows that IV
Sp(4, q) and a(WN) Sp(2, q), a contradiction. So W1 c N < U. If W1 r
N U, then W > T, which leads to a contradiction. So W c N Q.
For B a(WaN), let ws M(a, r, d, B) be a preimage of B which lies in

W, where a,r, ddepend on B. Ifqe{5,7, 11}, then r 0 and d= 0 by
Lemma 1.3 (i). Then

WI {M(a, O, O, B)" a F*, B a(WiN)}.

If q 3, then ws M(a, O, d, B) where a, d depend on B a(WiN). Since

W1 c N Q, we can choose a and then d is uniquely determined by B.
In this case denote the unique d by ds. From the proof of Lemma 1.3 (ii), it
follows that the rule B ds defines a homomorphism from a(WN) which has
order 8 into F which has order 3. So ds 0 for all B a(WiN) and

Wi {M(a, O, O, B)" a F*, B a(WiN)}.
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If q {3, 5, 7, 11 }, then [Sp(4, q): W[ q4. But Sp(4, q) has no subgroup of
index q4 by a theorem of H. Mitchell [9]. This is a contradiction.

(ii) Suppose q 3 and tr(WtN) Sp(2, 3). So WiN St. By Lemma 1.4
either 14’t St in which case W S since W is transitive or

Wt {M(a, O, d, B): a, d F, B Sp(2, 3)}

in which case a contradiction results by Lemma 1.5 or

Wt {M(a, 0, riB, B): a, dB e F; B e Sp(2, 3); ker d Sp(2, 3) or Sp(2, 3)’}.

If ker d Sp(2, 3), then a contradiction results by Lemma 1.5. So ker d
Sp(2, 3)’ and [Sp(4, 3): W[ 33. Note Sp(4, 3) has a subgroup of index 33 by
a theorem of H. Mitchell [9].

(iii) Suppose q 2and a(WtN)= Sp(2, 2). So WiN St. Apply Lemma
1.4. If Wt St, then W S. If

Wt {M(1, r, d,,n, B): d,, F, r V2, B e Sp(2, 2)},

then IS: W[ 2. Since Sp(4, 2) is the symmetric group of degree 6, it follows
that W is the alternating group of degree 6. If

Wt {M(a, O, d, B): a, d F, B Sp(2, 2)},

then Wt > T and so W S, a contradiction. If

Wt {M(a, O, dn, B): a, dn F; B e Sp(2, 2); ker d Sp(2, 2) or Sp(2, 2)’}

then IS: W[ 24. But the symmetric group of degree 6 has no subgroup of
index 24 by a theorem in B. Huppert [8].
Now suppose tr(WtN) < Sp(2, 2). Then tr(W1N) is transitive on V’. If

W1 N U, then by Lemma 1.2 either Wt c N N in which case Wt > T
and so W S, a contradiction or IN: Wt c N[ 2 in which case tWl
22. 3 and IS: W[ 22. But the symmetric group of degree 6 has no subgroup
of index 22 [8]. If Wt c N < U, then either Wt c N U T in which case
Wt > T and W S, a contradiction or Wt N I in which case IWl 3
and IS" W[ 24. But the symmetric group of degree 6 has no subgroup of
index 24 This completes the proof of 1.7.

LEMMA 1.8. Let W be a sub#roup of Sp(2m, q) where m > 2. Suppose
[W[q, [Sp(2m, q)[q,. Suppose Theorem B holds for 2 <_ mt < m. Then
W Sp(2m, q).

Proof By Lemma 1.6, W is transitive on V,,,
[a(WtN)lq, [Sp(Z(m 1), q)[, and [Wt c N[, q 1.

Since N is solvable, we may assume without loss of generality that the q’-Hall
subgroup of Wt c N is Q. By the induction assumption,

a(WN) Sp(Z(m 1), q) if (m, q) {(3, 2), (3, 3)}.
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So WaN Sp(2m, q)a if (m, q) {(3, 2), (3, 3)}. By Lemmas 1.4 and 1.5, we
have Wa Sp(2m, q)a. Because [W: Wa[ v2m, it follows that W Sp(2m, q).

Suppose (m, q) (3, 3) and a(W1N) Sp(4, 3). Then W Sp(6, 3) by
Lemmas 1.4 and 1.5. Suppose [Sp(4, 3): a(WIN)[ 3 3. From the proof of
Lemma 1.7 (ii) we know that a(WN) is transitive on V. If W c N g U then
by Lemma 1.2 (ii), W c N N, W >_ T and so W Sp(6, 3), a contradic-
tion. If Wan N U > T, then W Sp(6, 3), a contradiction. So

WInN=Q.

For B e a(WxN) let xB M(a, r, d, B) be a preimage of B which lies in Wx.
By Lemma 1.3 (i), r 0. From the proof of Lemma 1.3 (ii) it follows that d is
uniquely determined by B when a so that the rule B --. dn defines a homo-
morphism d from a(WxN) into F, a group of order 3. If ker d # a(WaN), then
la(WIN): ker dl 3 and ISp(4, 3): ker dl= 34. But Sp(4, 3) has no sub-
group of index 34 by a result in B. Huppert [8]. So ker d a(WN) and xB
M(1, 0, 0, B). Since W c N Q, it follows that

W {M(a, O, O, B): a e F*, B a(W1N)}.

We wish to apply Lemma 1.5 to W to derive a contradiction. Its proof holds for
a(W1N) < Sp(4, 3), if for all v V* with v # el, there is K a(WN)e, such
that K(v) v v. Indeed this condition is satisfied because

a(WxN)e, {M(1, O, dn, B). dn e F, B e Sp(2, 3)},

where ker d is a Sylow 2 subgroup of Sp(2, 3).
Suppose (rn, q) (3, 2) and a(WN) Sp(4, 2) or Sp(4, 2)’. Then WN

$1 or [S: WN[ 2. If W c N g U, then by Lemma 1.2 (ii), W c N N,
W1 _> T and W= S. If W N= U, then W= S, a contradiction. So
W c N I and ]W] ]Sp(4, 2)[ or [Sp(4, 2)’1. Then [Sp(6, 2): W[ 2 or
26. But Sp(6, 2) has no subgroups with these indices by a theorem of J. Frame
[3]. This contradiction completes the proof of Lemma 1.8 and of Theorem B.

