CUBIC FIELDS WHOSE CLASS NUMBERS ARE NOT DIVISIBLE BY 3

BY
Frank Gerth III

1. Main results

In this paper we describe a procedure for finding the discriminants of all cubic extensions L of the rational numbers \mathbf{Q} such that $3 \nmid h_{L}$, where h_{L} is the class number of L. We first consider the case where L / \mathbf{Q} is Galois. In this case L / \mathbf{Q} is a cyclic cubic extension, and the following result is well known (cf. [4, Theorem 1 and Corollary to Theorem 4]).

Theorem 1. For $D=9^{2}$ and $D=p^{2}$, where p is any rational prime \equiv $1(\bmod 3)$, there is a unique cyclic cubic extension L / \mathbf{Q} whose discriminant is D. These fields are the only cyclic cubic extensions of \mathbf{Q} whose class numbers are not divisible by 3.

We now consider the case where L / \mathbf{Q} is not Galois. We let K denote the normal closure of L / \mathbf{Q}, and we let F be the quadratic subfield of K. We let D denote the discriminant of L / \mathbf{Q}. The following results are known (cf. [3] and [6]).

Lemma 1. $\quad D=d f^{2}$, where d and f are rational integers, d is the discriminant of F / \mathbf{Q}, and f is the conductor of the cyclic cubic extension K / F. Furthermore, if p is a rational prime dividing fand $p \neq 3$, then p decomposes in F / \mathbf{Q} if $p \equiv 1(\bmod 3)$, and p is inert in F / \mathbf{Q} if $p \equiv-1(\bmod 3)$. Also $p^{2} \nsucc f$ for any rational prime $p \neq 3$, and $3^{3} \not x f$.

We now specify all non-Galois cubic extensions L / \mathbf{Q} such that $3 \times h_{L}$.
Theorem 2. Let \boldsymbol{F} be a quadratic extension of \mathbf{Q} with discriminant d. Let S_{F} denote the 3-class group of F. In each part below, we give the discriminants D of the non-Galois cubic extensions L / \mathbf{Q} such that F is contained in the normal closure of L / \mathbf{Q} and $3 \times h_{L}$, where h_{L} is the class number of L. Unless otherwise indicated, there is a unique L (up to conjugacy) with the specified discriminant D.
(a) S_{F} is not cyclic. Then no such L exists.
(b) $S_{F} \neq\{1\}$ but S_{F} is cyclic. Then L has discriminant $D=d$.
(c) $S_{F}=\{1\}$. Let A be the set of rational primes $\equiv-1(\bmod 3)$ which are inert in F. Let e be a primitive cube root of unity if $d=-3$; let e be the fundamental unit of F when $d>0$; and let $e=1$ otherwise. Let

$$
A_{1}=\left\{p \in A \mid e \text { is a cubic residue }\left(\bmod p \mathscr{O}_{F}\right)\right\}
$$

Received June 6, 1975.
where \mathcal{O}_{F} is the ring of integers of F, and let

$$
A_{2}=\left\{p \in A \mid e \text { is not a cubic residue }\left(\bmod p \mathcal{O}_{F}\right)\right\}
$$

(Note that $A_{1}=A$ and A_{2} is empty when $e=1$.) If $d \equiv-1(\bmod 3)$, let $B=\{3\}$ if e is a cubic residue $\left(\bmod 9 \mathcal{O}_{F}\right)$, and let B be empty if e is not a cubic residue $\left(\bmod 9 \mathcal{O}_{F}\right)$. If $d \equiv \pm 3(\bmod 9)$, let $B=\{3\}$ if e is a cubic residue $\left(\bmod 3 \mathcal{O}_{F}\right)$, and let B be empty if e is not a cubic residue $\left(\bmod 3 \mathcal{O}_{F}\right)$. Then the L such that $3 \times h_{L}$ have the following discriminants:
(i) $D=d p^{2}$ where p is any element of A_{1};
(ii) $D=d p_{1}^{2} p_{2}^{2}$ where p_{1} and p_{2} are any distinct elements of A_{2};
(iii) $D=d \cdot 9^{2}$ if $d \equiv-1(\bmod 3)$ and $3 \in B$;
(iv) $D=d \cdot 9^{2} \cdot p^{2}$ if $d \equiv-1(\bmod 3), 3 \notin B$, and p is any element of A_{2};
(v) $D=d \cdot 3^{2}$ if $d \equiv 3(\bmod 9)$ and $3 \in B$;
(vi) $D=d \cdot 3^{2} \cdot p^{2}$ if $d \equiv 3(\bmod 9), 3 \notin B$, and p is any element of A_{2};
(vii) $D=d \cdot 3^{2}$ if $d \equiv-3(\bmod 9)$ and $3 \in B$;
(viii) $D=d \cdot 3^{2} \cdot p^{2}$ if $d \equiv-3(\bmod 9), 3 \notin B$, and p is any element of A_{2};
(ix) $D=d \cdot 9^{2}($ for three nonconjugate $L)$ if $d \equiv-3(\bmod 9)$ and $3 \in B$;
(x) $D=d \cdot 9^{2}$ if $d \equiv-3(\bmod 9)$ and $3 \notin B$;
(xi) $D=d \cdot 9^{2} \cdot p^{2}($ for two nonconjugate $L)$ if $d \equiv-3(\bmod 9), 3 \notin B$, and p is any element of A_{2}.

