# LINEAR GROUPS OF DEGREE EIGHT WITH NO ELEMENTS OF ORDER SEVEN 

BY<br>W. C. Huffman ${ }^{1}$ and D. B. Wales ${ }^{2}$

1. Finite linear groups of degree eight

The finite quasiprimitive linear groups of degree less than eight have been determined in [3], [6], [16], [21]. Feit has recently determined the quasiprimitive linear groups of degree eight which contain a noncentral element of order 7. In this paper we apply the results of [12], [13], [14] to determine the remaining quasiprimitive linear groups of degree eight. Specifically, we prove the following theorem.

Theorem. Suppose $G$ is a finite quasiprimitive unimodular linear group of degree 8 for which $7 \times|G|$. Then $G / Z(G)$ is one of the following groups where $|Z(G)| \mid 8$.
I. $A_{6}, Z(G)$ splits, or an extension of degree 2 in which $G / Z(G)$ is an extension of $A_{6}$ induced by an automorphism from $G L_{2}(9)$.
II. Subgroups of $A \times B$ where $A, B$ have projective quasiprimitive representations of degrees 2 and 4 .
III. $O_{2}(G / Z(G)) \neq 1, G / O_{2}(G) \cong$ subgroup of $S p_{6}(2), Z(G)$ has a nonsplitting center.
IV. $G / Z(G)$ is an extension of $A_{5} \times A_{5} \times A_{5}$ by a group isomorphic to $Z_{3}$ or $S_{3}, 2| | Z(G) \mid$.
V. $G \cong S L_{2}(17) Z(G)$.

Notation is standard as in [13]. We let $\omega=e^{2 \pi i / 3}$. We assume $G$ is a unimodular quasiprimitive linear group of degree eight with natural representation $X$. By definition, $X$ quasiprimitive means that if $H \triangleleft G, X \mid H$ has similar constituents.

If $G$ has a normal subgroup $H$ for which $X \mid H$ is reducible we may apply [15] to see II holds. Each of the tensor product components must be quasiprimitive or $X$ would not be quasiprimitive. Suppose $G$ has a minimal noncentral solvable normal subgroup $H$. By quasiprimitivity and unimodularity, $H Z(G) / Z(G)$ is a 2-group. Then $K=O_{2}(G)$ has no rank 2 characteristic abelian subgroups and by [10 Th 5.4.9] is $Q \circ Z$ where $Q$ is extraspecial and $Z$ has order $1,2,4,8$. As $X \mid Q$ is irreducible, $|Q|=2^{7}$. Now $C(Q)=Z(G)$ as $X \mid Q$ is irreducible and so $G / O_{2}(G) \cong$ subgroup of $S p_{6}(2)$ by [11]. This is Case III. Now let $E=E(G)$ be the product of all quasisimple subnormal subgroups. Suppose $E$ has one

[^0]component. Note that by [6, 2D], no primes larger than 7 divide $|\mathrm{G}|$ except for V . We are assuming $7 \nmid|G|$. If $5^{2} \nmid|G|, E / Z(E)$ is $\cong A_{5}, A_{6}, S p_{4}(3)$ by [6, 9A]. The only possible group of degree 8 is $A_{6}$ giving Case I. If there are several components let $E_{1}$ be a minimal normal nonsolvable subgroup. Clearly $X \mid E_{1}$ is a direct sum of three 2-dimensional linear groups each nonsolvable and so $S L_{2}(5)$ by [3]. Now there must be an element of order 3 permuting each giving Case IV. We are reduced to finding a quasisimple linear group with $|G / Z(G)|=2^{a} \cdot 3^{b} \cdot 5^{c}$ where $c \geq 2$. By $[6,3 \mathrm{E}], a \leq 14, b \leq 9, c \leq 8$. By [17], a Sylow 5-group is abelian. We assume from now on that $G$ is a minimal counterexample to the theorem. We have seen $E(G)$ is a quasisimple group and in particular can assume $G=E(G)$. Note $Z(G)$ is cyclic of order $1,2,4$ or 8 and $F(G)=Z(G)$ where $F(G)$ is the Fitting subgroup.

## 2. Special eigenvalue arguments

In this section we collect information about the possible eigenvalue structure of elements $X(g), g \in G$. Note first that no element $X(g)$ can have an eigenspace of codimension 2 by [14]. (Such elements will be called special elements.) In particular any noncentral involution in $X(G)$ has trace 0 . As $F(G)=Z(G)$, the 3 - or 5 -modular core is trivial. For definitions and properties of these cores see $[6,3 \mathrm{~A}]$. The 2 -modular core is $Z(G)$. Occasionally we force some noncentral element into some modular core to provide a contradiction. We also note that by the quadratic pairs paper [20] no element of order 5 can have a quadratic minimal polynomial mod 5. By Lindsey [17] no element of order 5 can have an eigenspace of codimension 3.

