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Let (Q, (t)tell+ P) be the usual setting for studying stochastic processes.
The idea of associating with every adapted process (X,)ttt+ a set function gx,
defined on the boolean ring of subsets of R+ x generated by the family
{Is, t] F; 0 < s < t, F ’), through the formula

Vx(]S, t] F) (X,

seems to have been used by C. Doleans in [2] for the first time, in the case of
supermartingales. She proved that, if X is a supermartingale of local class D,
then #x is a-additive. An extensive use has been made of #x in the case of quasi-
martingales by J. Pellaumail [12]: he proved that the mere knowledge of #x
allows building the natural process of X in an easy way.

Recently F611mer i-5] proved, under particular conditions on (’t) (which
forbid the usual assumption of completeness on the -t’s and are of topological
character), that/ix is always a-additive as soon as X is a D-bounded quasi-
martingale, and that the property for X to be of class D is equivalent to every
evanescent predictable subset of R+ t) being of #x measure zero. Moreover,
it has been noticed that the previous decomposition theorem of quasi-martin-
gales (F-processes in the work of Orey [11_-!) as gotten by Orey, Fisk, and Rao
can be received as mere immediate consequences of known decomposition
theorems for a-additive measures [12], [5].

In this paper we intend to take over F611mer’s treatment without assuming
topological properties for the a-algebras ’t’s, and with the usual assumptions
of completeness. The results are slightly different: the measure #x is only
simply-additive, and the property of tr-additivity is in this case equivalent to the
property of being of class D for X.

Sections 1-3 study the one-to-one correspondence X #x between quasi-
martingales and a class of finitely additive-measures with bounded variation,
wh ch is an isomorphism of the order structures defined by the positive cone of
negiative submartingales and the positive cone of positive measures respectively.
This part of the paper consists mainly of a synthesis of some results from [12].

Sections 4 and 5 study the a-additive or purely finite additivity of # in terms
of the process X; in Section 6 the corresponding decomposition theorem are
stated.
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Let us finally remark that, taking advantage of the simplicity of the method
here used, we deal at the same time with Banach valued processes, stating the
theorem for the real valued processes separately only when needed.

1. Notations and definitions

(t)tll+ is an increasing family of sub-algebras of a a-algebra - of subsets
off.

(f, -, P) is a complete probability space. We set -oo V a/ ’ (tr-
algebra generated by I,)t/ -t) and ff {F: F oo, P(F) 0}.

Assumption. t ff for any t, and (t)ta/ is right-continuous.

We define the following systems of subsets of Q (where
A predictable rectangle is a subset Is, t] x F of + x f such that s < and

F e -. Let e [0, +oo]. We call the set of predictable rectangles in
]0, [ x f and the set of those included in ]0, ].
q/ is the boolean ring of subsets of -[0, [ x f which are finite union of

predictable rectangles.
is the boolean algebra of subsets of ]0, ] x Q which are finite union of

predictable rectangles.
is the a-ring generated by q/.
is the a-ring generated by .

The elements of (resp. ) are called the predictable subsets of ]0,
(resp. [0, ] x ).
The subsets of ,+ x fZ included in some [0, ] x Q with

said bounded.
For all the processes X (Xt)tt/ which will be considered we will define

Xoo 0 (Xoo is to be distinguished from Xo limt-,oo Xt p.s. if such a limit
exists).

q/will be the algebra generated by q/oo and the sets

{{c} x F;F ,.+ ’t}.
We recall that q/ consists of finite unions of so-called "stochastic intervals"

]a, z] {(u, w)" a(w)< u < z(w)} where a and z are two finitely valued
stopping times.
A function f on + x fl is said to be evanescent if

P({w’f(t,w) 0 for allt+)} 1.

A subset G of + x Q is called evanescent if its indicator function la is evanes-
cent.
Two processes X and Y are said indistinguishable if X Y is evanescent.
As to the variation of a finitely additive measure/, defined on with values

in a Banach space with norm we recall the definition"

I#I(B) sup { E II#(B)II" {B} &-partition of B}.
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2. Simply additive measures associated with quasi-martingales

2.1. DEFINITION. An adapted Banach valued process X is said2 to be an
F-process (Orey’s definition in the real case) or a quasi-martingale on a compact
interval [0, g-] if

k-1

K= sup E IIX,, EfX,,.1 -,,)11 < / c
O_<tt<...<tk<= i=0

where the sup is to be taken on all the increasing finite sequences tl < < tk
in [0, ].
A quasi-martingale on [0, + oo] (recall that Xoo 0), will be called shortly a

quasi-martingale.

