OBSTRUCTIONS TO LIFTING *-MORPHISMS
INTO THE CALKIN ALGEBRA

BY
F. JAVIER THAYER

1. Introduction

Let H be a separable infinite dimensional Hilbert space, Z(H) the algebra of
bounded operators on H, X% (H) the set of compact operators, &/(H) =
BH)|A (H), n: B(H) - </ (H) the quotient map. In their paper [1], Brown,
Douglas, and Fillmore investigate for a compact metric space X the group
Ext (X) consisting of unitary equivalence classes of unital injective *-morphisms
t: C(X) » H(H). This group completely solves (in principle at least) the
lifting problem for injective unital *-morphisms 7 from C(X) to &/(H): namely,
there is a *-morphism 7 which makes the diagram

C(X) —— B(H)

A(H)

commutative iff the equivalence class [t] of 7 in Ext (X)is 0. The lifting problem
is meaningful for any injective *-morphism from a C*-algebra, although in the
general case there is no functor around with the pleasant group properties of
Ext. In the case 4 is UHF, we give in this paper an essentially complete answer.
We follow throughout the terminology and conventions of Dixmier [3].

2. The semigroup E(A)

To solve the lifting problem we use a semigroup of *-morphisms from a C*-
algebra A4 to &/(H) which is a fairly straightforward generalization of the semi-
group Ext of [1]. We let M(4; H) be the set of injective *-morphisms
1: A —> /(H) and M(A4; H) the set of maps 7': 4 - Z(H) such that the
composition 7t is an injective *-morphism. Introduce on M (4; H) the
relation = of unitary equivalence modulo the compacts (i.e., T = p iff there is a
unitary U such that Up(x)U* — 1(x) € A (H) for all x € A). On M(A4; H) we
consider the corresponding relation = (i.e., p = tiff thereis a unitary U e #(H)
such that n(U)p(x)n(U*) = 1(x) for all x ¢ A.) The quotient sets M (4; H)/=
and M (A; H)/= are naturally equivalent; we denote them by E(A4); denote the
class of ¥ € M(4; H) in E(A) (resp. the class of T € M(4; H)) by []™ (resp.
[t]). Observe E(A) is a contravariant functor in the category of C*-algebras
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and injective *-morphisms. Also, it is clear that direct summation induces a
commutative semigroup operation on E(4) as in [1].

A few words about matrix units; first, the definition. A family {%;: 0 < i < n}
of partial isometries of a C*-algebra which satisfy wfu; = J,;u, is called a
system of matrix units. For example if 4 is a full algebra of matrices M,(C),
then the matrices v; which have entries all zeroes except in the /th row and Oth
column, where a 1 appears, form a system of matrix units which generate the
algebra. Secondly, any system {u;: i < n} of matrix units in a C*-algebra 4
determines a unique *-morphism 7: M,(C) —» A such that t(v;) = u;. Finally,
by Calkin’s lifting theorem [2], for any system of matrix units {u;: i < n} in
&/ (H) there is a system of matrix units {ii;: i < n}in #(H) such that n(ii,) = u;.
This implies any *-morphism from a finite dimensional C*-algebra to &/(H)
lifts to a *-morphism to #(H). (Actually this is true for any dual C*-algebra,
though we will not need this).

We now determine E(A) for finite dimensional C*-algebras A.

PROPOSITION 1. Suppose A is a finite dimensional C*-algebra and ¢, y: A —
B(H) are *-morphisms such that $(x) — Y(x) € A (H) for all x € A. Then there
is a partial isometry u in B(H) such that :

(a) The initial projection e of u commutes with ¢(A) and the final projection f
commutes with Y(A).

(®) WY (u = ep(x).

(©) u— ¢(), ¢(1) — e, Y(1) — fe A (H).

@ e < o) f < YD)

Proof. One need only consider the case 4 is a full matrix algebra. Let
{u;: i < n} be a system of matrix units which generate 4. As n(uy) = n(up),
by Calkin’s lifting theorem [2] there is a partial isometry v with initial projection
eo < ¢(up), final projection fy < Y(uy) and so that n(v) = nd(u,). Let

u = 2 Yuv(uy)*.
Now ¢(u;)* is a partial isometry with final projection ¢(u,) and Y(u;) is a partial
isometry with initial projection Y(uo). Thus Y(u;)v¢(u;)* is a partial isometry.
As the sum of partial isometries with orthogonal initial projections and ortho-
gonal final projections is also a partial isometry, u is a partial isometry. The
initial projection e of u satisfies

e =u*u = Z Bu)o*P(u)*Y(u)od(u,)*

;(: d(uy)o* Y (uo)od(u,)*
; ¢(ui)v*v¢(“i)

Y, dueodp(u)* < ; P(uu) = $(1).

i<n

It
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Thus e < ¢(1). A similar calculation shows f = uu* < Y(1).
To prove (a) it suffices to show e commutes with ¢(uuf) for all k, I, and f
commutes with Y(uu;) for all k, . Now

{, dwseottun | dtunt) = dtugentugtusoe”

= P(upeod(uo)p(u,)*
= d(u)eod(u)*
= Pp(uu)p(u)eod(u,)*

— Plwaud) {Z ¢<u.-)eo¢(ui>*}.

