
LINEAR GROUPS OF DEGREE EIGHT WITH NO
ELEMENTS OF ORDER SEVEN

BY

W. C. HUFFMAN AND D. B. WALES2

1. Finite linear groups of degree eight

The finite quasiprimitive linear groups of degree less than eight have been
determined in [3-1, [6], [16], [21]. Feit has recently determined the quasi-
primitive linear groups of degree eight which contain a noncentral element of
order 7. In this paper we apply the results of [12], [13], [14] to determine the
remaining quasiprimitive linear groups of degree eight. Specifically, we prove
the following theorem.

TrEOREM. Suppose G is a finite quasiprimitive unimodular linear group of
degree 8 for which 7 v IG]. Then G/Z(G) is one of the following groups where
IZ(G)I 18.

]. A6, Z(G) splits, or an extension ofdegree 2 in which G/Z(G) is an extension

of .4 6 induced by an automorphism from GL2(9).
II. Subgroups of A x B where A, B have projective quasiprimitive represen-

tations of degrees 2 and 4.
III. 02(GIg(G))5 l, G/O2(G) " subgroup of Sp6(2), Z(G) has a non-

splittin9 center.
IV. G/Z(G) is an extension of A s x As x As by a group isomorphic to

z or $3, :21 IZ(G)I.
V. G SL2(17)Z(G).

Notation is standard as in [13]. We let o9 e2"/3. We assume G is a uni-
modular quasiprimitive linear group of degree eight with natural representation
X. By definition, X quasiprimitive means that if H. G, X]H has similar
constituents.

If G has a normal subgroup H for which X]H is reducible we may apply [15]
to see II holds. Each of the tensor product components must be quasiprimitive
or X would not be quasiprimitive. Suppose G has a minimal noncentral solvable
normal subgroup H. By quasiprimitivity and unimodularity, HZ(G)/Z(G) is
a 2-group. Then K O2(G) has no rank 2 characteristic abelian subgroups and
by [10 Th 5.4.9] is Q z where Q is extraspecial and Z has order 1, 2, 4, 8. As
XIQ is irreducible, ]Q] 27. Now C(Q) Z(G) as X]Q is irreducible and so
G/Oz(G) " subgroup of 8P6(2) by [11]. This is Case III. Now let E E(G)
be the product of all quasisimple subnormal subgroups. Suppose E has one
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component. Note that by [6, 2D], no primes larger than 7 divide [G] except
for V. We are assuming 7 IGI. If 52 [GI, E/Z(E) is -As, A6, 8p4(3) by
[6, 9A]. The only possible group of degree 8 is A 6 giving Case I. If there are
several components let E1 be a minimal normal nonsolvable subgroup. Clearly
XIEI is a direct sum of three 2-dimensional linear groups each nonsolvable and
SO 8L2(5) by [3]. Now there must be an element of order 3 permuting each
giving Case IV. We are reduced to finding a quasisimple linear group with
[G/Z(G)] 2". 3b" 5 where c >_ 2. By [6, 3El, a _< 14, b _< 9, c_< 8. By
[17], a Sylow 5-group is abelian. We assume from now on that G is a minimal
counterexample to the theorem. We have seen E(G) is a quasisimple group and
in particular can assume G E(G). Note Z(G) is cyclic of order 1, 2, 4 or 8
and F(G) Z(G) where F(G) is the Fitting subgroup.

2. Special eigenvalue arguments

In this section we collect information about the possible eigenvalue structure
of elements X(g), g e G. Note first that no element X(g) can have an eigenspace
of codimension 2 by [14]. (Such elements will be called special elements.) In
particular any noncentral involution in X(G) has trace 0. As F(G) Z(G),
the 3- or 5-modular core is trivial. For definitions and properties of these cores
see [-6, 3A]. The 2-modular core is Z(G). Occasionally we force some non-
central element into some modular core to provide a contradiction. We also
note that by the quadratic pairs paper [20] no element of order 5 can have a
quadratic minimal polynomial mod 5. By Lindsey [17] no element of order 5
can have an eigenspace of codimension 3.
We examine elements X(g) with two equal eigenvalues. This is done in two

lemmas. The first is general.