Remark. Such a process is clearly bounded in L on [0, ].
2.2. Measures associated with a general adapted process. We define the

following functions rn and # (resp. and/) on = (resp. =), for every
adapted process X with value in the Banach space F such that for all t, Xt e

(n, P)

(2.2.1) m(]s, t] x F)= 1F’(X,- X,) L (resp. m...)

s F) E[1F(2.2.2) #x(’l t] x (X, X,)] e F (resp./7c’’" ).

It is quite immediate that this function can be extended into simply additive
measures on the algebra q/ (resp. ). We will still denote the extensions by the
same symbols mx, x, etc.
The following properties are immediate"
-X is a martingale on [0, [ (resp. [0, ]) if and only if kt: (resp. /7x) is

identically zero;
-X is a real supermartingale on [0, [ (resp. [0, ]) if and only if kt] (resp.

/7]) is negative or zero.
We then have the following.

PROPOSITION 1. If tr and z are twofinitely valued stoppin9 times with values in
[0, ], with tr <_ z, then

x(]tr, ])= X,- X and x(]tr, ])= E(X,- X).

Proof The two stopping times can in fact be written ({tl t.} being the set
of their values, with < < t.),

n-1

tr (ti+ ti)lr,, Fo = El"’" = F,-t, Fi #’t,
i=0

Z X (ti+l ti)lt;,’ GO t::: G1... Gn_l, G -i=0

2 When we speak of a Banach valued process X, measurability of Xt is always to be under-
stood as strong measurability (i.e., Xt is almost surely separably valued and weakly measurable).
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The assumption a < z is equivalent to Fi c G for all < n, and the formulas
of the proposition follow immediately from the definition of x,/Tx and the
fact that

n-1

x, E (x,,/,
f=0

Remark. It should be emphasized that in our situation (all P-null sets are
in ’ for all t), every evanescent predictable set is in q/, with measure # zero,
which makes basic difference with the F611mer’s situation.

2.3. More on the correspondence X itS. From the assumption Xoo 0,
and the relation

F) E(lr .x,)

it is clear that/7’ X is a one-to-one correspondence between real finitely
additive measures # on oo such that for every t, F /z(]t, c] x F)is a P-
absolutely continuous measure on o’t with bounded variation, and real pro-
cesses X such that Xt L for all (defined up to a modification).
The same is true for processes X taking their values in a Banach space for

which the usual Radon-Nikodym Theorem holds, in particular, separable duals
of a Banach space. We will call such a space a R-N Banach space.

2.3. THEOREM 1. fi, of bounded variation on ,, X is a Banach valued
F-process on [0, ]. In this case [/7:[(]0, ] x f K where [#1 denotes the
variation of 12.

Proof See [12, p. 47 and p. 96].

From the inequality

IIXll IIE(X Xt s) + E(Xt )ll

we see that 0txtt)- is bounded by I#xl. As #llxll(-10, -! ta) is finite, this
implies (/7lxll) + bounded.

COROLLARY. If X is a Banach valued quasi-martingale on [0, z], IlXll d a
positive quasi-martingale on [0, -I.

3. Bounded variation of # and regularity of trajectories of X

We recall the following.

THEOREM 2 (Orey). Let X be a separable real quasi-martingale on [0, ].
Almost surely the trajectories have left and right limits.

Proof. See ]-11], but we mention that, according to the method used in [12,
p. 13] we may give the following proof which goes as the traditional proof for
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martingales due to Doob. Let a and b be two real numbers a < b. Let S
{sl < s2 <’"< s2.} c [0, ]. We define the times of up crossings and
down crossings over I-a, b], as follows"

(s" s e S, s > a2k-1, X(s) < a} if {
tr2k

if {

ianf {s" s e S, s > a,, X(s) > b} if {
a2,+

if { }=0.

The condition of bounded variation on/d. implies

n-1

K= Icl(]0, -I x K) IE(Xo,+,- X,,)l.

Because of the positivity of X.2k/ 1(o) X.2,,(o), except, maybe, for one k,

n-1 n-1

g EIX al + K= > E elX.._+, X,,2,,I > E J" (b a)e(Fs,’))
k=l k=l

where

Fts,)0 {w’j among the X../ X.2 are > 0}.