We examine elements $X(g)$ with two equal eigenvalues. This is done in two lemmas. The first is general.

Lemma 2.1. Suppose $X$ is a quasiprimitive representation of a group $G$ in which for some $g$ in $G, X(g)$ has only eigenvalues $\varepsilon$ and $\bar{\varepsilon}$ where $\varepsilon=e^{2 \pi i / 5}$. Then any two conjugates of $g$ either commute or generate $S L_{2}(5)$ with the center of $S L_{2}(5)$ in the center of $G$. Such groups are described in [1] and none are the alleged quasisimple group of degree 8.

Proof. If $h$ is a conjugate of $g, X \mid\langle g, h\rangle$ has at most 2-dimensional constituents by the argument of Blichfeldt in [3, page 143] for higher dimensions. If $g$ and $h$ do not commute there must be some irreducible 2-dimensional constituent. Let $X \mid\langle g, h\rangle=\sum_{i=1}^{r} X_{i}+\sum_{i=1}^{s} \lambda_{i}$ where $X_{i}$ are irreducible of degree 2 and $\lambda_{i}$ are linear. By [3], $X_{i} \mid\langle g, h\rangle$ must be isomorphic to $S L_{2}(5)$.

Let $H$ be a minimal nonsolvable subgroup of $\langle g, h\rangle$. As $X \mid H$ has at most 2-dimensional constitutents $H \cong S L_{2}(5)$. If there are any linear constituents, there is an element of order 6 in $H=H^{\prime}$ with at least one eigenvalue 1 , the remaining eigenvalues $1,-\omega$, or $-\bar{\omega}$. This contradicts Blichfeldt [3 p. 96]. It follows that $X \mid H$ and $X \mid\langle g, h\rangle$ have no linear constituents.

Let $X \mid\langle g, h\rangle=X_{1} \oplus \cdots \oplus X_{t}$ where $t=n / 2$. We have shown $X_{i}(\langle g, h\rangle) \cong$
$S L_{2}(5)$. Suppose $\langle g, h\rangle \not \equiv S L_{2}(5)$ and so $1 \neq H=\operatorname{ker} X_{1} \triangleleft\langle g, h\rangle$. As $X \mid H$ has linear constituents $H$ is solvable and so as $X_{i}(H) \triangleleft X_{i}(\langle g, h\rangle)$, $X_{i}(H)= \pm I$. In particular $H$ is an abelian 2-group in the center of $\langle g, h\rangle$. As $\langle g, h\rangle / H \cong S L_{2}(5)$ and the multiplier of $A_{5}$ has order $2, H \cap\langle g, h\rangle^{\prime}=e$ and this contradicts the fact that $\langle g, h\rangle$ is generated by elements of order 5. The central element of $S L_{2}(5)$ is scalar $-I$ in the center of $G$. This proves the lemma.

An alternate proof of this result uses the fact that over $\mathbf{C}, X(g)$ has a quadratic minimal polynomial. The same is true mod 5 and so the group is known by [20]. However, we need the methods of this proof for our next lemma.

We return to our linear group $G$ of degree 8 .
Lemma 2.2. There is no element $g$ in $G$ for which $X(g)$ has eigenvalues

$$
\{\omega, \omega, \omega, \omega, \bar{\omega}, \bar{\omega}, \bar{\omega}, \bar{\omega}\}
$$

where $\omega=e^{2 \pi i / 3}$.
Proof. We show that any two conjugates of $g$ either commute or generate $S L_{2}(3)$ or $S L_{2}(5)$. If they generate $S L_{2}(5)$ the central element is in the center of $G$. This contradicts [19] or [2]. If $g$ and $h$ are noncommuting conjugates of $g$, as in Lemma 2.1, $X \mid\langle g, h\rangle$ has at most 2-dimensional constituents. If $X \mid\langle g, h\rangle$ has a 2-dimensional constituent representing $S L_{2}(5)$ we argue as in Lemma 2.1 to conclude $\langle g, h\rangle \cong S L_{2}(5)$ and the center of $\langle g, h\rangle$ is in $Z(G)$. Suppose then all nonlinear constituents $X_{i}$ of $X \mid\langle g, h\rangle$ represent $S L_{2}(3)$. We want to show $\langle g, h\rangle \cong S L_{2}(3)$. Let $X_{i} \mid\langle g, h\rangle$ be represented on the 2-dimensional space $V_{i}$. As $X_{i}(\langle g, h\rangle) \cong S L_{2}(3)$, either $X_{i}(g) X_{i}(h)$ has order 6 or 4 by inspection in $S L_{2}$ (3).