2. Facts about rank 3 groups

Assume (G, X) is a primitive rank 3 permutation group. For a X denote
the Ga orbits by {a), D(a) of length k and C(a) of length l. For b D(a) let
2 ID(a) D(b)]. For b e C(a) let p ]D(a) c D(b)l. We now collect the
necessary facts about rank 3 groups.

LEMMA 2.1. Let G be a primitive rank 3 group of even order. Then:
(i)
(ii)
(iii)
(iv)
(v)
(vi)

#l= k(k- ,- 1).
0<#<k.
LetD (2- /02 + 4(k- p). Then D is a square.
a D(b) iff b D(a).
D(a) and C(a) are each self-paired orbits of Ga.
If b D(a), then there is g G such that g(a) b and g(b) a.
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Proof See [5], [12].
Denote a w D(a) simply as a+/-. For a b define the "line" R(ab) by

R(ab) (]{z l" a, b zl}.
Call R(ab) totally singular (resp. hyperbolic) if b D(a) (resp. b C(a)).

(i)
(ii)
(iii)
(iv)

LEMMA 2.2. Let G be a primitive rank 3 group of even order. Then"
G is transitive on totally singular (resp. hyperbolic) lines.
If b D(a) and ifx R(ab) {a}, then R(ax) R(ab).
If b D(a), then x R(ab) iff a+/- c x +/- a+/- c b’.
If b D(a), then Gl(,b), the global stabilizer of R(ab), is 2 transitive on
the points of R(ab) unless R(ab) {a, b}.

(v) If It > + 1, then GR(xy) is 2 transitive on the points of R(xy) unless
R(xy) {x, y}.

Proof See [5].
Denote the pointwise stabilizer in G of a simply as T(a).

LEMMA 2.3. Let G be a primitive rank 3 group of even order. Then:
(i) {T(x)’xD(a)} 1.
(ii) If It > + 1, then T(a)l divides (IR(aU)I 1) forf C(a).

Proof See [5], [6].

3. The proof of Theorem A for rn 2

For the rest of the paper, we assume that (G. X) is a primitive rank 3 extension
of (PSp(2m, q)v, A(v)) for m > 2 and v P, the projective space formed from
V2,,. Denote PSp(2m, q) simply as S and for a basis element er P denote
PSp(2m, q)er simply as St. Fix a X. Let i" D(a) --. A(el) be the bijection and
j’. G - S be the isomorphism which establish the permutation isomorphism
of (G,, D(a)) and (Sa, A(el)). That is, for all x D(a) and for all # Ga,

i(#(x)) (j(9))(i(x)).

Since $1 is not faithful on A(ex), it follows that G, is not faithful on D(a) and so
T(a) :/: 1. Now

k ID(a)I- q(q2m-2_ 1)/(q- 1).

For r N, the set of natural numbers, let v, denote (q’ 1)/(q 1). Then
k qV2m_ 2.

The purpose of the next two sections is to prove Theorem A. First we de-
termine the parameters 2, It, and ! of G and then we identify the subgroup Gobs.
for b D(a), f C(a) D(b) by Theorem B. Then we show that the number
of points of an abstract "line" R(xy) is q + 1. From these results we can con-
clude that X is a projective space and that G is a group of symplectic collinea-
tions. The details of the proof differ somewhat according as m 2 or m > 2.
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The rest of Section 3 considers the case m 2 while Section 4 considers the
case m > 2.
Now assume m 2. Then S PSp(4, q).

LEMMA 3.1. The group $1 is a transitive rank 3 group on A(el) with sub-
degrees 1, q 1, and q 2.

a
b e a- bc

b-
a-ll

The group $2,1 on A(el) has orbits

{el}, {(a, b, 0, 0)" a, b F*},

So 3.1 holds.

Since e2 A(ex), the group $2, equals

Z:a,b,c,d,e

and {(c, e, b-1,0)" b, c, e F}.

Proof Suppose 2 0. Now

IGor" Gbl IS2,1" S2,1, -21 q2

by Lemma 2.1. Then

IGbc" Gbcal IGb" Gbal’lGba" Gbacl’lGb" Gbcl -kq2/l

I,tq2/(k- 1),

since by Lemma 2.1, #l k(k- - 1) k(k- 1). Sincek- 1 q2 +
q- and #q2/(k- 1)N, it follows that (k- 1) l/z. But #_<k-
because G is primitive. So # k 1. Then

D (2 /2)2 - 4(k #) (k 1)2 + 4 x 2

for some x N. Then 4 (x (k 1))(x + (k 1)) implies k 5/2 or 1,
a contradiction. So 2 = 0 and 3.2 holds.

LEMMA 3.3. 2 q and #1 kq2.

LEMMA 3.2. 2 4: 0.

We wish to determine the intersection numbers 2 and/z of the rank 3 group G.
For b D(a) and for c D(a) c D(b), it follows that ca D(a) c D(b) and
that D(a) D(b) is a union of nontrivial Gab orbits on D(a). So

2e{0, q- 1, q2, q2 + q_ 1}

from Lemma 3.1. In this section let b, c be the fixed elements of D(a) such that
i(b) e2 and i(c) e-2.
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Proof If q2 + q_ k- 1, then/ 0 because

/d- k(k- 2- 1)

and thus G is imprimitive, a contradiction.
Suppose 2 q2. So D(a) c D(b) equals the Go orbit of length q2. Define

a subgroup R of Go by

R {G.bx" x lies in the G.b orbit of length q2}.
Then

j(R) {S,2,o’v lies in the S,2 orbit of length q2}.

It follows from matrix computation that

j(R) Z" d

where Z is the center. Note j(R) fixes A(el) pointwise.
Since the G,b orbit of length q2 lies in D(b), the pointwise stabilizer in Gb of

the D(b) orbit is a subgroup of R; that is T(b) < R. Let T(b). Then
j(t) j(R) andj(t) fixes A(e2) pointwise. So fixes D(a) pointwise and T(a).
Thus T(b) < T(a). Since G is transitive on X, there is h s G such that h(b) a.
Then T(b)h T(a) and so T(b) T(a). For x D(a), there is t7 s G, such that
#(b) x. So T(a) T(b) T(x) and

T(a) ( { T(x)" x O(a)}.