We may then consider a dense denumerable set S in I-0, -I, and an increasing
sequence (S.) of finite subsets of S such that S U s, and the corresponding
setsFst.;. From

Kp(F(a,hSn, j/

we deduce that the set fo of trajectories having infinitely many crossings over
I-a, hi, on the set S, has probability 0.
The property of the theorem is deduced from there, by the usual argument.

4. Decomposition theorems

We recall that a real additive function # on an algebra q/of sets is the differ-
ence of two positive additive functions/+ and/- if and only if # is of bounded
variation on many set A of q/, i.e., if, for all A e q/,

one has I/I(A) /+(A) + /-(A). One may view this as a Riesz decomposition
in the ordered space (completely reticulated" see Bourbaki Integration I Section
1) of relatively bounded linear form on the space of step functions on q/. Every
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simply additive function #, with bounded variation, is isomorphically (linearly
and for the order) associated with a linear form # by

We recall too, that the a-additive-functions on /are easily seen to constitute
a Riesz Band (cf. Bourbaki, reference above).
The band ofthe simply additive functions, which are orthogonal ("6trang6res"

to all a-additive-functions consists of all the so-called "purely finitely additive
functions," which may be characterized in the following way:
# is purely finitely additive, i.e., if 0 < v < ]#] and v is a-additive then v 0.

Every finitely additive measures with bounded variation is the sum/o + #s of a
a-additive measure and a purely finitely additive one. The decomposition is
unique.
These decomposition theorems give us immediately the following theorem.

4.1. THEOREM 3. Every real quasi-martingale X on [0, a] is the difference of
two positive U-bounded supermartingales X+ and X-" Xt X- Xt+. The
decomposition is unique if we assume X 0 and impose X+(a) X-(a) 0
andfor every e > 0 there exists a sequence z, < < z. offinitely valued stop-
ping times with values in [0, a] and a partition I w J of {1,..., n} such that

(4.1.2) E(X+ X:+, , ,/, ) + E E(X- X- ,) <..
iI jeff

Proof Decompose/x /x+ /]-, and take Radon-Nikodym derivatives

of the measures v+ and v,- defined on -t by

vt+(F) /+(]t, a] x F) and v-(F)= /-(]t, a] x F).

The decomposition X’t X;- Xt+ follows from (X being zero)

#x(] ,a] x F) -E(Iv Xt) E(Ir Xt+) + E(Ir X/-);

as for the uniqueness condition of the theorem, it only says that

inf (/+, g-) O.

4.2. Extension of fi. Let us suppose that X is a Banach valued F-process
on [0, ] (with the convention here always made that Xoo 0). It follows
immediately from IWI([0, ] ta) < that for all

F U .r,, ((]t, oo] x
tcR

is Cauchy when t 0o, and then limt-.oo (]t, c] x F) -limt..(R) E(lr" X’t)
exists.
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It is then clear that if we set

and

/x((OO} x F) lim/3’(]t, oo3 x F)

fix(Is, t] x F) /7(]s,t] x F) whenevers < t[0, +c],

we define an additive extension/Tx of/7 to the algebra called in Section 1,
and those additive measures have same total variation.

It is evident that when X is real,/Tx is the difference of the extensions/7, and
g, of/7’’+ and/7’-. As those extensions are such that inf (/7,/7) 0, they
are respectively the positive part and negative part of
From these definitions we immediately have the following:

PROPOSITION 2. (Xt)tt/ is a martingale ifand only if I/xl(]0, c[ f0 0.
(Xt)tR/ is apotential (i.e., a positive supermartingale such that limt-,oo E(Xt) O)
if and only if tx < 0 and tx({c} x f) O.

Every real quasi-martingale X can be written uniquely as

X=M+V--V+

where V- and V + are potentials verifying condition (4.1.2) (X+ and X- being
replaced by V+ and V- in the statement of this condition), andM is a martingale.

The decomposition part of Proposition 2 cannot be stated in the same way
when X is Banach valued. We can only decompose fix as the sum of a measure
(finitely additive) which gives a mass zero to every set in which are included
in R+ x , and a measure which gives a mass zero to every set {oo} x F
where F e t ’t. This decomposition is clearly unique. If the Banach space
has the Radon-Nikodym property, then a martingale M on R+ is uniquely
associated with the first measure, while the second one generates a unique quasi-
martingale V with the property

(4.2.1) lim E(lv" I/t) 0 for all F 10 ’t.
t-oo til

This leads to the following"

DEFINITION. A Banach valued process V on R+, which is a quasi-martingale
and for which (4.2.1) holds will be called a quasi-potential.