If $X_{i}(g) X_{i}(h)=X_{i}(g h)$ has order $6, X_{i}\left(g h^{2}\right)$ has order 4. Suppose there is an $i$ and a $j$ such that $X_{i}(g h)$ has order 6 and $X_{j}(g h)$ has order 4. If there is only one such $j, X\left((g h)^{6}\right)$ is a special 2 -element. Consequently there are at least two such $j$ 's. Using $g h^{2}$ there are two such $i$ 's as well. Now $(g h)^{6}\left(g h^{2}\right)^{4}$ has eigenvalues $\{-\omega,-\bar{\omega},-\omega,-\bar{\omega}, 1,1,1,1\}$ contradicting Blichfeldt. Suppose then that for all $i, X_{i}(g h)$ has order 6 and $\langle g, h\rangle$ is larger than $S L_{2}(3)$. As above there must be two or four such $i$ 's or $\pm X\left(\left(g h^{2}\right)^{2}\right)$ would be a special 2-element. Note as in [2, Section 3] that as $X_{i}(\langle g, h\rangle)$ is $S L_{2}(3)$ and $X_{i}(g h)$ has order 3 for each $i, X_{i}(w(g, h))=I$ iff $X_{j}(w(g, h))=I$ for any word $w(g, h)$. Consequently if $\langle g, h\rangle \nsupseteq S L_{2}(3)$ there is an element $k$ in $\langle g, h\rangle$ such that $X_{i}(k)=I$ and $k \neq i$. This means there is a linear constituent $\xi$ on which $\xi(k) \neq 1$. It follows that there are two nonlinear constituents say $X_{1}$ and $X_{2}$ and four linear constituents of $X \mid\langle g, h\rangle$. Now

$$
X\left((g h)^{3}\right)=\operatorname{diag}(-1,-1,-1,-1,1,1,1,1)
$$

and

$$
X(k)=\operatorname{diag}\left(1,1,1,1, \omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)
$$

where the $\omega_{j}$ are cube roots of 1 . As $X(k)$ is not a special 3-element all $\omega_{i}$ are nontrivial and now $X\left(k(g h)^{3}\right)$ contradicts Blichfeldt. Note by the form of $X(g)$ and $X(h)$ if $\omega_{i}$ is $1, \omega_{j}$ is 1 also for some $i \neq j$ as $k$ is a word in $g$ and $h$.

## 3. Sylow 5-subgroup intersections

In this section we show there must be some nontrivial Sylow 5-subgroup intersections. In particular we show there is some 5 -subgroup $A$ for which $C(A)$ contains more than one Sylow 5 -subgroup. The two statements are equivalent as the Sylow 5 -subgroup is abelian by [17].

Note first that if $P$ is a Sylow 5-subgroup $|G: N(P)|=2^{\alpha} 3^{\beta}$ where $\alpha \leq 14$, $\beta \leq 9$ is the number of Sylow 5 -subgroups. As $X$ is quasiprimitive, $2^{\alpha} 3^{\beta} \neq 1$. If $|P| \geq 5^{3}$, no number $2^{\alpha} 3^{\beta}$ with $\alpha \leq 14, \beta \leq 9$ is congruent to $1 \bmod 125$. Consequently there must be some nontrivial Sylow 5 -subgroup intersections. The only integers $2^{\alpha} \cdot 3^{\beta}, \alpha \leq 14, \beta \leq 9$, congruent to $6 \bmod 125$ are 6 and $2^{8}$. Certainly $|G: N(P)| \neq 6$ here as $G$ is quasisimple. If $|G: N(P)|=2^{8}$ and $P \cong Z_{25} \times Z_{5}$ an element $\pi$ in $\mho^{1}(P)$ would have $2^{\beta}$ conjugates contradicting [10, Th 4.3.3]. This proves the following lemma.

Lemma 3.1. If $P$ is a Sylow 5-subgroup and $|P| \geq 5^{3}$ there is an $A$ in $P$ such that $C(A)$ has more than one Sylow 5-subgroup. Suppose $P \cong Z_{25} \times Z_{5}$ and $\mho^{1}(P)=\langle\pi\rangle$. If $C(\pi)$ has 6 Sylow 5-subgroups, there must be some Sylow 5-subgroup $Q$ such that $P \cap Q$ does not contain $\langle\pi\rangle$ and $P \cap Q \neq e$.

We turn to the case in which a Sylow 5-subgroup of $G$ has order $5^{2}$. If $P$ is strongly selfcentralizing a result of Sibley [18] shows $G$ does not exist. This can also be handled by the results of [8] in this special case. This means there is an element $\pi \neq e$ in $P$ such that $C(\pi)$ is not $P Z(G)$. An argument of J. Leon appearing below and in Leon's Caltech thesis shows $\langle\pi\rangle$ is a defect group and so is a Sylow intersection.