By Lemma 2.3 (i). 0 {T(x)" x e D(a)} 1. So T(a) 1. But by hypothesis
T(a) #: 1, a contradiction. So 2 q: q2 and 2 q 1. So 3.3 is proved.

LEMMA 3.4. (i) For y D(x), the "line" R(xy) x+/- c y+/- and IR(xy)[
q+l.

(ii) For x D(a), i(R(ax)) (e2, i(x)) where (e2, i(x)) denotes the
projective line determined by e and i(x).

Proof (i) Clearly R(ab) a+/- c b+/-, where a+/- c b+/- is the union of {a, b}
and the orbit of Gab of length q 1. So i(a+/- b+/-) is the union of {el, e2) and
the orbit of $22 of length q and

i(a+/- c b+/-) (el, e2).

Let u e a+/- c b+/- {a}. Then a+/- c u+/- is the union of {a, u} and the orbit of
Gau of length q 1. So

i(a+/- c u+/-) (el, i(u)) (el, e2) i(a+/- c b+/-)
since i(u) (el, e2) {el }. So a+/-

t u+/- a+/-
t b+/- which implies u R(ab).

So a+/- c b+/-

_
R(ab) and a+/- c b+/- R(ab). Since G is a transitive group of
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rank 3, G is transitive on totally singular lines. It follows that for y D(x), the
line R(xy) x +/- c y+/-.

(ii) For x D(a), the line R(ax) a+/- c x +/- and i(R(ax)) is the union of
{e1, i(x)} and the orbit of Sl,i(x) of length q 1. Thus i(R(ax)) (el, i(x)).
This completes the proof.
We wish to determine the parameter/. Since C D(a) c C(b),

IGoc" Gbcal IGb" Gbal’lGba" Gbal’lGb" Gbc1-1
kq2/l

q2/(k- - 1)

Now

j(Gabc) Sl,z,-z I x

group of order e-l(q 1)2q, which has index q
(2, q 1). Let

Z" x, y, z

2 in j(Gab)= S1,2 where

x

Q Y Z’x,yy-1
X-1

Then Q is a q’-Hall subgroup of the solvable group $1,2.
Since G is rank 3 of even order, by Lemma 2.1 the D orbit of Ga is self-paired

and there is g G such that g(a) b and g(b) a. Then

la IGbc: GI IG#<c): Gao(c)bl.

The q’-Hall subgroup of Gabble) is conjugate to j-I(Q) by an element h Gab.
Let f by(c). Then f C(a) D(b). Now :t IGaf: Gabfl where Gabf is
conjugate to Gabc. Also

IGfl e-l(q 1)2q, [Gab: Gabf[ q2 and Gabf >_ j-I(Q).

We will determine the value of # by determining the possible structure of
J(Gabs) in $1,2. Denote j(Gaby) simply as K.

LEMMA 3.5.

(i)

The group K is one of the following three groups:

x
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(ii)

(iii)

where x, y, z F.

X Z

x
y z

y-a Z

X-1

Proof LethK- Q. ThenhSa,2 Q. Let

x m
y n x aym

h -a Z
Y

-1X

where at least one of m, n, is nonzero. Since K > Q, we may assume without
loss of generality that x y 1. If not, consider

X-1

Z.h.ha Y
x

Then h has at least e-l(q 1) Q-conjugates since for u, v e F*,

u u- uvm u2t
v v- v2n uvm

vl "h" Z= Z.
v

u- u

Now <Q, h>
_

{Q, sh’: r, s Q}, a set of order at least

-X(q_ 1)z / -Z(q_ 1)Z(q_ 1) > Igl/2.

So (Q, h) K and exactly one of m, n, is nonzero. This implies 3.5.

LEMMA 3.6. The tIroup K is not equal to S1,2,_ 2.

Proof. Suppose K Sa,2,-2. Then Gabs Gabc and T(a) <_ Gabc <-
wheref C(a). For x C(a) there is y Ga such that y(f) x. Then

T(a) <_ G Gx and T(a) <_ ( {Gx:xeC(a)}.

But by definition T(a) ) {Gx: x a w D(a)}. So

T(a) 0 {G, x X) 1.

This contradiction proves the lemma.
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LIMMA 3.7. (i) For x D(a) n D(b),

(iii) # q + landl= q.
(iv) Case (ii) ofLemma 3.5 does not occur.

Proof. (i) Clearly Gaxf aaf f-3 aa,R(ax). Let

Then g(x) R(ax) n D(f). If #(x) x, then

a R(ax) R(xy(x))
_
f,

a contradiction. So g(x) x and x Gs.
(ii) If Gs _-< Ga,R(ab), then Gas Gs n Ga,Rtob) Gabs and

It IGaf" Gabfl 1.
Then

D (q- 2) + 4(q + q- 1) 5q

is a square, a contradiction. So Gaf Ga,l(ab) and there is # Gaf
such that # Gaby.

(iii) P af" aaybl IbG"gl. We compute the possible values for # from
the action of Gabf on {R(ax)" x D(a)}. Now

b’ {b} U {x6"" there is y Gay with g(b) x}.

For x D(a) n D(f), by (i), Gaj. G,ya<,) and so Gay Gaj-a<,). Then

Ix":l IGabs" aab:l IGabf" GabfR(ax)[ IR(ax)"’l.
By Lemma 3.4 (ii), for x D(a), i(R(ax)) (e, i(x)). So the action of
on {R(ax)’x D(a)} can be computed from the action of j(Gab:) K on
{(el, e2), (el, (0 u 0)" u e F}.

In case (ii) of Lemma 3.5, on the above set K has orbits of lengths 1, 1,
(q 1)/2, (q 1)/2 if q is odd and of lengths 1, 1, q if q is even. Notice
that K fixes (ex, e-2) but does not fix e-2. By (i) c q D(a)n D(f). Since
b D(a) n D(f), there does not exist g Gay such that g(b) c. Since there
does exist s Gas Gash by (ii), y(b) lies in an orbit of length (q 1)/2 if q
is odd or of lengthq- ifqiseven. So# (q + 1)/2 or q if q is odd and
# q if q is even in case (ii).