Remark. Assume $d=-3$. Then e is not a cubic residue $\left(\bmod 3 \mathcal{O}_{F}\right)$. Furthermore e is a cubic residue $\left(\bmod p \mathcal{O}_{F}\right)$ if $p \equiv 8(\bmod 9)$, and e is not a cubic residue $\left(\bmod p \mathcal{O}_{F}\right)$ if $p \equiv 2$ or $5(\bmod 9)$. Then it is easy to see that our results in Theorem 2 agree with the results in [5] for the case $d=-3$.

In Sections 2 and 3, we shall prove Theorem 2.

2. Necessary conditions for D

We let L be a non-Galois cubic extension of \mathbf{Q}, K the normal closure of L, and F the quadratic subfield of K. We first prove the following lemma (cf. [1, Lemmas 4.7 and 4.8]).

Lemma 2. If p is a rational prime which ramifies totally in L / \mathbf{Q} and decomposes in F / \mathbf{Q}, then $3 \mid h_{L}$, where h_{L} is the class number of L.

Proof. By Lemma 1, either $p=3$ or $p \equiv 1(\bmod 3)$. Let M / \mathbf{Q} be the cyclic cubic extension with discriminant 9^{2} if $p=3$ and with discriminant p^{2} if $p \equiv 1(\bmod 3)$. Then $M \cdot L$ is a cyclic cubic extension of L. We shall show that $M \cdot L$ is unramified over L, and hence $3 \mid h_{L}$ by class field theory. Let \mathfrak{p} be the unique prime of L above p. Since only p ramifies in M / \mathbf{Q}, it suffices to show that \mathfrak{p} is unramified in $M \cdot L / L$. Let \mathbf{Q}_{p} denote the field of p-adic numbers, and let $L_{p}=L \cdot \mathbf{Q}_{p}$. Since p decomposes in F / \mathbf{Q}, then $F \cdot \mathbf{Q}_{p}=\mathbf{Q}_{p}$, and hence $L_{\mathfrak{p}}=L \cdot F \cdot \mathbf{Q}_{p}=K \cdot \mathbf{Q}_{p}$. Since K / F is a cyclic cubic extension in which the primes above p ramify, then $L_{\mathrm{p}} / \mathbf{Q}_{p}$ is a cyclic cubic extension in which p ramifies.

Let $M_{\mathfrak{F}}=M \cdot \mathbf{Q}_{p}$. Then $M_{\mathfrak{F}} / \mathbf{Q}_{p}$ is also a cyclic cubic extension in which p ramifies. Now if \mathfrak{p} ramifies in $M \cdot L / L$, then $M_{\mathfrak{P}} \cdot L_{\mathfrak{p}}$ is a totally ramified extension of \mathbf{Q}_{p} with Galois group isomorphic to $\mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}$. By local class field theory there is no such extension. Hence \mathfrak{p} must be unramified in $M \cdot L / L$, and then $3 \mid h_{L}$.

The following result is proved in [2, Theorem 3.5].
Lemma 3. Let S_{L} (resp. S_{F}) denote the 3-class group of L (resp. F). Then

$$
\operatorname{rank} S_{L}=r+t-1-z-w
$$

where

$$
\begin{gathered}
r=\operatorname{rank} S_{F}, \quad t=\text { number of ramified primes in } K / F, \\
\quad z=\text { rank of a certain subgroup of } S_{F} / S_{F}^{3}, \\
w=\text { rank of a certain matrix of norm residue symbols. }
\end{gathered}
$$

Also $0 \leq z \leq \min (r, u)$, where u is the number of rational primes which ramify totally in L / \mathbf{Q} and decompose in F / \mathbf{Q}. Furthermore, the matrix has $t-1$ rows and $r+u-z+1$ columns.