Lemma 3.2. Suppose $G$ is a simple group of order $2^{a} \cdot 3^{b} \cdot 5^{c}$. Suppose $\sigma$ is an element of order $r=2$ or 3 in $C(\pi), \pi$ an element of order 5 in $P$. Then $B_{0}(r)$ contains a character $\chi$ of degree $5 \cdot r^{\alpha}, \chi(\pi \sigma) \neq 0,\langle\pi\rangle$ is the 5 -defect group for the 5 -block containing $\chi$. In particular $C(\pi)$ has a 5-block with defect group $\langle\pi\rangle$ and $\langle\pi\rangle$ is a Sylow 5-subgroup intersection.

Proof. As $\pi \sigma$ is an $r$-singular element the orthogonality relations for modular characters give $0=\sum \chi(1) \chi(\pi \sigma)=1+\sum^{\prime} \chi(1) \chi(\pi \sigma)$ where the first sum is over all characters in $B_{0}(r)$, the second is over the characters with the exception of the trivial character. There must be some nontrivial character $\chi$ in $B_{0}(r)$ with $\chi(\pi \sigma) \neq 0, \chi(1) \not \equiv 0\left(\bmod r^{\prime}\right)$ where if $r=2, r^{\prime}=3$ and if $r=3, r^{\prime}=2$. This means $\chi(1)=r^{\alpha}, r^{\alpha} \cdot 5$, or $r^{\alpha} \cdot 5^{2}$. Now $\chi(1) \neq r^{\alpha}$ by [7] as $G$ is simple and there is only one character of degree 1. If $\chi(1)=r^{\alpha} \cdot 5^{2}, \chi(\pi \sigma)=0$ as $\chi$ has 5 -defect $0[5]$. Therefore $\chi(1)=5 \cdot r^{\alpha}$. By [4], $\chi$ belongs to a 5 -block of
defect 1 . The defect group must be $\langle\pi\rangle$ by $[4]$ as $\chi(\pi \sigma) \neq 0$. The remaining statements follow by [5].

We apply this in the following special way.
Lemma 3.3. Under the conditions of Lemma 3.2 if $C(\pi)$ has elements of order 3 and 2, either $C(\pi)$ has more than one 5 -block with defect group $\langle\pi\rangle$ or $\pi$ is conjugate to all of its nontrivial powers.

Proof. By Lemma 3.2, $C(\pi)$ has at least one 5-block with defect group $\langle\pi\rangle$. If there is only one, $G$ has characters of degree $5 \cdot 2^{\alpha}$ and $5 \cdot 3^{\beta}$ in the 5-block of $G$ corresponding to the 5-block of $C(\pi)$ by Lemma 3.2. Let $s=|N\langle\pi\rangle / C\langle\pi\rangle|$. Clearly $s=1,2$, or 4 . If $s$ is 1 , all characters have the same degree impossible in this situation as Lemma 3.2 ensures faithful characters of degrees $5 \cdot 2^{\alpha}$ and $5 \cdot 3^{\beta}$. Neither $\alpha$ nor $\beta$ can be 0 by [6]. If $s$ is 2 , the degree equation is

$$
\chi_{1}(1) \pm \chi_{2}(1) \pm \chi_{3}(1)=0
$$

Here we have $5 \cdot 2^{\alpha} \pm 5 \cdot 3^{\beta} \pm 5 \cdot 2^{\gamma} 3^{\delta}=0$. This implies a character of $G$ of degree 5 contradicting [6]. This shows $s=4$ and $\pi$ is conjugate to all its powers.

We conclude this section with a Lemma examining how an element of order 5 normalizes a nontrivial 2-group or 3-group $Q$. Except in special cases, the element must centralize $Q$.

Lemma 3.4. Suppose $\pi$ is a 5-element of $G$ which normalizes but does not centralize a group $Q$ which is either a 2-group or a 3-group. Then $Q$ is a nonabelian 2-group and $X \mid Q$ is either irreducible or has two constituents of degree 4.

Proof. Assume $Q$ is a minimal group on which $\pi$ acts nontrivially. By [10, Theorem 5.3.6], $[Q, \pi]=Q$. If $Q$ is abelian, $X \mid\langle Q, \pi\rangle$ has an irreducible constituent of degree 5 and 3 linear characters trivial when restricted to $Q$. This means $Q$ is elementary of rank 4 and contains a special 2 or 3-element depending on whether $Q$ is a 2-group or a 3-group.