From there, we can now immediately state the following"

PROPOSITION 2’. Let X be a Radon-Nikodym Banach valued process on R+

which is a quasi-martingale on [-0, oo]. Then there exists a decomposition X
M + V of X where M is a martingale and V a quasi-potential.

The decomposition is unique in the following sense: ifX M’ + V’, thenfor
all R+, M[ M, a.s. and Vt V[ a.s.
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4.3. Asymptotic behavior of Banach valued quasi-potentials. For a real
(positive) potential we have more than (4.2.1). In fact the convergence holds
uniformly in F, or if we prefer limt-oo Ell Vll 0. This clearly does not follow
immediately from the definition of a general quasi-potential. In the particular
case of a real quasi-potential V, this follows from the decomposition in Proposi-
tion 2: iflimt-,oo E(1F" Xt) 0, the martingale M in this decomposition is zero
and

In this case it is also clear that limt-.oo ]#](]t, o] x ) 0. In the general
case we have the following:

THEOREM 4. If V is a R. N. Banach valued quasi-potential, takin9 its values
in B, then

(a) limt_.oo E([[ Vtl[) O,
(b) limt-.oo Vt Oa.s.,
(c) limt-oo [fi[(Jt, oo] x D) O.

Proof As V is a quasi-martingale, (b) follows immediately from (a). Let
us prove (a).
The function --, [fi](-]t, c] x )) being decreasing, for every e, there exists

a t, such that for all s > > t,,

I#l(]t, s] x ta) < ,.
For every > t, and partition {F} of ) with sets in #z" t, we then have

liE(Iv," V)II lim IIE1F,’(V- V,)ll < .
s’-’

Let x b any continuous linear form on B, with norm < 1. Then

IE(x’i, lv, Vt>l < e.

This proves that Eli Vti] < ,, for all > t,.
We now prove (c). For every , take the same t, as previously. Let

(]Si, ti] X Fi)

be a partition of It, c] x , _> t such that

I#l(lt, ool x n) _< [l(ls,, t,l x F,)II / .
If s max s, by refining the partition if necessary, we see that

< I#’l(lt, sl x f) + [IE(1F," v)ll + < Ell ll + 2t <
i: tt + oo

This proves (c).
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In the sequel we will need the following"

4.4. LEMMA (Orey). Let (St,) be a decreasing sequence of a-algebras with

If the variables Xn satisfy

EIIE(X X.+I ’.+1)[I < oo,

then they are uniformly integrable.

Proof. When X is real, we refer to [-11] for the proof, or the preceding the-
orem may be applied, and we can then use uniform integrability properties of
supermartingales. If X is Banach valued, we remark as in the corollary to
Theorem 1, that the condition of the theorem implies., E]E(IIX.]I ]]X.+ll] ’.+1)1 < ;

then the uniform integrability of (llll) follows from what precedes.

5. Characterization of a-additive and purely finitely additive parts

5.1. tr-additivity on oo. We consider here the case where X being a quasi-
martingale on every bounded interval [-0, ],/7 is of bounded variation only
on the ring oo generated by bounded predictable rectangles. So we take only
its restriction # to oo into consideration.

DEFINITION. We recall that a process X on [0, [, is said to be of class D
if the set {Xr" T any finite-stopping time} is uniformly integrable. It is said to
be locally of class D if for every < , the set {Xr" T any stopping time < }
is uniformly integrable.

PROPOSITION 3. IfX is a-additive on =, +, and if X is almost surely
right continuous, then for every stochastic interval ] T, o], its a-additive extension
to = has the property

,(3T, ]) E(X) E(X).

Proof This proposition is true for finitely valued stopping time T according
to Proposition 1. Using for a stopping time T, an upper decreasing approx-
imating sequence (T,), of finitely valued stopping time T, we have then, for the
a-additivity,

/7](IT, ]) lim [E(X=) E(Xr.)].

But as lim, XT. Xr a.s., applying Lemma 4.4 to the variable Xr. and a-
algebras r. we get the convergence of Xr. toward Xr in L1, and from there
Proposition 3.
The necessary part of the following theorem can be deduced from the Doob-

Meyer decomposition theorem, as proved for Banach valued processes in [12],
at least when B is a R. N. Banach space. We give here a simple direct proof.
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THEOREM 5. Let X be a Banach valued process, right continuous, which is a
quasi-martingale on every bounded interval 1-0, ]. Then # is a-additive if and
only ifX is locally of class D.