If # (q + 1)/2, then

D (q- (q + 1)/2)2 + 4(q 2 + q- (q + 1)/2)

(17q 2 + 2q + 1)/4
2
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for some x e N. So q(17q + 2) (2x 1)(2x + 1). Since (2x 1, 2x + 1)
and q is a prime power, either q (2x 1) or q (2x + 1). If there is e N such

that qt 2x- 1, then

17q + 2 t(qt + 2) and (17- t2)q 2(t- 1) > 0.

So { 1, 2, 3, 4} and a contradiction results in each case. If there is e N such
that qt 2x + 1, then

17q + 2 (qt- 2)t and (t 2 17)q 2(t + 1) > (t 2 17)3

because q is odd. So 53 > t(3t 2) and { 1, 2, 3, 4}. For these values of t,
2(t + 1) > 0 while (t 2 17)q < 0, a contradiction. So # (q + 1)/2.

If # q, then

D (q- q)2 + 4(q2 + q_ q) + 4q 2 x 2

for some x N. Then (x 2q)(x + 2q), which implies 4q 2, a con-
tradiction. So # : q and case (ii) does not occur.

So case (iii) of Lemma 3.5 must occur. On

{(el, e2), (e, (0 u 0))’" u e F},

the group K has orbits of lengths and q. Since there is g Gs Gos, the
parameter # q + 1. Since pl q3(q + 1), the parameter q3. This
completes the proof of 3.7.

LEMMA 3.8. If q # 2, 3, then

{xj(aas) B Z: x F, B SL(2, q)}.
Proof. Define M a subgroup of G by

M n {Ga,R(o,o" x D(a)}.
By Lemma 3.5 (i), Gas n M Gabs n M. Since i(R(ax)) (el, i(x)) for
x D(a),

{M(x, r, y, I)Z" x, y F; r V2}

=N.

Define a map a" $1 SL(2, q) by M(x, r, y, B)Z B. Then a is an epi-
morphism with kernel N.
Now since # q + and K j(Gabs)

la(j(Ga)N)l Ij(Ga)" gl’lgl’lg n NI-’ ISL(2, q)l.

So j(Gas)N Si and Gas n N Q. Apply Lemma 1.4 to see that 3.8 holds.
Let (G, X) be a primitive rank 3 group of even order. Associate to G a block
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design A’ whose points are the elements of X and whose blocks are the symbols
b+/-, one for each b X. A point c and a block b+/- are defined to be incident if
ce{b} uD(b)= b+/-. In A’, two blocks a+/- and b+/- have 2 + 2 points in
common if b D(a) and # points in common if b a+/-. The group G is faithfully
represented as a group of collineations of A’ when the action of g e G on the
points and blocks is defined by

a g(a), a" (g(a))’.

The correspondence a a+/- defines a polarity fi of A’ and the collineations
induced by G commute with .
LEMMA 3.9. For y C(x), IR(xy)l q + 1.

Proof Let [R(xy)[ h + 1. Since # 2 + 2, the design A’ is a symmetric
design. In a symmetric design,

2 < IR(xy)l < (n ( + 2))/(k + (2 + 2)) q +
by a theorem in P. Dembowski [1]. So h < q. By Lemma 2.3 (ii), T(a)llh.
Since T(a) -: 1, h > 1. If q 2 (resp. 3), then h 2 (resp. 3).
Assume q > 3. Since G is primitive and # 2 + 2, the group GR(ab) is

2-transitive on the points of R(ab) by Lemma 2.2. Since GR(ay),a,y Gay, it
follows that [GR(af), a" Gay h. Let g Ga,R(af Gal. Then g G Gay.
Let

j(g) M(x, r, y, B)Z

where either r # 0 or y -#- 0. By Lemma 3.8, M(1, O, O, B-1)Z j(Gay) and so

j(g). M(1, O, O, B-I)Z M(x, rB -, y, 1)Z j(Ga,(ay)) c N.

Nowj(Ga,(ay))N S andj(Ga,R(ay)) N > Q. If r :/: 0 then from Lemma
1.4, j(Ga, R(af)) S j(Ga) so

h Ga,(ay)" Gayl Ga" Gayl q3,

a contradiction as h < q. So r 0 and y # 0. From Lemma 1.4,

j(Ga,R(af)) {M(x, O, y, B)Z" x, y F, B SL(2, q)}.

So IGa, R<af)" Gayl q h, as claimed.

LEMMA 3.10. (i) The desiyn .4’ is isomorphic to the system ofpoints and hyper-
planes of a projective space of dimension 3 over F.

(ii) G - PSp(4, q).

Proof (i) The design A’ is a symmetric design in which lines carry q +
points by Lemmas 3.4 and 3.9. By a theorem of P. Dembowski and A. Wagner
[2-1, it follows that .4’ is isomorphic to the system of points and hyperplanes of a
projective space P over F. The dimension is 3 because Ib+/-l qv2 + va.
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(ii) The group G acts on A’ - P and G leaves the polarity b bI invariant
for b e X. So G is a subgroup of the automorphism group of A’, which is iso-
morphic to the group of symplectic collineations of P. The nontrivial elements
of T(b) fix the hyperplane bI pointwise and fix no point outside this hyperplane.
So these elements are symplectic elations. For each b X P, the group G
contains a symplectic elation with center x. By a theorem of D. Higman and
J. McLaughlin [7[, it follows that there is a subgroup H of G such that H -eSp(4, q). Since IGI v,lao[ v,,Isl [eSp(4, q)[, it follows that G
PSp(4, q). Thus 3.10 holds and Theorem A is proved for rn 2.

4. The Iroof of Theorem A for m > 2

In this section we assume that rn > 2.

LEMMA 4.1. The group $1 is a transitive rank 4 group on A(el) with sub-
degrees 1, q 1, q2V2m_4, and q2m-2.

Proof. Since e2 A(el), the group

S,2 {M(a, r, d, B)Z: a, d F; r V2(m-1); B Sp(2(m 1), q)e2}

where V2m (el, e_l) 2. V2(m_l). The group S,2 on A(el) has orbits

{e2} (e, e2) {e, e2} {(xyvO0)" X, y - F, v . V2(m_2)*}

and
{(xyvlO)" x, y F, v V2(m-2)}

of respective lengths 1, q 1, q2V2m_, and q2m-2, as desired.
We wish to determine the intersection numbers and # of the rank 3 group G.