Note. In Lemma 3, the rank of an abelian 3-group S (e.g., rank S_{L}, rank S_{F}) is defined as follows: rank $S=\operatorname{dim}_{\mathrm{F}_{3}}\left(S / S^{3}\right)$, where \mathbf{F}_{3} is the finite field of 3 elements. This rank is also called the 3-rank of S.

Remark. $\quad w=0$ if $t \leq 1$.
Now assume $3 \not \subset h_{L}$. By Lemma 2, $u=0$. Hence $z=0$ in Lemma 3. Then from Lemma 3, we get

$$
\begin{equation*}
\operatorname{rank} S_{L}=r+t-1-w \tag{1}
\end{equation*}
$$

where w is the rank of a certain matrix with $t-1$ rows and $r+1$ columns. We first suppose that $r>0$. If we also suppose that $t>0$, then $w \leq t-1$, and Equation 1 implies

$$
\operatorname{rank} S_{L}=r+t-1-w \geq r>0
$$

which contradicts $3 \nmid h_{L}$. So we cannot have $3 \nless h_{L}$ if both $r>0$ and $t>0$. Next we suppose $r>0$ and $t=0$. Then $w=0$, and rank $S_{L}=r-1$. So $3 \nmid h_{L}$ if and only if $r=1$. Hence when $r>0$ (which means $S_{F} \neq\{1\}$), we have proved that $3 \nless h_{L}$ if and only if $r=1$ (which means S_{F} is cyclic but $S_{F} \neq\{1\}$) and $t=0$ (which means that K / F is unramified, and hence the discriminant of L is $D=d \cdot 1^{2}=d$). This proves Theorem $2(\mathrm{a}-\mathrm{b})$, provided there exists a unique (up to conjugacy) non-Galois cubic field with discriminant $D=d$ when S_{F} is cyclic but $S_{F} \neq\{1\}$. Now by class field theory, when S_{F} is cyclic and $S_{F} \neq\{1\}$, there is a unique cyclic cubic unramified extension K of F, and K / \mathbf{Q} is Galois with Galois group isomorphic to the symmetric group on three letters. K contains three conjugate subfields of degree 3 over \mathbf{Q}, and each has discriminant $D=d$. Hence there exists a non-Galois cubic extension L of \mathbf{Q} with discriminant $D=d$, and L is unique up to conjugacy.

We must still prove Theorem 2 (c)(i-xi). So we suppose $S_{F}=\{1\}$, which means $r=0$. By class field theory $r=0$ implies that K / F cannot be unramified, and hence $t \geq 1$. Then from Equation 1,

$$
\operatorname{rank} S_{L}=t-1-w
$$

where w is the rank of a $(t-1) \times 1$ matrix. So $w=0$ or 1 . Then $3 \nless h_{L}$ if and only if $t=1$ and $w=0$, or $t=2$ and $w=1$. Let e be defined as in Theorem 2 (c). Then by [2, Corollary 3.7], $w=0$ if e is a local norm at each prime of F which ramifies in K, and $w=1$ otherwise. We note that $t=1$ implies $w=0$ by the product formula for norm residue symbols, and if $t=2$, the product formula implies that e is a local norm at both of the ramified primes of K / F or at neither of them. Furthermore, if $3 \times h_{L}$, then Lemmas 1 and 2 imply that the primes of F which ramify in K must be either rational primes $p \equiv-1(\bmod 3)$, 3 (if 3 is inert in F / \mathbf{Q}), or the unique prime of F above 3 if 3 ramifies in F / \mathbf{Q}. Also it is easy to see that e is a local norm at a prime $p \equiv-1(\bmod 3)$ if and only if e is a cubic residue $\left(\bmod p \mathcal{O}_{F}\right)$. Correlating the above results for the case where $S_{F}=\{1\}$, we obtain the following restrictions for the discriminants D of the non-Galois cubic fields L / \mathbf{Q} such that $3 \not \backslash h_{L}$.