This means $Q$ is nonabelian. By [10, Theorem 5.3.7], $Q$ is special. If $Q$ is a 3-group, $X \mid Q$ has at most 3-dimensional constituents. An irreducible 3dimensional 3-group is induced and the Frattini factor has rank 2. This means an element of order 5 centralizes $Q$ contradicting our situation as $[Q, \pi]=Q$. If $Q$ is a 2-group, an irreducible constituent in which $X(\pi)$ acts nontrivially must have degree 4 or 8 . If there is only one constituent of degree $4, X \mid Q$ has an irreducible 4-dimensional constituent plus four trivial constituents. There must be a special 2-element. This proves the lemma.

## 4. The structure of $C(A)$

Let $H$ be $O^{5^{\prime}}(C(A))$ where $A \neq 1$ is a 5-group. Assume $H$ has more than one Sylow 5-group. Such an $H$ exists by Lemma 3.1, Lemma 3.2 and the remarks preceding Lemma 3.2. Note $H=O^{5^{\prime}}(H)$. Let $F^{*}(H)=F^{*}=E(H) F(H)$
be the generalized Fitting subgroup of $H$. As $H$ has abelian Sylow 5-groups, $H$ centralizes $O_{5}(F(H)) \supseteq A$. As $H=O^{5}(H)$ and 5-elements of $H$ centralize $O_{3}(H)$ by Lemma 3.4, $H$ centralizes $O_{3}(H)$. As $A \neq 1, A$ centralizes $O_{2}(H)$, and elements $X(a), a \in A^{\#}$, have at least three distinct eigenvalues, $X \mid O_{2}(H)$ has at least three irreducible constituents. This means 5-elements in $H$ must centralize $O_{2}(H)$ by Lemma 3.4. As $H=O^{5}(H), H$ centralizes $O_{2}(H)$. Now $F(H) \subseteq Z(H)$ and so $F(H)=Z(H)$. Now $H$ is not abelian as $H$ has more than one Sylow 5-group and so $E(H) \neq 1$. We now let $K=A E(H)$ and consider the possibilities of $X \mid K$. Denote $E=E(H)$.

Note first that $A \subseteq Z(K)$ and as $X(a), a \in A^{\#}$, has at least three distinct eigenvalues $X \mid K$ must have at least three distinct constituents. As no element $X(a), a \in A^{\#}$ can have 5 identical eigenvalues, $X \mid K$ must have constituents of degree at most four. Assume first $X \mid K$ has a 4-dimensional constituent and $X \mid K=Y \oplus W$ where $Y$ is irreducible of degree 4. Here $W$ must be reducible. As $E=E^{\infty}$, all constituents represent faithfully some homomorphic image of $E$ which is some central product of quasisimple groups. All constituents are of course unimodular. In particular $Y(E)$ is listed in [3]. Note $E$ is generated by 5-elements and so $Y(E)$ could not be imprimitive.

We see then $Y(E)$ is isomorphic to $A_{5}, S L_{2}(5)$, a central extension over a center of order 2 of $A_{6}$, a central extension of $S p_{4}(3)$ or $Y$ is a tensor product of two 2-dimensional groups isomorphic to $S L_{2}(5)$. Let $L_{1}$ be the elements of $E$ for which $W\left(L_{1}\right)=I$ and $L_{2}$ those for which $Y\left(L_{2}\right)=I$. If $W\left(L_{2}\right)$ is nonabelian $W$ must represent $A_{5}$ or a sum of 1 or 2 representations of $S L_{2}(5)$. Either there is a special 2-element or a Blichfeldt element with eigenvalues $1,1,1,1,-\omega$, $-\bar{\omega},-\omega,-\bar{\omega}[2, \mathrm{p} .96]$. Now $Y$ represents $E$ faithfully except possibly for central elements.

However, if $Y$ represents $S p_{4}(3), W$ cannot represent it except trivially as $W$ is reducible and no central extension of $S p_{4}(3)$ can be represented faithfully in 3 dimensions. Consequently $W$ is trivial and there are blatant special elements. If $Y$ represents a cover of $A_{6}, W$ is either trivial in which case there are special elements or $W(E)$ is a central extension of $A_{6}$ over a center of order 3. Now the central 3-element in $W(E)$ is represented by eigenvalues $1,1,1,1, \omega, \omega, \omega, 1$. A Sylow 5-group has distinct linear characters and so this element is in the 3-modular core a contradiction as in Section 2. If $Y$ is a tensor product of two 2-dimensional representations of $S L_{2}(5), W$ is a direct sum of either one or two subgroups representing $S L_{2}(5)$ or $W$ contains a 3 -dimensional constituent representing $A_{5}$. In any case, a subgroup $U$ of $E$ with $E / U \cong S L_{2}(5)$ or $A_{5}$ has at least a 2-dimensional trivial constituent when represented by $W$. Now $X \mid U$ is a sum of two or three 2-dimensional representations of $S L_{2}(5)$. There is an element with eigenvalues $-\omega,-\bar{\omega},-\omega,-\bar{\omega}, 1,1,1,1$ or $-\omega,-\bar{\omega},-\omega,-\bar{\omega}$, $-\omega,-\bar{\omega}, 1,1$ contradicting Blichfeldt [3, p. 96].