Proof Necessity. Using the corollary to Theorem we may assume that X
is real. Let < c and let/7 be the restriction of #’ to

[0, x

If is a-additive, its positive and negative parts are a-additive too. Let us
consider the positive part associated with the positive supermartingale X-.
From the a-additivity of #, limt E(X X) 0. Then there exists a
right-continuous version of X-.
We define the stopping times R inf {t" X > n}. For u < g,

From the a-additivity of gx- and as ]R A u, u] has measure x- zero,
being evanescent, lim, E(X Xs. ) 0. Using the same argument as in
Meyer [10, p. 138] we will prove that this implies the uniform integrability of
{XT" T

Let us define

T,(w)={(w) ifXr)> n

if Xr<) n.

One has Rn A u T’ and then

f x ’dP ftx - xT aP + ftx - <]
X dP.

Then

u<R.] uR.] X- <hi X- n]

As [u < R.] [X n] the positivity of X- implies

ft X .dP ft X dP
Rn] XT n]

which proves the uniform integrability property. We do the same reasoning
for X.
Suciency. See [12, p. 50].
5.2. a-additivity on . The following theorems are mere corollaries of

Theorem 5.

THEOREM 5’. Let X be a right continuous quasi-martingale on [0, c]. Then

x is a-additive if and only ifX is of class D.
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THEOREM 5". Let X be a riyht continuous process which is a quasi-martinyale
on every [0, 0], < oo. Let T be a finitely valued stoppiny time such that
{X,: a < T, a stoppiny time} is uniformly inteyrable. Then x restricted to
[0, T] c a is a-additive.

Example. The following example, suggested by the referee, illustrates what
is happening when X is not of class D.
Take D ]0, 1], P the Lebesgue measure, (’t) the right continuous "inter-

polation," with nullsets thrown in, of (-), where ’ is generated by the inter-
vals ]k. 2-n, (k + 1).2-hi. Now consider the right-continuous martingale
(Xt) defined by X 2 on ]1 2-, 1] and 0 elsewhere. The martingale X is
clearly not of class (D) on [0, + ].

Let us see that/x has no a-additive extension. In fact {(, 1)} e oo with
/zx{(, 1)} 0 as an evanescent set, while

((oo, 1)) (In, oo] x ]1 2", 1])

with

#x(]n, oo] x ]1-2-",1]) for alln.

5.3. Pure simple additivity of Ox. Before characterizing in term of X the
property for/x to be purely finitely additive, we will extend the notion of purely
finite additivity to some class of vector valued measures. This will make possible
for us to deal at the same time with the real and the Banach valued processes.

PROPOSITION 4. Let E be a Banach space, an algebra of subsets of a set A
and m a finitely additive function on d taking its values in E, and with bounded
variation [m[. Then there exist two uniquely definedfunctions m
with values in E, such that m m, + ms and with the following properties"

(a) m, is a-additive and with g-additive finite variation
(b) m is finitely additive and with purely finitely additive variation iraqi.
Moreover [m[ Im.I +

Proof Let/ be the a-additive part and v the purely finitely additive part

Let (An)nr be a sequence in a’ such that It(An) + v(A A) < 1In. Because
Im[B (An Ao+,)]I < 2/n for all B a’ we can define

m,(B) lim m(B A).

The following limit exists as a consequence"

ms(B) lim m(B c An).
n...

We check immediately that Im.I- # and lm,I v. It follows that m, is
a-additive.
For every x’ in the dual of E, (m,, x’) is clearly the a-additive part of the real
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measure (m, x’), while (ms, x’) is the purely finitely additive part. The unicity
of the decomposition follows.

DEIINITION. The additive Banach valued function m on a is said to be
purely finitely additive if in the decomposition of Proposition 4, mo 0.

THEOREM 6. Let X be a right continuous process, taking its values in a R. N.
Banach space E, which is a quasi-martingale on [0, + oo]. (We recall the con-
vention made throughout the paper" for every process X, Xoo O, to be distin-
guishedfrom Xo lim..,oo Xt if this limit exists almost surely.)