LEtMA 2.1. Suppose X is a quasiprimitive representation of a group G in
which for some g in G, X(g) has only eigenvalues e and where e c2i/5. Then
any two conjugates of g either commute or generate 8L2(5) with the center of
SL2(5) in the center of G. Such groups are described in [1] and none are the
alleged quasisimple group of degree 8.

Proof. If h is a conjugate of g, XI(g, h) has at most 2-dimensional con-
stituents by the argument of Blichfeldt in [3, page 143] for higher dimensions.
If g and h do not commute there must be some irreducible 2-dimensional con-
stituent. Let Xl(g, h)= .= X + .= 2 where X are irreducible of
degree 2 and 2i are linear. By [3], XiI(g, h) must be isomorphic to SL2(5).

Let H be a minimal nonsolvable subgroup of (g, h). As XIH has at most
2-dimensional constitutents H - SL2(5). If there are any linear constituents,
there is an element of order 6 in H H’ with at least one eigenvalue 1, the
remaining eigenvalues 1, -09, or -. This contradicts Blichfeldt 1-3 p. 96].
It follows that XIH and XI(g, h) have no linear constituents.

Let XI(g, h) X1 ( ( Xt where n/2. We have shown X((g, h))



LINEAR GROUPS OF DEGREE EIGHT 521

SL2(5). Suppose (g, h) SLz(5) and so - H ker Xl < (g, h). As
XIH has linear constituents H is solvable and so as Xi(H)< Xi((g, h)),
Xi(H) +_I. In particular H is an abelian 2-group in the center of (9, h).
As (g, h)/H 8L2(5 and the multiplier of A5 has order 2, H c (g, h)’ e
and this contradicts the fact that (g, h) is generated by elements of order 5.
The central element of SLz(5) is scalar I in the center of G. This proves the
lemma.
An alternate proof of this result uses the fact that over C, X(g) has a quadratic

minimal polynomial. The same is true mod 5 and so the group is known by [20].
However, we need the methods of this proof for our next lemma.
We return to our linear group G of degree 8.

LEMMA 2.2. There is no element g in G for which X(g) has eigenvalues

where 09 e2i/3

Proof. We show that any two conjugates of g either commute or generate
8L2(3) or SL2(5). If they generate SL2(5) the central element is in the center of G.
This contradicts [19] or [2]. If g and h are noncommuting conjugates of g, as
in Lemma 2.1, X[(g, h) has at most 2-dimensional constituents. If Xl(g, h)
has a 2-dimensional constituent representing SL2(5) we argue as in Lemma 2.1
to conclude (g, h) SLz(5) and the center of (g, h) is in Z(G). Suppose
then all nonlinear constituents X of X](g, h) represent SL2(3). We want to
show (y, h) 8L2(3). Let Xil(g, h) be represented on the 2-dimensional
space Vi. As Xi((9, h)) - 8L2(3), either Xi(9)Xi(h) has order 6 or 4 by inspec-
tion in SLz(3).

If X(9)Xi(h) Xi(gh) has order 6, Xi(ffh2) has order 4. Suppose there is
an and a j such that Xi(gh) has order 6 and Xj(gh) has order 4. If there is
only one such j, X((gh)6) is a special 2-element. Consequently there are at
least two such j’s. Using ffh2 there are two such i’s as well. Now (gh)6(ffh2)4
has eigenvalues {- 0), , 09, , 1, 1, 1, } contradicting Blichfeldt.
Suppose then that for all i, X(gh) has order 6 and (g, h) is larger thanSL2(3).
As above there must be two or four such i’s or _+ X((ghZ)2) would be a special
2-element. Note as in I-2, Section 3] that as X((g, h)) is 8L2(3) and Xi(gh)
has order 3 for each i, Xi(w(g, h)) I iff Xj(w(g, h)) I for any word w(g, h).
Consequently if (g, h) SLa(3) there is an element k in (g, h) such that
X(k) I and k v i. This means there is a linear constituent on which
(k) 4: 1. It follows that there are two nonlinear constituents say X1 and Xz
and four linear constituents of Xl(g, h). Now

and

X((gh)3) diag (-1, -1, 1, -1, 1, 1, l, 1)

X(k) diag (1, 1, 1, 1, 0)1, 0)2, 0)3, 0)4-)
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where the toj are cube roots of 1. As X(k) is not a special 3-element all co are
nontrivial and now X(k(gh)3) contradicts Blichfeldt. Note by the form of
X(9) and X(h) if o is 1, coj is also for some :P j as k is a word in g and h.