We are left with $Y(E) \cong S L_{2}(5)$ or $A_{5}$. Suppose first it is $S L_{2}(5)$. As $A_{5}$ has multiplier of order $2, W(E) \cong A_{5}$ or $S L_{2}(5)$ as if $W$ is trivial there is a special 3-element. If it is $A_{5}, W \mid E$ has a 3-dimensional constituent and a trivial con-
stituent. Now $X$ restricted to a Sylow 5-group has distinct linear characters. This means the involution in $E$ must be in the 2-modular core. This is a contradiction as described in Section 2.

This means $W(E) \cong S L_{2}(5)$ and to avoid special elements, $W$ has two 2-dimensional constituents. Let $W \mid K=W_{1} \oplus W_{2}$ where $W_{i}$ are irreducible of degree 2. As elements $X(a), a \in A^{\#}$, have at least three distinct eigenvalues $W_{1} \mid A$ is not similar to $W_{2} \mid A$. This means $X$ restricted to a Sylow 5 -group $P$ has distinct linear constituents. Again only elements of the 2 or 3 -modular core can centralize $P$ and so only central elements in $G$ can centralize $P$.

We now show, for suitable $A, C(A)=A E Z(G)$. Recall $H=O^{5^{\prime}}(C(A))$. If $\tau \in C(A), X(\tau)$ acts on the spaces that $W_{1}, W_{2}$, and $Y$ act on as these are distinct eigenspaces for the action of $X(A)$. As $S L_{2}(5)$ is maximal finite unimodular in two dimensional groups, $X(\tau)$ must act as an inner automorphism times a scalar on the spaces $W_{1}$ and $W_{2}$ act on. By multiplying by an element of $E$ it can be assumed $X(\tau)$ is a scalar when restricted to the space $W_{1}$ acts on. If $X(\tau)$ is nonscalar on either of the other invariant spaces, conjugates of $\tau$ by elements of $E$ together with $A$ generate a group containing special elements. This shows we may choose any elements in $C(A)$ not in $E$ to centralize $E$ and so centralize a Sylow 5-group $P$ of $H$. Now $C(A)=A E Z(G) S$ where $S$ is a 5 -group centralizing $E$ and $A$. This applies to elements in a Sylow 5 -group $P$ of $G$ containing $A$. We may therefore replace $A$ by $O_{5}(C(A))$ and obtain $C(A)=A E Z(G)$.

We note that if $A$ has order $5, C(\pi) \cong\langle\pi\rangle \times S L_{2}(5) Z(G)$. Here $\pi$ is not conjugate to all its powers as it has exactly three distinct eigenvalues. This contradicts Lemma 3.3. Suppose $|A|>5$. If $A$ is noncyclic let $B \cong\langle b\rangle \times$ $\langle a\rangle \subseteq A$ where $Y(b)=I$. Now some element $a b^{i}$ has five equal eigenvalues. Consequently $A$ is cyclic of order $5^{2}$ by [6,3B]. If $A=\langle a\rangle,\left\langle a^{5}\right\rangle=\mho^{1}(P)$ where again $P$ is a Sylow 5-group. We can replace $\langle a\rangle$ by $\left\langle a^{5}\right\rangle$ to obtain

$$
C\left(a^{5}\right)=C\left(\mho^{1}(P)\right)=A E Z(G)
$$

To apply Lemma 3.1 we look below for a Sylow 5 -group $Q$ such that $1 \neq P \cap Q$ and $\left\langle a^{5}\right\rangle=\mho^{1}(P) \nsubseteq Q$. None of the cases allow this and Lemma 3.1 is contradicted.

Assume $V(E) \cong A_{5}$. Now either $W(E) \cong A_{5}$ or $W(E) \cong S L_{2}(5)$. In the latter case to avoid special elements, $W$ has two irreducible constituents. Again the central element in $E$ centralizes a Sylow 5-group with distinct linear characters putting it in the 2 -modular core, a contradiction. In the first case $W \mid E$ has a 3-dimensional constituent. Again an element $\tau$ in $C(A)$ must normalize $E$ and as the 3-dimensional representation of $A_{5}$ does not extend to $S_{5}$, $\tau \varepsilon$ must centralize $E$ for some $\varepsilon$ in $E$. It must then centralize a Sylow 5-group which again has distinct linear characters and so it is in some modular core. Again replace $A$ by $O_{5}(C(A))$. As before, if $|A|=5$, Lemma 3.3 is contradicted. If $|A|>5, A$ is cyclic of order $5^{2}$ and if $A=\langle a\rangle, C\left(a^{5}\right)$ has 6 Sylow 5-groups, $\left\langle a^{5}\right\rangle=\mho^{1}(P), P$ a Sylow 5-group. By Lemma 3.1 there is a Sylow 5-group $Q$ such that $P \cap Q \neq 1$ and $a^{5} \notin Q$. We continue to look for it.