The other statements can be provedin a similar vein and we omit the
details. m

Observe that if A is finite dimensional, then a representation 7 of 4 is determ-
ined up to unitary equivalence by giving the multiplicity m,(t) of eacha € Ain 7
together with the dimension N(7) of the null space of 7. Conversely, given any
family {m,},.7in Z* U {w} and N € Z* U {w} there is up to unitary equival-
ence a unique representation of 4 which we denote 3% m, - o @ N(0) with the
multiplicities {m,} and nullity N.

In the following, for a finite dimensional C*-algebra 4, we will let d(4) be
the greatest common divisor of the integers {dim «: « € A} (where dim « is the
dimension of the representation space of «).

PROPOSITION 2. Let A be a finite dimensional C*-algebra, ¢, € M(A)
*-morphisms; a necessary and sufficient condition for ¢ = Y is that

Codim ¢(1) = Codim (1) (Mod d(4))
understood as an equality if one side is infinite.

Proof. Lets = d(A)and r, = dim o« for « € A. To show necessity one may
assume w¢, my are both unital; for otherwise both Codim ¢(1) and Codim (1)
are infinite and the stated congruence holds trivially. Consider first the case
when n¢p = myy. This implies there are e, f, u which satisfy (a) through (d) of
Proposition 1. Now by (c) e, f are of finite codimension and u is a compact
perturbation of the identity. As the index is unchanged by compact perturba-
tion, it follovs that index u = 0, and so codim e = codim f. Since ¢(4) com-
mutes with e, it commutes with ¢(1) — e. Thus we have

Codim ¢(1) — Codim e = —dim (¢(1) — ¢) = 0 (mod s).

This last congruence holds because any nondegenerate representation of 4 must
be on a hilbert space whose dimension is divisible by s. Similarly,

Codim (1) — Codim f = 0 (mod s)
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so that Codim ¢(1) = Codim (1) (mod s). In the general case, if ¢ = ¢ there
is a unitary U € #(H) such that ¢(x) — Uy(x)U* € A (H) so by the preceding
remarks

Codim Y(1) = Codim Uy(1)U* = Codim ¢(1) (mod s).

To show sufficiency, suppose Codim ¢(1) = Codim (1) (mod s). Then ¢, ¥
are unitarily equivalent to

&) [
Y my$)a @ N()0); ¥ m,(h)ox @ N()(0)

resp. where m(¢) = m(y) = w for all . Now either N(¢) = N(y) = o or
N(¢) - N(lﬁ) = j(aa - bat)ra

with a,, b, > 0. In the first case ¢, ¥ are unitarily equivalent. In the second
case

2] 5]
¢ =Y mlp)e @ N()0) @ Y b,
2]
£ Y md)ax ® {N(@) + Y. b,r,}0)
and
- (2] 3]
Yy =Y mWo ®@ NY)O) @ Y ax

[

X m)a @ {NW) + Y a,r.}0)

a

i

sothat g E . m

We can now compute E(A) for any finite dimensional C*-algebra 4. Given
NeZ" U {w} define §(N) € M(4) as 2 n,a @ N(0) where n, = o for all
ae A. §,induces a map 6,: Z* U {w} —» E(A). It follows immediately that
& 4 is a morphism of semigroups, Z* U {w} considered additively. Furthermore
d, is surjective. By Proposition 2 we have that d,(m) = d,(n) iff m=n
(mod d(A4)). Thus:

PROPOSITION 3. If A is finite dimensional, then
E(A) =~ Z/d(A)Z v {w}

where w acts as a zero in the semigroup.

3. Application to the UHF case

A C*-algebra A with unit is uniformly hyperfinite (UHF) iff there is an in-
creasing sequence {4,} of full matrix subalgebras containing the unit of 4 and
such that 4 = (|J, 4,)”. These algebras have been studied in detail and
classified by Glimm [4]; it is easy to show they are all simple.
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Now suppose {4,} is a directed sequence of sub-C*-algebras of 4 such that

A = |J, 4,. Denoting the inclusions 4, = A, , by k,, {, we have a projective
sequence of semigroups {E(4,), E(k,)}; denoting the inclusions 4, — A4 by h,,
we have also the morphisms of semigroups E(h,): E(A) —» E(A,) which induce
the morphisms E = lim E(h,): E(A) > lim E(4,).

PROPOSITION 4.  The morphism E is surjective.

Proof. Let aelim E4,. Then a = {[¢,]},o0 where ¢,e M(4,) and
¢,41 1 A, = ¢,. This means there is a unitary U, € #(H) such that if x € 4,

UU)pns (()(US) = ¢,(x).
Now let y,,,, € M(A4,,,) be given by

Yur1(x) = "(Uo)n(U,) -+ m(U)py+ (()n(U7) - - (U ).