Then the followiny conditions are equivalent"
(i) fix is purely finitely additive.
(ii) There exists a sequence a(n) ofstoppiny times such that

lim P[a(n) < c] O,

and such that for every n, (Xt^,,n))tO,+o is a martingale on the compact half
line [0,

(iii) X is a local martingale on [0, oo [, (i.e., there exists an increasing sequence
(a(n)),+rq of stopping times such that lim,_.o a(n) +
is a martingale on R+ for every n), and moreover

(6.3.1) lira Xt 0 a.s.
t--

Proof. To prove (i) implies (ii) let us define R, inf {t" IX, > n} (with the
convention inf 0 + o) and Y" X R.. Were R, a finitely or denumerably
valued stopping time, we would have immediately the inequality

(6.3.2) I1-< Iffl.
But, if we take an upper approximation of R, by denumerably valued stopping

times and go to the limit, we can approximate the values of the variation of
/7 and/7 in such a way that we can deduce that (6.3.2) actually is true. But
as yn is trivially a quasi-martingale of class D on [0, oo],/7 is at the same time
purely finitely additive and a-additive. It is then null, and yn is a martingale
on [0, c].
To prove (ii) implies (iii) we define

A, [a,, +] and U lim X^,,) a.s.
t-, oo,tR

Since (Xt^)) is a martingale on [0, ], 0 E(Xoo^o) U ’o). There-
fore

E(U. 1A, o) 0

And as U. la, is -o-measurable, limt_,o,tn+ Xt 0 a.s. on A. As
lim P(An) 0, (6.3.1) is thus proved.

Let us prove now that (iii) implies (i). We use the decomposition X M + V
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of Proposition 2’. It is known (and easy to check) that the a-additive part of
/- is/z- where (Mt)t is the uniformly integrable martingale

M E( lim Mtlt).t- R

Theorem 4 and condition (6.3.1) prove that M 0, and the purely finite
additivity of/. We have now only to prove that a quasi potential V, which is a
local martingale, is such that v is purely finitely additive, that is every a-additive
positive measure v such that v < I1 is zero.

Let Y be a positive supermartingale associated with v. Since I/Tr] < I/Tvl, Y
has to be a potential and a local martingale. Then, as I/Trl is a-additive, Y is,
according to Theorem 5, a local martingale of class D, then a martingale. As Y
is at the same time a uniformly integrable martingale and a potential it is zero.

Example. In the example given at the end of 5.2, #x is actually purely finitely
additive, while limt_ X 0 almost surely, which is a typical example of what
is stated in Theorem 6.

6. Final decomposition theorem

We may now summarize the previous results in the following.

THEOREM 7 (lst decomposition). (1) Let X be a right continuous process,
taking its values in a R. N. Banach space, which is a quasi-martingale on r0, ].
Then there is a decomposition of X,

X= M + Mf + V" + Vf,
where

(a)
(b)
(c)
(d)

M is a uniformly integrable martingale on R+,
My is a martingale such that limt-,.oo M{ 0 a.s.,
V is a quasi-potential of class D,
Vs is a quasi-potential which is at the same time a local martingale.

The decomposition is unique up to a modification (i.e., ifM + M’y + V +
V’ is another decomposition, for all t, M M a.s. M.f M{ a.s. etc.).

(2) In ease X is a real quasi-martingale on [0, c], we moreover can write

V V+ V-, vf Vf+ Vf-,

where V+, V are potential ofclass D, while V + and VJ’- are potentials which
are local martingales. (As to the unicity ofsuch a decomposition, see Theorem 3.)

Proof According to the equivalence previously proven between properties
of processes and properties of measures, the theorem is an immediate con-
sequence of the decomposition of/x (unique) into a finitely additive measure
with bounded variation on { } x fl, a finitely additive measure with bounded
variation on R+ x 1, and next the decomposition of those two additive mea-
sures into their purely finitely additive and a-additive part.
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THEOREM 8 (2nd decomposition). Let X be a right continuous process, taking
its values in a R. N. Banach space, which is a quasi-martingale on [0, ]. Then
there is a decomposition of X,

X=M+A +MY+ Vy,
where

(a) M is a uniformly integrable martingale on R+,
(b) A is a predictable process, the paths of which have bounded variation, and

such that Ao O,
(c) My is a martingale such that limt_ M{ O,
(d) Vy is a quasi-potential, which is at the same time a local martingale.
The decomposition is unique up to a modification.
If moreover X is real, A can be written as the difference of two predictable

increasing processes.

Proof. We take the a-additive part of/x, that is the part associated with the
process M + V which is of class D, and apply the decomposition theorem
of Doob-Meyer type for vector valued quasi-martingales, as due to Pellaumail
(cf. [12]).
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