For b D(a) and for c D(a) D(b), it follows that c"’ D(a) c D(b) and
that D(a) c D(b) is a union of nontrivial Go orbits on D(a). In this section let
b, c be the fixed elements of D(a) such that i(b) e2 and i(c) e-2.

LEMMA 4.2. 2 # O.

Proof The proof is similar to that of Lemma 3.2.

LEMMA 4.3. (i) The G,b orbit oflength q2m-2 is not contained in D(a) c D(b).
(ii) 2 q 1, q2V2m_4, or q2V2m_4 q- q 1.

Proof (i) Suppose this orbit of length q2m-2 is contained in D(a) t D(b).
We will derive a contradiction with an argument similar to that contained in
Lemma 3.3. Define a subgroup R of Go by

R 0 {Gabx: x lies in the Gob orbit of length q2m-2}.

It follows from matrix computation that

j(R) {M(1, O, d, I)Z" d F}
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and so j(R) fixes A(el) pointwise. Since the Gab orbit of length q2m-2 lies in
D(b), the group T(b)< R which implies T(b)= T(a). Then T(a)= 1, a
contradiction.

(ii) Since D(a)c D(b) is a union of the nontrivial Gab orbits, by (i) and
Lemma 4.2 it follows that 2 q- 1, q2V2m_ 4 or q2V2m_ 4 + q- 1, as
claimed.

LEMMA 4.4. (i) ff q 1, then

Gbc" Gbcal tq2m-

for some t N.
(ii) If, q2V2m_., then

(iii)

Proof

Now

and # V2m_ at

Gb" Gbca[ q2m-2 and # q2m-2 .. q 1.

/f2 q 2/)2m_ 4 "" q 1, then [Gbc" Gcal p.

By Lemma 4.3 (i), c D(a) c C(b). Note

IGao" Gabl 1S1,2" S1,2,-21 q2m-2.

IGc" G,cal IGb" Gabl ]Ga," Gacl lG" Gbcl-x
kq2m- /1

laq2m-2/(k- - 1)

since k(k- 2- 1)
(i) If2 q- 1, then

IGb" Gbcal #q2m-4/V2m-3 - N.

There is N such that # V2m_3 because (V2m-a, q2m-4)= 1. Then
Gc" GcI tq2m-4.

(ii) If 2 q2V2m_4, then

IGbc" Gbcal l.tq2m-2/(q 2m-2 + q 1) N.

There is N such that

/2 (q2m-2 + q_ 1)t ((q- 1)/)2m_ 2 + q)t

because (q2m-2 + q 1, q2m-2) 1. Since G is primitive,

# ((q 1)V2m_ 2 + q)t < k qV2m_2,

which implies t 1.
Off) If 2 q2V2m_4 + q- 1, then IGb," G,ol #. This completes the

proof of the lemma.
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We wish to determine the parameter # by determining the possible structure
of Gb for G. Now

j(Gac) S1.2.-2 {M(x, (0r0), z, C)Z: x, g F, r V2(m_2)
and

C M(y, O, O, B) where y F*, B Sp(2(m 2), q)}.

Define

() ’" S1, 2 + Sp(2(m 2), q)

by the rule that for s e S1,2, (S) is the matrix of size 2(m 2) obtained from s
by deleting the rows and the columns of s indexed by + and _+ 2. Then z is an
epimorphism. Let M be ker z. Then M is a solvable group of order

e-(q- 1)2q4m-5.

Let Q be the q’-Hall subgroup of M which consists of diagonal matrices. Note
z(Sx,2,-2) Sp(2(m 2), q) and $1,2,-2 c M > Q.

Since G is rank 3 of even order, the D orbit of Ga is self-paired and there is
g e G such that g(a) b and g(b) a. Because j(G,,bc)M $1,2, it follows
that j(Gabo(c))M < S,2. Since

and

it follows that

and

(j(G,o(c))M) <_ Sp(2(m 2), q)

Ij(Gabo(c))l e-(q 1)2q2m-alSp(2(m 2), q)l,

Ij(G,(c)) c MIq, e-(q 1)2

Iv(j(Go<c))M)I, ISp(2(m 2), q)l,.
The q’-Hall subgroup of J(Gabo(c))c M is conjugate to Q by an element
m M < Sa,z. Let f (j-(m))(g(c)). Then fs C(a) c D(b) and Go. is
conjugate to G. by an element of G. Note

(2) [abc" Gbca[ [aaf" Gabf[.
We will determine the possible structure of j(Gab’), a subgroup of S.2 of
index q2m-2 and of order e-(q- 1)ZqZm-lSp(2(m- 2),q)] such that
j(Gaby) M >_ Q. Denote j(Ga’) simply as K.
Now KM < S,2 such that Iv(KM)Iq, ISp(2(m 2), q)lq,. By Theorem B

andLemmal.l, KM= Sa,zifm > 5, ifm 4andq # 2,3orifm 3and
q : 2, 3, 5, 7, 11. Form 3andq 5, 7, 11 assumeKM= Sa,2. We will
show that the cases KM < S,z do not occur later in Lemma 4.13. Assume for
m 3, q 2,3 and for m 4, q# 2, 3. We will discuss these excluded
cases later.

Define

(3) a" PSp(2m, q)<,, >. <,> Sp(2(m 1), q)<,_>
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by M(a, r, d, B)Z B where a, d F; r V2(m-1) and B Sp(2(m 1), q)2
and where V2m (et, e-t)’V2(m-t). For s e St,2, a(s) is the matrix of size
2(m 1) obtained from s by deleting the rows and the columns of s indexed
by __+ 1. Note the map a defined by (3) is a restriction of the map a of Section
to the group St,2.

LEMMA 4.5. a(K) equals one of the following three subgroups:
(i) {M(y, O, O, B)" y F, B Sp(2(m 2), q)},
(ii) {M(y, O, z, B); y, z F, B Sp(2(m 2), q)},
(iii) {M(y, r, z, B)" y, z F, r V2<m-2), B Sp(2(m 2), q)}.