Lemma 4. Let notations be as in Theorem 2. If $S_{F}=\{1\}$, then $3 \nsucc h_{L}$ if and only if the discriminant D of L has one of the following forms:
(i) $D=d p^{2}$ with $p \in A_{1}$;
(ii) $D=d \cdot 3^{2}$ or $d \cdot 9^{2}$;
(iii) $D=d p_{1}^{2} p_{2}^{2}$ with p_{1} and p_{2} distinct elements of A_{2};
(iv) $D=d \cdot 3^{2} \cdot p^{2}$ or $d \cdot 9^{2} \cdot p^{2}$ with $p \in A_{2}$.

Remark. $\quad D$ is restricted to $d p^{2}, d \cdot 3^{2}$, and $d \cdot 9^{2}$ when $t=1$ (and $w=0$), and D is restricted to $d p_{1}^{2} p_{2}^{2}, d \cdot 3^{2} \cdot p^{2}$, and $d \cdot 9^{2} \cdot p^{2}$ when $t=2$ and $w=1$. However we have not proved that there exists an L for each of the possible values of D; what we have proved is that if there is an L with discriminant D, then $3 \times h_{L}$ if and only if D has one of the above forms. In the next section we determine for which of the possible values of D there exists an L with discriminant D.

3. Completion of proof of Theorem 2(c)

We first review some results on ideal class groups. Let F be a finite extension field of \mathbf{Q}, and let \mathfrak{m} be an integral ideal of F. Let $I(\mathfrak{m})$ denote the group of all fractional ideals of F which are relatively prime to \mathfrak{m}, and let

$$
P(\mathfrak{m})=\left\{\alpha \mathscr{O}_{F} \mid \alpha \in F^{x} \text { and } \alpha \equiv 1\left(\bmod ^{*} \mathfrak{m}\right)\right\}
$$

where \mathcal{O}_{F} is the ring of integers of $F, F^{x}=F-\{0\}$, and " $\alpha \equiv 1\left(\bmod ^{*} \mathfrak{m}\right)$ " means "for every prime $\mathfrak{p} \mid \mathfrak{m}, \alpha$ is a \mathfrak{p}-unit and $\alpha \equiv 1\left(\bmod \mathfrak{m}_{\mathfrak{p}}\right)$ in the \mathfrak{p} completion of F ". (When dealing with integral elements of F, we shall usually write $\bmod \mathfrak{m}$ instead of mod* \mathfrak{m}.) For $\mathfrak{m}=\mathcal{O}_{F}$, we let I denote $I\left(\mathcal{O}_{F}\right)$ and P denote $P\left(\mathcal{O}_{F}\right)$. Then I / P is the ideal class group, and for arbitrary integral ideals \mathfrak{m} of F,
$I(\mathfrak{m}) / P(\mathfrak{m})$ is called the ideal class group modulo \mathfrak{m}. For a given \mathfrak{m}, it is known that each element of I / P can be represented by an ideal which is prime to m ; hence there is a natural surjection $\psi: I(\mathfrak{m}) / P(\mathfrak{m}) \rightarrow I / P$. The kernel of ψ is $(I(\mathfrak{m}) \cap P) / P(\mathfrak{m})$. Let $\alpha_{1}, \ldots, \alpha_{s} \in \mathcal{O}_{F}$ be a set of representatives for $\left(\mathcal{O}_{F} / \mathfrak{m}\right)^{x}$, where $\left(\mathcal{O}_{F} / \mathfrak{m}\right)^{x}$ denotes the group of invertible elements of $\mathcal{O}_{F} / \mathfrak{m}$. Then $\left(\alpha_{i}\right) \in$ $I(\mathfrak{m}) \cap P$ for each i, where $\left(\alpha_{i}\right)$ denotes $\alpha_{i} \mathcal{O}_{F}$. If $\beta_{1}, \ldots, \beta_{s}$ is another set of representatives for $\left(\mathcal{O}_{F} / \mathfrak{m}\right)^{x}$ with $\beta_{i} \equiv \alpha_{i}(\bmod \mathfrak{m})$ for each i, then $\left(\beta_{i} \alpha_{i}^{-1}\right) \in P(\mathfrak{m})$. So the image of $\left(\beta_{i}\right)$ in $(I(\mathfrak{m}) \cap P) / P(\mathfrak{m})$ is the same as the image of $\left(\alpha_{i}\right)$ in $(I(\mathrm{~m}) \cap P) / P(\mathrm{~m})$. So there is a well-defined map

$$
\lambda:\left(\mathcal{O}_{F} / \mathfrak{m}\right)^{x} \rightarrow(I(\mathfrak{m}) \cap P) / P(\mathfrak{m}) .
$$