3. Sylow 5-subgroup intersections

In this section we show there must be some nontrivial Sylow 5-subgroup
intersections. In particular we show there is some 5-subgroup A for which
C(A) contains more than one Sylow 5-subgroup. The two statements are
equivalent as the Sylow 5-subgroup is abelian by [17].
Note first that if P is a Sylow 5-subgroup [G: N(P)[ 23t where < 14,

fl < 9 is the number of Sylow 5-subgroups. As X is quasiprimitive, 2"3a - 1.
If IPI -> 53, no number 23a with < 14, fl < 9 is congruent to mod 125.
Consequently there must be some nontrivial Sylow 5-subgroup intersections.
The only integers 2"" 3a, < 14, fl < 9, congruent to 6 mod 125 are 6 and 28.
Certainly IG: N(P)I 4:6 here as G is quasisimple. If IG: N(P)I 28 and
P Z25 Z5 an element n in LI(P) would have 2 conjugates contradicting
[10, Th 4.3.3]. This proves the following lemma.

LEMMA 3.1. If P is a Sylow 5-subgroup and IPI >- 53 there is an A in P such
that C(A) has more than one Sylow 5-subgroup. Suppose P - Z25 Z5 and
?31(P) (n). If C(n) has 6 Sylow 5-subgroups, there must be some Sylow
5-subgroup Q such that P Q does not contain (n) and P c Q e.

We turn to the case in which a Sylow 5-subgroup of G has order 52. If P is
strongly selfcentralizing a result of Sibley [-18] shows G does not exist. This
can also be handled by the results of [8] in this special case. This means there
is an element n - e in P such that C(n) is not PZ(G). An argument of J. Leon
appearing below and in Leon’s Caltech thesis shows (n) is a defect group and
so is a Sylow intersection.

LEMMA 3.2. Suppose G is a simple group of order 2a. 3b. 5c. Suppose a is an
element of order r 2 or 3 in C(n), n an element of order 5 in P. Then Bo(r)
contains a character 7. of degree 5. r, 7.(ha) O, (n) is the 5-defect group for
the 5-block containing 7.. In particular C(n) has a 5-block with defect group ()
and (n) is a Sylow 5-subgroup intersection.

Proof. As na is an r-singular element the orthogonality relations for modular
characters give 0 Z(1)Z(na) + ’ (1)Z(na) where the first sum is
over all characters in Bo(r), the second is over the characters with the exception
of the trivial character. There must be some nontrivial character Z in Bo(r)
with :(na) 0, Z(1) : 0 (mod r’) where if r 2, r’ 3 and if r 3, r’ 2.
This means Z(1) r", r"" 5, or r". 52. Now Z(1) - r" by [7] as G is simple
and there is only one character of degree 1. If Z(1) r". 52, Z(na) 0 as

Z has 5-defect 0 [5]. Therefore Z(1) 5. r". By [4], Z belongs to a 5-block of
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defect 1. The defect group must be (n) by [4] as Z(na) v O. The remaining
statements follow by I-5].
We apply this in the following special way.

LEMMA 3.3. Under the conditions of Lemma 3.2 if C(n) has elements of
order 3 and 2, either C(n) has more than one 5-block with defect group (n) or
n is conjugate to all of its nontrivial powers.

Proof By Lemma 3.2, C(n) has at least one 5-block with defect group (n).
If there is only one, G has characters of degree 5 2" and 5 3a in the 5-block of
G corresponding to the 5-block of C(n) by. Lemma 3.2. Let s IN(n)/C(n)[.
Clearly s 1, 2, or 4. If s is 1, all characters have the same degree impossible
in this situation as Lemma 3.2 ensures faithful characters of degrees 5.2 and
5 3a. Neither nor fl can be 0 by [6]. If s is 2, the degree equation is

,() + () + (1) 0.