Proof We haveKM St,2whereKcM> Q. So

a(K)a(M) Sp(2(m 1), q)2
and

a(K) c a(M) >_ {M(y, O, O, I)" y F*}.

Now Lemma 1.4 implies the result.
Define

(4) v" PSp(2m,

by the rule that for s St, 2, v(s) is the matrix of size 2(m 1) obtained from s
by deleting the rows and the columns of s indexed by + 2. Let N2 be the sub-
group of St,2 defined by

N2 {M(x, (Ory), z, I)Z" x, y, z F, r V2(m-2)}.

LEMMA 4.6. Let Y be a subgroup of St, 2 such that Y > Q and z(Y) is transi-
tive on V(m_2). Then Y c N2 is one of the following 6 subgroups"

(i) N2,
(ii) {M(x, (0r0), z, I)Z: x, z
(iii) {M(x, (00y), z, I)Z: x, y, z F},
(iv) {m(x, O, z, I)Z" x, z e F},
(v) {M(x, (OOy), O, I)Z" x, y r},
(vi) {M(x, O, O, I)Z: x e F*}.

Proof. By Lemma 1.2 if v(Y c N2) U, then v(Y c N2) v(N2) and

Y c N2 {M(x, (Ore), z, I)Z: x, z, c F, r V2(m_2)}

where c depends on x, r, z. If c # 0 for some x, r, z, then for

B M(y-x, O, O, I) Sp(2(m 1), q),

the element M(1, 0, 0, B)Z Y and so

M(1, 0, 0, B-x)g(x, (Orc), z, I)M(1, 0, 0, B)Z

M(x, (Orcy), z, I) e Y c N2
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where cy is any element of F*. It follows from matrix computation that
Y c N2 N2. If c 0 for all x, r, c, then Y c N2 is of type (ii).
Assume now that v(Y c N2) U. So

Y c N2 - {M(x, (00c), z, I)Z" x, z, c e F}

where c depends on x, z. If c 0 for some x, z, then Y c N2 is of type (iii).
If c 0 for all x, z, then Y c N2 is of type (iv).

If v(Y c N2) {M(x, O, O, I): x F*}, then Y c N2 is of type (v) or (vi).
This completes the proof of the lemma.

LEMMA 4.7. (i) In case (i) ofLemma 4.5, K $1,2,- 2.

(ii) K # $1,2,-2.

Proof. In case (i), IK c N21 e-(q 1)q2-3 because ker tr N2 and
a(K) - K/K c N2. Note z(K) Sp(2(m 2), q). By Lemma 4.6, since
m>2,

K Nz {M(x, (OrO), z, I)Z" x, z e F, r e V2(m_2)}.

For C a(K) let kc M(a, (0rz), d, C)Z be a pre-image of C which lies in K
where a, (Orz), d depend on C. Then

kc M(a-x, (0 -a-r 0), -d, I)Z M(1, (OOz), O, C)Z e K.

We claim that z 0 for all C e a(K).
Indeed for C a(K) let kc be the pre-image

M(1, (00z), 0, C)Z

which lies in K and let lc be the pre-image

M(1, (OOy), O, C)Z
which lies in K; then

kcl[ M(1, (0, O, z y)C-1, O, I) e K c N2.
So z is uniquely determined by C when kc M(I, (00z), 0, C)Z. Denote this
unique z by Zc.

Since K c N2 > Q,

M(x, O, O, I)kcM(x -, O, O, I)Z M(1, (0, 0, XZc), O, C)Z

and SOZc 0ifq > 2.
If q 2, then a(K) {M(1, O, O, B)" B e Sp(2(m 2), 2)}. Then the map

defined by the rule C --. zc is a homomorphism from

a(K) Sp(2(m 2), 2)

into F, a group of order 2. Since rn > 5, Sp(2(m 2), 2) is simple. Since the
kernel is a normal subgroup, it follows that zc O.
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Now kc M(1, 0, 0, C)Z K and

K > (M(1, O, O, C), K c N2" C a(K)) $1,2,-2.
Since Igl IS,,2,-21, it follows that K S,2,-2.

(ii) If K $1,2,-2, then the proof of Lemma 3.6 works for rn > 2 to yield
T(a) 1, a contradiction. So 4.7 holds.

LEMMA 4.8. Case (ii) ofLemma 4.5 does not occur.

Proof Suppose

a(K) {M(y, O, z, B)" y, z F, B Sp(2(m 2), q)}.

Notez(K) Sp(2(m 2), q). Then IK c N21 e-(q- 1)q 2m-*. Ifm > 3,
then K c N2 is not equal to any of the six possible subgroups of Lemma 4.6, a
contradiction. If rn 3, then

K N2 {M(x, (00y), z, I)Z" x, y, z e F}.

For C e tr(K) let kc M(x, (0ry), z, C)Z be a pre-image which lies in K where
x, (0ry), z are determined by C. Apply v and then Lemma 1.3 to conclude that
r 0. So kc M(x, (00y), z, C)Z and

kcM(x -, (00 x-ly), -z, I)Z M(1, 0, 0, C)Z e K.
So

K (M(1, 0, 0, C)Z, K c Nz" C e a(K))

{M(x, (00y), z, C)Z" x, y, z e F, C e a(K)}.
Let P be a p-Sylow subgroup of K. Then P is abelian. Let R be a p-Sylow sub-
group of Sa, z, z. Then IR’I 5- Xq2. Since G,bs, is conjugate to G,bc, it follows
that j-X(P) is conjugate to j-X(R). This contradiction proves the lemma.

LEMMA 4.9. K {M(x, O, O, C)Z: x e F*, C e tr(K)}
where tr(K) {M(y, r, z, B): y, z e F, r e Y2(m_2) B e Sp(2(m 2), q)}.

Proof By Lemmas 4.7 and 4.8, a(K) {M(y, r, z, B)}. Then IK c N2]
5-X(q 1). Since K _> Q, it follows that

K c Nz {M(x, O, O, I)Z: x e F*}.

For C e a(K) let kc M(a, r, d, C)Z be a pre-image of C which lies in K
where a, r, d depend on C. By Lemma 1.3 (i) for q 2, r 0 and d 0. So
kc M(a, O, O, C)Z and M(1, 0, 0, C)Z e K. So

K <M(1, 0, 0, C)Z, K c N2: C e a(K)>

{M(x, O, O, C)Z: x e F*, C e a(K)}.