Clearly ¥,,, = ¢,.,. Furthermore y,,, | 4, = ¥,. Thus there is a unique
injective *-morphism ¥ € M(A) such that y | A, = V,; thus E(h)[¥] = [¢.]
and E[y] =o. =

In the case the algebras A4, are full matrix algebras and the inclusions 4, are
unital we can use the available information to give necessary and sufficient
conditions for a unital map ¢ € M(A) to lift to a *-morphism @¢: 4 — B(H).
Observe first that the morphisms é,,: Z* U {w} — E(A4,) define a morphism of
semigroups 6: Z* U {w} —» li_m E(A)). If ¢ € M(A) is unital and has a lifting
to a *-morphism ¢: A — B(H), then letting n = Codim @(1) € Z* U {w}
gives

04(n) = [¢14] = EHh)¢]

so 6(n) = E[¢].

In order to prove a converse, we state two lemmas:

LEMMA 1. Let B be a full matrix algebra, n a *-morphism B — #(H). If f'
is a projection in B(H) of finite codimension, then there is a projection of finite
codimension [ < f' which reduces n(B).

Proof. Standard. m

LemMMA 2. Suppose B, i = 1,2 are full matrix algebras and k is a unital
*-morphism B, o B,, (viewed as an inclusion). If n € M(B,) is a unital *-morph-
ism and n,: B, — #(H) is a *-morphism which lifts n | By and

[n] = 5, (Codim (1))
then there is a *-morphism n,: B, — %(H) which extends n, and which lifts n.

Proof. Let § be a *-morphism B, — #(H) which lifts n. By Proposition 1,
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there is a partial isometry »’ with initial projection e’ and final projection f” such
that:

(a) e reduces n,(By), f' reduces Y(B,).

®) u*Y(x)u' = e'ny(x) for x € B,.

(© ' —n (1), n(1) — €, y(1) — f' € H(H).

(d ¢ <n),f" <yA).
Now as f' < y(1) is of finite codimension by Lemma 1 there is an f < f’ of
finite codimension which reduces Y(B,). Let e = w'*fu’ and u = fu'. Clearly
uu* = f, u*u = e, and (a)-(d) are still valid if we replace u, f, e for ', f', €'.
Now if rank B; = r(i), then:

(A) Codim y(1) = Codim #,(1) (mod r(2)).

(B) Codim e = Codim /(1) (mod r(2)).
(A) follows from Proposition 2 and

65,(Codim y(1)) = [¥]~ = [n] = 65,(Codim n,(1)).

To show (B) observe u*yu is a *-morphism B, — %(H) which lifts n. Thus by
Proposition 2, (b) and (d),

Codim e = Codim en,(1) = Codim u*y(1)u = Codim Y(1) (mod r(2)).
Combining (A) and (B)
dim (n,(1) — €) = Codim ¢ — Codim 7,(1) = Codim ¢ — Codim y(1) = 0

(mod r(2)).
Now by (a), x = n,(x){n,(1) — e} is a *-morphism B, — #(H); as r(2) divides
dim (n,(1) — e) there is a *-morphism p: B, —» %(H) such that
p(x) = ny(x){n,(1) — e} for x € B,.
Now we can define
n2(x) = p(x) + w*y(x)u.

n, is a *-morphism as p(1), u*yY(1)u = e are orthogonal projections. Also, if
X € By,

n2(x) = n;(){n, (1) — e} + eny(x) = ny(x).
Clearly nn, = n. This proves the lemma. m

PROPOSITION 5. Suppose the C*-algebras A; are full matrix algebras, the
inclusions h; are unital, and ¢ € M(A) is unital. Then ¢ lifts to a *-morphism ¢
iff there is ann € Z" such that 5(n) = E[¢].

Proof. 1In one direction it has already been proved. In the converse direction
one has to show given ¢ with the stated conditions there is a sequence ¢; of
*-morphisms A; - %(H) such that:

1) ;lifts ¢ | A4,

) $i+1 | 4; = ‘5;’-
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Assume ¢, . . ., ¢y are *-morphisms such that (1) holds for i < N, (2) holds for
i < N and in addition Codim ¢,(1) = nfori < N. Now

[¢ 1 Ans1] = E(hyy D[P] = 64, ,(m) = d4,,, (Codim &N(l))°

By Lemma 2 therefore, ¢, can be extended to a *-morphism @y, : Aysy —
%(H) which is a lifting for ¢ | Ay,.. W

If d(A;) = r; then it is possible to explicitly describe the map & | Z*; first
there is a canonical imbedding

and it is easy to see 8(Z") = G. Secondly, the group lim Z/r; is well known to
be

I1{Z,,.,: p € Z a prime}
where
Z/(p™ ifm<ow

e Z, (the ring of p-adic integers) if m = o
and n, = Sup {n: p" divides r; for some integer i}.

The map 6 | Z*: Z* — G is the obvious one. From Propositions 4 and 5 it
follows in particular there are plenty of unital *-morphisms from a UHF
algebra into the Calkin algebra &/(H) which admit no lifting.
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