We suppose now $X \mid E$ has at most 2-dimensional constituents. Each must represent $S L_{2}(5)$. By taking a minimal normal subgroup $E_{1}$ of $E$ we get $X \mid E_{1} \cong S L_{2}(5)$. Some constituent represents it faithfully. If there are fewer than four constituents there is a Blichfeldt element of order 6. If there are four irreducible constituents there is a 3-element with eigenvalues $\omega, \omega, \omega, \omega$, $\bar{\omega}, \bar{\omega}, \bar{\omega}, \bar{\omega}$. This contradicts Lemma 2.2.

The remaining case is $X \mid E$ has a constituent of degree 3 and none of degree 4 . Let $X \mid E=Y \oplus W$ where $Y$ is irreducible of degree 3 . We see immediately that $Y(E)$ is $A_{5}$ or an extension $\tilde{A}_{6}$ of $A_{6}$ by a center of order 3 by [3].

Suppose first $Y(E)$ represents $\tilde{A}_{6}$. To avoid special elements, $W$ must have a 3 -dimensional constituent also representing $\tilde{A}_{6}$ and $E \cong \widetilde{A}_{6}$. Now $X \mid E$ has two 3-dimensional constituents and two trivial constituents. There can be no elements with eigenvalues $\omega, \omega, \omega, \omega, \omega, \omega, 1,1$ and if $Q$ is a Sylow 3-group of $E, X \mid Q$ has two distinct 3-dimensional constituents $Y_{1}$ and $Y_{2}$ and two trivial constituents. Now $A$ centralizes $Q$ and so in a suitable base $\bmod 5, X(a)$ has at most a quadratic minimal polynomial, $a \in A^{\#}$. This can be seen by reducing $\bmod 5$ and choosing a base in which $X \mid Q=Y_{1} \oplus Y_{2} \oplus 2 \cdot 1_{Q}$. Then $X(a)=$ $I_{3} \oplus I_{3} \oplus B$ where $B$ is a $2 \times 2$ matrix. Now $G$ is known by [20].

We now assume $Y(E) \cong A_{5}$. Suppose first $W$ has a 3-dimensional constituent which can be taken isomorphic to $A_{5}$ by the above. Now by the subdirect product theorem $E \cong A_{5}$ or $S L_{2}(5)$. If it is $S L_{2}(5), W \mid E$ is faithful and, $W \mid E$ has a 2-dimensional faithful constituent. The center is a special 2-element. Consequently $E \cong A_{5}$ and $X \mid K=Y_{1} \oplus Y_{2} \oplus Y_{3}$ where $Y_{1}$ and $Y_{2}$ are irreducible of degree 3 and where $Y_{3}$ is a direct sum of two linear characters, $Y_{3} \mid E=2 \cdot 1_{E}$. If $\tau$ is an element of $C(A), X(\tau)$ acts on each of the 3-dimensional spaces and the 2-dimensional space as $Y_{1}(a) \neq Y_{2}(a)$ for $a \in A^{\#}$. As no outer automorphism in 3 dimensions lifts to a 3-dimensional group, $X(\tau \varepsilon)$ with $\varepsilon$ in $E$ is scalar on one and hence both 3 -dimensional subspaces. Assuming $X(\tau \varepsilon)$ is not scalar or an element with eigenvalues not allowed,

$$
X(\tau \varepsilon)=\operatorname{diag}(\lambda, \lambda, \lambda, \mu, \mu, \mu, \alpha, \beta) .
$$

Note $\mu \neq \lambda$ unless $X(\tau \varepsilon)$ is scalar. If $\tau \varepsilon$ is a 2-element let $S$ be a Sylow 2-group of $E \cdot(\tau \varepsilon)$. Now $X \mid S=\oplus \sum_{i=1}^{8} \lambda_{i}$; all $\lambda_{i}$ are distinct except possibly $\lambda_{7}$ and $\lambda_{8}$. As $A$ centralizes $S$, elements in $A \bmod 5$ have a quadratic minimal polynomial counter to [20]. A similar argument applies if $\tau \varepsilon$ is a 3 -element. If $\tau \varepsilon$ is a 5 -element we may augment $A$ with $\tau \varepsilon$. Take $A$ maximal centralizing $E$. If $|A|=5, C(A)=A \times E \times Z(G)$ and Lemma 3.3 applies. Here $a \in A^{\#}$ cannot be conjugate to all its powers as the eigenvalues are inconsistent. If $|A|>5$ again $A$ is cyclic and we get if $A=\langle a\rangle, C\left(a^{5}\right)=A \times E \times Z(G)$. As $\left\langle a^{5}\right\rangle=\mho^{1}(P), P$ a Sylow 5 -group, Lemma 2.1 gives a Sylow 5 -group $Q$ with $P \cap Q \neq 1$ and $a^{5} \notin Q$ still to be found.