For q 2, let C M(1, s, z, B) e a(K) and let

kc M(1, (0, r, d), f, C)Z
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be a pre-image in K where d, f F, r V2tm-2) and where r, d, f depend on C.
Apply the map v of (4) and then Lemma 1.3 (iii) to conclude that there is
v(n) v($1,2) such that v(kc)v(") M(1, 0, 0, B). Since n $1,2 j(Gab), the
group Gb-(") satisfies the same conditions as Gabr and we may assume without
loss of generality that n 1. So

kc M(1, (00d), 0, C)Z,

where d depends on C. We claim that d 0. Indeed since K r N2 L d is
uniquely determined by C. Denote this unique d by do Then the map d defined
by the rule C - dc is a homomorphism from a(K) Sp(2(m 1), 2)1 into F,
a group of order 2. LetL ker d. LetN {M(1, r, z, I): z e F, r V2m-2)}.
If N < L, then

L/N < Sp(2(m 1), 2)1/N - Sp(2(m 2), 2),

which is a simple group for m _> 5. So L Sp(2(m 1), 2)1. If N ;g L, then
LN Sp(2(m 1), 2)1. Now Lemma 1.4 yields a contradiction. So 4.9 is
proved.

LEMMA 4.10. (i) 2 q2V2m_4 + q V2m_ 2 2 and# /32m-2.
(ii) j(Gas) {M(x, O, O, B)" x F*, B Sp(2(m 1), q)}.

Proof By Lemma 4.9,

K j(Gabf) {M(x, O, O, B)" x F*, B Sp(2(m 1), q)2}.

Define tr" St -o Sp(2(m 1), q) by the rule M(x, r, y, B)Z B. Then

a(K) Sp(2(m 1), q)2 < a(J(G,,s)) <- a(j(G,,))= Sp(2(m 1), q).

Now Sp(2(m- 1), q)2 is a maximal subgroup of Sp(2(m- 1), q) because
Sp(2(m- 1), q) is primitive in its action on the lines of V(,,-1). Either
r(j(Ga:)) Sp(Z(m 1), q)2 or a(j(G,,.)) Sp(2(m 1), q).

If a(j(Ga:)) Sp(Z(m 1), q)2, then

j(G..) <_ {M(x, r, y, C)Z" x, y F, r V2(m_l) C Sp(2(m 1), q)2}

S1,(1,2).

Now

Let
IGaf" Gabfl Ibo, Ii(b)JGo,) < le,,<,,> q.

t7 M(x, (yrz), w, C)Z j(Gay)

where x, y, z, w F, r e V2(-2) and C Sp(2(m 1), q)2. Assume y # 0 for
some 9 e j(Gay). Since j(Gar) > K > Q, for all u F*,

M(u, O, O, I)Z # M(ux, (uy ur uz), uw, C)Z j(G:).
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Then leGas)[ q. If y 0 for all g j(Gq.), then

j(Gaj,) < Sx,2 and le{(o)l 1.

So [Gaf" Gabf[ or q and IGaf" Gabfl IGbc" Gbcal by (2). From Lemma 4.4,
it follows that

2 q2Vm_, + q- and IGaf’Gabfl
We claim that the cases 2 q2Vm_, + q 1,/z and 2 qZV:m-,, +

q 1, # q do not occur. Indeed assume first # 1. Then

D (q2V2m_ 4 + q)2 + 4(qV2m_2_ 1)

q2(Vm_ 3 + (2qm-2)2)

is a square. There is z N such that Vm_ 3 + (2qm- 9)2 z 2. Since q is a prime
power and V2m-3 is odd, (z, V2m-3) and

q2m-4 (Z V2m_ 3)/2 (Z + /32m-3)/2.

So (z V2m_3)/2 and q2m-4 (Z + V2m_3)/2. Then + V2m_ 3 q2m-4,
a contradiction.
Now assume # q. Then

D (qEv2m_ 4 1)2 + 4(qV2m-2 q) (q2V2m-4 + 1)2 + (2qm-t)2 z 2

for some z N. Since q is a prime power and q2V2m_ 4 + is odd,

(Z, q2V2m_ 4 + 1)=
and

q2m-2 (Z (q2V2m_ 4 + 1))/2"(2 + q2V2m_ 4 + 1)/2.

So (Z- (q2V2m_ 4 + 1))/2 and q2m-2 (2 + q2V2m_ 4 + 1)/2. Then
q2m-2 2 + q2V2m_ ,, a contradiction.
Thus a(j(G,y)) Sp(2(m 1), q)andj(Gay)N S1 where

N {M(x, r, y, I)Z" x, y F, r

Notej(Gay) > K > {M(x, O, O, I)Z" x F*}. Apply Lemma 1.4. Ifj(Gaf)
S j(Ga) then and p k(k 2 1), which does not occur since G is
primitive. If

j(Gay) {M(x, O, y, B)Z" x, y F, B Sp(2(m 1), q)},

then by Lemma 4.10 (ii), IGas" Gabf] qV2m-2 while IbG":[ le{<) V2m_2,
a contradiction. So

j(Gaf) {M(x, O, O, B)Z" x F*, B Sp(2(m l), q)}.

Then [Gay" Ga.l VZm-Z le<")l. From Lemma 4.4, it follows that

2 qZv2m_ 4 + q /)2m-2 2 and la V2m-- 2.

This completes the proof of 4.10.



534 ARTHUR YANUSHKA

LEMMA 4.11. (i) For y C(x), IR(xy)l q + 1.
(ii) For y D(x), Ig(xy)l q + 1.

Proof (i) The proof is similar to that of Lemma 3.9.
(ii) Since A’ is a symmetric design,

2 < [R(ab)[ <_ (n- (2 + 2))/(k + (2 + 2)) q + 1.

NoteR(ab) {a} < D(a) cb. NowuR(ab) iffa cu+/- a- cbziffthe
union of {a, u} and the orbits of Ga, of lengths q and q2V2m_ 4 equals the
union of {a, b} and the orbits of Gab of lengths q and q2v2_ ,. This occurs
iff the union of {el, i(u)} and the orbits of $1, (,) of lengths q and q2v2m_
equals the union of {ca, e2) and the orbits of $1,2 of lengths q and qZv2m_ 4.