It is easy to see that λ is surjective. Now $\left(\alpha_{i}\right) \in P(\mathfrak{m})$ if and only if $\alpha_{i} \varepsilon \equiv$ $1(\bmod \mathfrak{m})$ for some unit ε of F if and only if $\alpha_{i} \equiv \varepsilon^{-1}(\bmod \mathfrak{m})$ for some unit ε of F. So kernel $\lambda \cong E / E_{\mathfrak{m}}$, where E is the group of units of F, and $E_{\mathrm{m}}=$ $\{\varepsilon \in E \mid \varepsilon \equiv 1(\bmod \mathfrak{m})\}$. From the exact sequences

$$
1 \longrightarrow(I(\mathfrak{m}) \cap P) / P(\mathfrak{m}) \longrightarrow I(\mathfrak{m}) / P(\mathfrak{m}) \xrightarrow{\psi} I / P \longrightarrow 1
$$

and

$$
1 \longrightarrow E / E_{\mathfrak{m}} \rightarrow\left(\mathcal{O}_{F} / \mathfrak{m}\right)^{x} \xrightarrow{\lambda}(I(\mathfrak{m}) \cap P) / P(\mathfrak{m}) \longrightarrow 1
$$

we get the exact sequence

$$
\begin{equation*}
1 \rightarrow\left(\mathcal{O}_{F} / \mathfrak{m}\right)^{x} /\left(E / E_{\mathfrak{m}}\right) \rightarrow I(\mathfrak{m}) / P(\mathfrak{m}) \rightarrow I / P \rightarrow 1 \tag{2}
\end{equation*}
$$

We now return to the case where F is quadratic with discriminant d, and the 3-class group $S_{F}=\{1\}$. We want to find all non-Galois cubic fields L / \mathbf{Q} with discriminants $d f^{2}$, where f is a rational integer, such that $3 \nless h_{L}$, where h_{L} is the class number of L. Let $C(\mathfrak{m})=I(\mathfrak{m}) / P(\mathfrak{m})$, and let σ be the generator of $G=\operatorname{Gal}(F / \mathbf{Q})$. If we assume $\mathfrak{m}^{\sigma}=\mathfrak{m}$, then $C(\mathfrak{m})$ is a G-module. Let $S(\mathfrak{m})=$ $C(\mathfrak{m}) /(C(m))^{3}$. Then $S(\mathfrak{m})$ is a G-module, and it is straightforward to check that

$$
S(\mathfrak{m}) \cong S(\mathfrak{m})^{+} \times S(\mathfrak{m})^{-}
$$

where $S(\mathfrak{m})^{+}=\left\{a \in S(\mathfrak{m}) \mid a^{\sigma}=a\right\}$ and $S(\mathfrak{m})^{-}=\left\{a \in S(\mathfrak{m}) \mid a^{\sigma}=a^{-1}\right\}$. By class field theory $S(\mathfrak{m})$ is isomorphic to the Galois group of the abelian extension M of F of exponent 3 which is the composition of all cyclic cubic extensions of F whose conductors divide \mathfrak{m}. Let M^{+}be the compositum of F and all cyclic cubic extensions of \mathbf{Q} contained in M. Let M^{-}be the compositum of the normal closures K of all non-Galois cubic extensions L of \mathbf{Q} that are contained in M. Then $\left(M^{+} / F\right) \cong S(\mathfrak{m})^{+}$, and Gal $\left(M^{-} / F\right) \cong S(\mathfrak{m})^{-}$.

Our goal is to consider the \mathfrak{m} which are associated with the discriminants in Lemma 4 and determine when $S(m)^{-} \neq\{1\}$. From Lemma 4, we see that we need to consider the following m :

$$
\begin{gathered}
\mathfrak{m}=(p) \text { with } p \in A_{1}, \quad \mathfrak{m}=(3) \text { and }(9), \\
\mathfrak{m}=\left(p_{1} p_{2}\right) \text { with } p_{1} \text { and } p_{2} \text { distinct elements of } A_{2}, \\
\mathfrak{m}=(3 p) \text { and }(9 p) \text { with } p \in A_{2}
\end{gathered}
$$