Here we have 5.2

_
5"3a +__ 5"2r3a 0. This implies a character of G of

degree 5 contradicting [6]. This shows s 4 and n is conjugate to all its
powers.
We conclude this section with a Lemma examining how an element of order

5 normalizes a nontrivial 2-group or 3-group Q. Except in special cases, the
element must centralize Q.

LEMMA 3.4. Suppose n is a 5-element of G which normalizes but does not
centralize a group Q which is either a 2-group or a 3-group. Then Q is a non-
abelian 2-group and XIQ is either irreducible or has two constituents of degree 4.

Proof. Assume Q is a minimal group on which n acts nontrivially. By
[10, Theorem 5.3.6], [O, n] O. If O is abelian, xl(O, n) has an irreducible
constituent of degree 5 and 3 linear characters trivial when restricted to Q.
This means Q is elementary of rank 4 and contains a special 2 or 3-element
depending on whether Q is a 2-group or a 3-group.

This means Q is nonabelian. By [10, Theorem 5.3.7], Q is special. If Q is
a 3-group, XIQ has at most 3-dimensional constituents. An irreducible 3-
dimensional 3-group is induced and the Frattini factor has rank 2. This means
an element of order 5 centralizes Q contradicting our situation as rQ, n] Q.
If Q is a 2-group, an irreducible constituent in which X(n) acts nontrivially
must have degree 4 or 8. If there is only one constituent of degree 4, XIQ has an
irreducible 4-dimensional constituent plus four trivial constituents. There must
be a special 2-element. This proves the lemma.

4. The structure of C(A)

Let H be 05"(C(A)) where A :/: is a 5-group. Assume H has more than one
Sylow 5-group. Such an H exists by Lemma 3.1, Lemma 3.2 and the remarks
preceding Lemma 3.2. Note H OS’(H). Let F*(H)= F* E(H)F(H)
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be the generalized Fitting subgroup of H. As H has abelian Sylow 5-groups,
H centralizes 05(F(H))

_
A. As H OS’(H) and 5-elements of H centralize

Oa(H) by Lemma 3.4, H centralizes Oa(H). As A - 1, A centralizes O2(H),
and elements X(a), a A #, have at least three distinct eigenvalues, XIO2(H)
has at least three irreducible constituents. This means 5-elements in H must
centralize O2(H) by Lemma 3.4. As H OS’(H), H centralizes O2(H). Now
F(H)

_
Z(H) and so F(H) Z(H). Now H is not abelian as H has more

than one Sylow 5-group and so E(H) 4: 1. We now let K AE(H) and
consider the possibilities of XIK. Denote E E(H).
Note first that A

_
Z(K) and as X(a), a A #, has at least three distinct

eigenvalues XIK must have at least three distinct constituents. As no element
X(a), a A # can have 5 identical eigenvalues, XIK must have constituents of
degree at most four. Assume first XIK has a 4-dimensional constituent and
X]K Y q) W where Y is irreducible of degree 4. Here W must be reducible.
As E E, all constituents represent faithfully some homomorphic image of
E which is some central product of quasisimple groups. All constituents are of
course unimodular. In particular Y(E) is listed in [3]. Note E is generated by
5-elements and so Y(E) could not be imprimitive.
We see then Y(E) is isomorphic to As, SL2(5), a central extension over a

center of order 2 of A6, a central extension of Sp4(3) or Y is a tensor product of
two 2-dimensional groups isomorphic to SL2(5). Let L1 be the elements of E
for which W(LI) I and L2 those for which Y(L2) I. If W(L2) is nonabelian
W must represent A5 or a sum of or 2 representations of SL2(5). Either there
is a special 2-element or a Blichfeldt element with eigenvalues l, 1, 1, 1, -co,
-, -co, - [2, p. 96]. Now Y represents E faithfully except possibly for
central elements.