For v (el, e2) {el, e2}, it follows from matrix computation that the orbit
of Sl,v of length q2v2m_ equals the orbit of Sa,2 of length q2V2m_ 4 and that the
union of {el, v} and the orbit of Sl,v of length q equals the union of {el, e2}
and the orbit of Sa,2 of length q 1. So i-X(v) R(ab) and [R(ab)[ q + 1,
as claimed.

LEMMA 4.12. (i) The design A’ is isomorphic to the system of points and
hyperplanes ofa projective space ofdimension 2m over F.

(ii) G - PSp(2m, q).

Proof The proof is similar to that of Lemma 3.10. The dimension is 2m
since [b+/-[ qVzm_ 2 -+- Vzm-1. So Theorem A holds for m > 5; m 4,
q > 3;m 3, q > 11.

LEMMA 4.13.
occur.

If m 3 and q 5, 7, or 11, the cases KM < S1, 2 do not

Proof If KM < $1,2, then z(KM) < SL(2, q) of index q and of order
q2 1. From the proof of Lemma 1.7, it follows that z(KM) is transitive on

v’. Now
tr(K) > {M(y, O, 0, 1)" y F, 1 SL(2, q)}

and ISp(4, q)2: tr(KM)[ q. It follows from Lemmas 1.2 and 1.3 that tr(K)
equals one of the following three subgroups of Sp(4, q)2:

(i) {M(y, O, O, B): y F*, B 6 z(K)},
(ii) {M(y, O, z, B): y, z F*, B z(K)},
(iii) {M(y, r, z, B): y, z F*, r e V2, B z(K)}.
In case (i), [K c N21 e- l(q 1)q INzl. Then

K {M(x, (Orz), w, C)Z" x, z, w F, r V2, C tr(K)}.

Let P be a p-Sylow subgroup of K. Then Ie’l e-lq. Let R be a p-Sylow sub-
group of $1,2,-2. Then [R’[ e-lq 2. Since Gaby j-a(K) is conjugate to

Gabc j-($1,2,-2), a contradiction results.
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In case (ii), [K c N21 e-a(q 1)qa. By Lemma 4.6,

K c N2 {M(x, (0r0), z, I)Z: x, z F, r V2}.
It follows by a proof similar to that of Lemma 4.7 (i) that

K {M(x, (0r0), w, C)Z: x, w F, r V2, C z(K)}.
If P is a p-Sylow subgroup of K, then IP’I e-aq, a contradiction.

In case (iii), IK c N2[ e-a(q 1)q. By Lemma 4.6, either
(a) K c N2 {M(x, O, w, I)Z: x, w F}, or
(b) K c N2 {m(x, (OOw), O, I)Z: x, w e F}.

In case (a) it follows by Lemma 1.3 (i) that

K {M(x, O, w, C)Z: x, w F, C tr(K)}.
If P is a p-Sylow subgroup of K, then IP’I e-Xq, a contradiction. In case (b)
it follows by an argument similar to that in Lemma 4.8 that

K {M(x, (00w), 0, C)Z: x, w F, C tr(K)}.
IfP is a p-Sylow subgroup of K, then IP’I 5- lq, a contradiction. This finishes
the proof of 4.13.
Note Lemma 4.13 implies that Theorem A holds for rn 3, q 5, 7, or 11.

LEMMA 4.14. Theorem A holds for the cases (m, q) (3, 2), (4, 2), (3, 3),
(4, 3).

Proof (i) Assume (m, q) (3, 2). By Lemma 4.3 (ii), 2 1, 12, or 13.
We claim 2 13. If 2 1, then by Lemma 4.4 # 7t for some N. Since
# < k 30, t {1, 2, 3, 4}. But for each ttheparameterD (2- /)2 +
4(k- /) is not a square. So2 # 1. If2 12, then byLemma3.4# 17
andD 77. So2 13.
We claim kt 15. Now

D (13 #)2 + 4(30 #) (# 15)2 + 26

is a square and/1 25 15. Let x l# 151. Then there is y N such that
X 2 + 26 (X + y)2. So 26 2xy + y2 and y 2z for some z N. Then
2* (x + z)z. For some b {0,1, 2, 3, 4}, z 2bandx 24-b- 2. So
// 15 + (24-t’ 2t’) and # 25 15. Since 0 < / < k 30, it follows that
b 2 and # 15. So A’ is a symmetric design. Now apply Lemmas 4.11 and
4.12 to see that Theorem A holds.

(ii) Assume (m, q) (4, 2). The argument is similar to that of (i).
(iii) Assume (m, q) (3, 3). By Lemma 4.3, 2 2, 36, or 38. We claim

2 38. If 2 2, then by Lemma 4.4/ 13t for some t N. Then

D (13t 2)2 + 4(120 13t) (13t 4)2 + 36.13 z 2

for somezN. Letx= (z- (13t- 4),z+ 13t-4) It follows thatx= 2
or 6. Ifx 2, then

32. 13 (z + 4 13t)/2. (z + 13t 4)/2 1. 107 or 9.13.
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In the first case, 13t 4 106 and in the second case, 13t 4 4, a con-
tradiction. If x 6, then

13 (z + 4 13t)/6.(z 4- 13t 4)/6

and (13t 4)/3 12, a contradiction. So 2 2. If 2 36, then by Lemma
3.4 # 83 and D 2,357, a nonsquare. So 2 38.
We claim/ 40. Now

D (38 /02 + 4(120- /) (/,-40)2 + 4.34

is a square and #1= 35. 40. Let x [#- 401. There is yeN such that
x 2 + 4.34 (x +y)2. So 4.34 2xy +y2 andy 2z for some zeN.
Then34 (x + z)z. For somebe{0, 1,2,3,4},z 3bandx 34-b- 3b.
So/ 40 + (34-b- 3b) and#[35.40. Since0 < p < k 120, it follows
that b 2 and p 40. So A’ is a symmetric design. Apply Lemmas 4.11 and
4.12 to see that Theorem A holds.

(iv) Assume (m, q) (4, 3). The argument is similar to that of (iii). This
completes the proof of the lemma and of Theorem A for rn > 2.
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