We are left with $Y(E) \cong A_{5}$ and $W$ has no 3-dimensional constituents. This means $W$ has a 2 -dimensional constituent representing $S L_{2}(5)$ or there are special elements. It follows as above $E \cong S L_{2}(5)$ and $W=W_{1} \oplus W_{2} \oplus \lambda$ where $W_{i}$ are irreducible of degree 2 and $\lambda$ is linear.

There is now an element $\gamma$ of $E$ for which $X(\gamma)$ has eigenvalues

$$
\{1, \omega, \bar{\omega},-\omega,-\bar{\omega},-\omega,-\bar{\omega}, 1\} .
$$

Each eigenvalue has multiplicity 1 or 2 and in a suitable basis over a field of characteristic 5, an element $a \in A^{\#}$ has a quadratic minimal polynomial. This contradicts [20]. This completes the proof by showing $G$ does not exist. Consequently the theorem is proved.

## Bibliography

1. M. Aschbacher, A characterization of the unitary and symplectic groups over finite fields of characteristic at least 5, Pacific J. Math., vol. 47 (1973), pp. 5-26.
2. M. Aschbacher and M. Hall, Jr., Groups generated by a class of elements of order 3, J. Alg., vol. 24 (1973), pp. 591-612.
3. H. F. Blichfeldt, Finite collineation groups, University of Chicago Press, Chicago, 1917.
4. R. Brauer, Investigations on group characters, Ann. of Math., vol. 42 (1941), pp. 936-958.
5. -_, Zur Darstellungstheorie der Gruppen endlicher Ordnung, I, II, Math. Zeitschr., vol. 63 (1956), pp. 406-444; vol. 72 (1959), pp. 25-46.
6. ——, Uber endliche lineare Gruppen von Primzahlgrad, Math. Ann., vol. 169 (1967), pp. 73-96.
7. R. Brauer and H. F. Tuan, On simple groups of finite order (I), Bull. Amer. Math. Soc., vol. 51 (1945), pp. 756-766.
8. R. Brauer and H. S. Leonard, On finite groups with an Abelian Sylow group, Canad. J. Math., vol. 14 (1962), pp. 436-450.
9. W. Feit, Proceedings of the Utah Group Theory Conference, Feb. 1975., W. A. Benjamin, Reading, Mass.
10. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
11. R. Greiss, Automorphisms of extra special groups and nonvanishing of degree 2 cohomology, to appear.
12. W. C. Huffman, Linear groups containing an element with an eigenspace of codimension two, J. Alg., vol. 34 (1975), pp. 260-287.
13. W. C. Huffman and D. B. Wales, Linear groups containing an involution with two eigenvalues - 1, J. Algebra, to appear.
14. -, Linear groups of degree $n$ containing an element with exactly $n-2$ equal eigenvalues, J. Linear and Multilinear Alg., vol. 3 (1975), pp. 53-59.
15. B. Huppert, Lineare auflösbare Gruppen, Math. Zeitschr., vol. 67 (1937), pp. 479-518.
16. J. H. Lindsey, Finite linear groups of degree six, Canad. J. Math., vol. 23 (1971), pp. 771-790.
17. -- Complex linear groups of degree p+1, J. Alg., vol. 20 (1972), pp. 24-37.
18. D. Sibley, Finite linear groups with a strongly self-centralizing Sylow subgroup, I, II, J. Alg., vol. 36 (1975), pp. 158-166, 319-332.
19. B. Stellmacher, Einfache Gruppen, die von einer konjugiertenklasse von Elementen der Ordnung Drei ergengt weiden, J. Alg., vol. 30 (1974), pp. 320-354.
20. J. Thompson, Quadratic pairs, to appear.
21. D. B. Wales, Finite linear groups of degree seven I, II, Canad. J. Math., vol. 21 (1969), pp. 1042-1056; Pacific J. Math., vol. 34 (1970), pp. 207-235.

Dartmouth College
Hanover, New Hampshire
California Institute of Technology
Pasadena, California


[^0]:    Received July 10, 1975.
    ${ }^{1}$ Work sponsored in part by the Army Research Office at Durham.
    ${ }^{2}$ Work sponsored in part by a National Science Foundation grant.