However, if Y represents 8p4(3), W cannot represent it except trivially as W
is reducible and no central extension of 8p4(3) can be represented faithfully in
3 dimensions. Consequently W is trivial and there are blatant special elements.
If Y represents a cover of A6, W is either trivial in which case there are special
elements or W(E) is a central extension of A6 over a center of order 3. Now the
central 3-element in W(E) is represented by eigenvalues 1, 1, 1, 1, co, co, co, 1.
A Sylow 5-group has distinct linear characters and so this element is in the
3-modular core a contradiction as in Section 2. If Y is a tensor product of two
2-dimensional representations of SL2(5), W is a direct sum of either one or two
subgroups representing SL2(5) or m contains a 3-dimensional constituent
representing As. In any case, a subgroup U of E with E/U SL2(5) or .45 has
at least a 2-dimensional trivial constituent when represented by W. Now
is a sum of two or three 2-dimensional representations of 3L2(5). There is an
element with eigenvalues co, , co, , 1, 1, 1, or co, , co,
-co, -, 1, contradicting Blichfeldt [3, p. 96].
We are left with Y(E) SL2(5) or .45. Suppose first it is SL2(5). As A5 has

multiplier of order 2, W(E) - .45 or SL2(5) as if W is trivial there is a special
3-element. If it is As, WIE has a 3-dimensional constituent and a trivial con-
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stituent. Now X restricted to a Sylow 5-group has distinct linear characters.
This means the involution in E must be in the 2-modular core. This is a contra-
diction as described in Section 2.

This means W(E) SL2(5) and to avoid special elements, W has two
2-dimensional constituents. Let W]K W1 W2 where Wi are irreducible
of degree 2. As elements X(a), a A #, have at least three distinct eigenvalues
W1 [A is not similar to W2[A. This means X restricted to a Sylow 5-group P has
distinct linear constituents. Again only elements of the 2 or 3-modular core
can centralize P and so only central elements in G can centralize P.
We now show, for suitable ,4, C(,4) AEZ(G). Recall H 05"(C(A)). If

z C(,4), X(’) acts on the spaces that W1, W2, and Y act on as these are distinct
eigenspaces for the action of X(A). As SL2(5) is maximal finite unimodular in
two dimensional groups, X(z) must act as an inner automorphism times a scalar
on the spaces Wa and W2 act on. By multiplying by an element of E it can be
assumed X(z) is a scalar when restricted to the space W acts on. If X(z) is
nonscalar on either of the other invariant spaces, conjugates of by elements
of E together with A generate a group containing special elements. This shows
we may choose any elements in C(A) not in E to centralize E and so centralize a
Sylow 5-group P of H. Now C(,4) AEZ(G)S where S is a 5-group centralizing
E and A. This applies to elements in a Sylow 5-group P of G containing A. We
may therefore replace A by Os(C(A)) and obtain C(A) AEZ(G).
We note that if A has order 5, C() (7r) x SL2(5)Z(G). Here is not

conjugate to all its powers as it has exactly three distinct eigenvalues. This
contradicts Lemma 3.3. Suppose IAI > 5. If A is noncyclic let B (b) x
(a)

_
A where Y(b) L Now some element ab has five equal eigenvalues.

Consequently A is cyclic of order 52 by [6, 3B]. If A (a), (a5) 3(P)
where again P is a Sylow 5-group. We can replace (a) by (a5) to obtain

C(a) C(3(P))= AEZ(G).

To apply Lemma 3.1 we look below for a Sylow 5-group Q such that - P c Q
and (a5) 31(P) Q. None of the cases allow this and Lemma 3.1 is
contradicted.
Assume V(E) . As. Now either W(E) A or W(E) SL2(5). In

the latter case to avoid special elements, W has two irreducible constituents.
Again the central element in E centralizes a Sylow 5-group with distinct linear
characters putting it in the 2-modular core, a contradiction. In the first case
W]E has a 3-dimensional constituent. Again an element in C(A) must nor-
malize E and as the 3-dimensional representation of A5 does not extend to $5,
ze must centralize E for some in E. It must then centralize a Sylow 5-group
which again has distinct linear characters and so it is in some modular core.
Again replace A by 05(C(A)). As before, if [A] 5, Lemma 3.3 is contradicted.
If ]A[ > 5, A is cyclic of order 52 and if A (a), C(a5) has 6 Sylow 5-groups,
(a5) LI(P), P a Sylow 5-group. By Lemma 3.1 there is a Sylow 5-group
Q such that P Q - and a5 Q. We continue to look for it.
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We suppose now XIE has at most 2-dimensional constituents. Each must
represent SL2(5). By taking a minimal normal subgroup E1 of E we get
XIEI - SL2(5). Some constituent represents it faithfully. If there are fewer
than four constituents there is a Blichfeldt element of order 6. If there are
four irreducible constituents there is a 3-element with eigenvalues 09, 09, 09, 09,, , 09, 09. This contradicts Lemma 2.2.
The remaining case is XIE has a constituent of degree 3 and none of degree 4.

Let XIE Y @ W where Y is irreducible of degree 3. We see immediately
that Y(E) is A5 or an extension 6 of A 6 by a center of order 3 by [3].

Suppose first Y(E) represents A-6. To avoid special elements, W must have
a 3-dimensional constituent also representing 6 and E 6. Now XIE has
two 3-dimensional constituents and two trivial constituents. There can be no
elements with eigenvalues o9, 09, 09, 09, o9, 09, 1, and if Q is a Sylow 3-group
of E, XIQ has two distinct 3-dimensional constituents Y1 and Y2 and two trivial
constituents. Now A centralizes Q and so in a suitable base mod 5, X(a) has
at most a quadratic minimal polynomial, a e A #. This can be seen by reducing
mod 5 and choosing a base in which XIQ Y @ Y2 ) 2" 1. Then X(a)
13 ) 13 ) B where B is a 2 x 2 matrix. Now G is known by [20].
We now assume Y(E) ’ As. Suppose first W has a 3-dimensional constituent

which can be taken isomorphic to As by the above. Now by the subdirect
product theorem E As or SL2(5). If it is SL2(5), WIE is faithful and, WIE
has a 2-dimensional faithful constituent. The center is a special 2-element.
Consequently E As and XIK Y1 Y2 Y3 where Y and Y2 are irre-
ducible of degree 3 and where Y3 is a direct sum of two linear characters,
Y3IE 2. E. If r is an element of C(A), X(r) acts on each of the 3-dimensional
spaces and the 2-dimensional space as Y(a) 4: Y2(a) for a e A #. As no outer
automorphism in 3 dimensions lifts to a 3-dimensional group, X(re) with e in E
is scalar on one and hence both 3-dimensional subspaces. Assuming X(ze)is
not scalar or an element with eigenvalues not allowed,

X(’re) diag (2, 2, 2, p, p, p, , fl).

Note/ # 2 unless X(,re) is scalar. If re is a 2-element let S be a Sylow 2-group
of E. (re). Now XIS 8= 2i; all 2i are distinct except possibly 27 and
28. As A centralizes S, elements in A mod 5 have a quadratic minimal poly-
nomial counter to [20]. A similar argument applies if re is a 3-element. If re
is a 5-element we may augment A with re. Take A maximal centralizing E.
If IAI- 5, C(A) A E Z(G) and Lemma 3.3 applies. Here a A #

cannot be conjugate to all its powers as the eigenvalues are inconsistent. If
IAI > 5 again A is cyclic and we get if A (a), C(as) A E Z(G).
As (as) U(P), P a Sylow 5-group, Lemma 2.1 gives a Sylow 5-group Q
with P c Q 4:1 and as Q still to be found.
We are left with Y(E)’ As and W has no 3-dimensional constituents.

This means W has a 2-dimensional constituent representing SL2(5) or there are
special elements. It follows as above E ’ SLy.(,5) and W W1 @ W2 @ 2
where W are irreducible of degree 2 and 2 is linear.
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There is now an element 7 of E for which X(7) has eigenvalues

Each eigenvalue has multiplicity or 2 and in a suitable basis over a field of
characteristic 5, an element a A # has a quadratic minimal polynomial. This
contradicts [20]. This completes the proof by showing G does not exist. Con-
sequently the theorem is proved.
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