We note that $\mathfrak{m}^{\sigma}=\mathfrak{m}$ for all of these \mathfrak{m}, where σ is the generator of $\operatorname{Gal}(F / \mathbf{Q})$. Hence the results of this section apply to these values of \mathfrak{m}. To determine when $S(\mathfrak{m})^{-} \neq\{1\}$, we shall exploit the exact sequence (2). We let $Y(\mathfrak{m})=\left(\mathcal{O}_{F} / \mathfrak{m}\right)^{x} /$ $\left(E / E_{\mathfrak{m}}\right)$ and $T(\mathfrak{m})=Y(\mathfrak{m}) /(Y(\mathfrak{m t}))^{3}$. Since the 3-class group of F is trivial by assumption, the exact sequence (2) implies $S(\mathfrak{m}) \cong T(\mathfrak{t})$.

We first consider $\mathfrak{m}=(p)$ with $p \in A_{1}$. Let e be defined as in Theorem 2. We note that $\left(\mathcal{O}_{F} /(p)\right)^{x}$ is a cyclic group of order $p^{2}-1$ and $3 \mid\left(p^{2}-1\right)$. Also e is a cubic residue $\bmod (p)$ since $p \in A_{1}$. Hence $S(p) \cong T(p) \cong \mathbf{Z} / 3 \mathbf{Z}$. Also $S(p)^{+}=\{1\}$ since there is no cyclic cubic extension of \mathbf{Q} with conductor p for $p \in A_{1}$. So $S(p)^{-} \cong S(p) \cong \mathbf{Z} / 3 \mathbf{Z}$. This implies that there is a unique (up to conjugacy) non-Galois cubic field L with discriminant $d p^{2}$. This fact and Lemma 4(i) imply Theorem 2(c)(i).

Next we consider $\mathrm{m}=\left(p_{1} p_{2}\right)$ with p_{1} and p_{2} distinct elements of A_{2}. Then $\left(\mathcal{O}_{F} /\left(p_{1} p_{2}\right)\right)^{x}$ is the product of cyclic groups of order $p_{1}^{2}-1$ and $p_{2}^{2}-1$ with $3 \mid\left(p_{1}^{2}-1\right)$ and $3 \mid\left(p_{2}^{2}-1\right)$. Also e is not a cubic residue $\bmod \left(p_{1} p_{2}\right)$ since $p_{1}, p_{2} \in A_{2}$. It is then easy to see that $S\left(p_{1} p_{2}\right) \cong \mathbf{Z} / 3 \mathbf{Z}$. Since there is no cyclic cubic extension of \mathbf{Q} with conductor $p_{1} p_{2}$ for $p_{1}, p_{2} \in A_{2}$, then

$$
S\left(p_{1} p_{2}\right)^{+}=\{1\} \quad \text { and } \quad S\left(p_{1} p_{2}\right)^{-} \cong S\left(p_{1} p_{2}\right) \cong \mathbf{Z} / 3 \mathbf{Z}
$$

So there is a unique (up to conjugacy) non-Galois cubic field L with discriminant $d p_{1}^{2} p_{2}^{2}$. This fact and Lemma 4(iii) imply Theorem 2(c)(ii).

In the remaining cases (3) $\mid \mathrm{m}$. We first note that we do not need any cases where $d \equiv 1(\bmod 3)$, since then 3 would decompose in F and would ramify totally in L, and hence 3 would divide h_{L} by Lemma 2.

We now consider $d \equiv-1(\bmod 3)$. Then 3 is inert in F. For $\mathfrak{m}=(3)$, $\left(\mathcal{O}_{F} /(3)\right)^{x}$ is a cyclic group of order 8, and hence $S(3)$ is trivial. Furthermore $S(3 p)=\{1\}$ for $p \in A_{2}$. Now let $\mathrm{m}=(9)$. Then

$$
S(9) \cong T(9) \cong \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z} \quad \text { or } \quad \mathbf{Z} / 3 \mathbf{Z}
$$

according as e is a cubic residue $\bmod (9)$ or not. We note that $S(9)^{+} \cong \mathbf{Z} / 3 \mathbf{Z}$ since there is a unique cyclic cubic extension of \mathbf{Q} with conductor 9 . So $S(9)^{-} \cong$ $\mathbf{Z} / 3 \mathbf{Z}$ or $\{1\}$, according as e is a cubic residue $\bmod (9)$ or not. In the notation of Theorem $2, S(9)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ or $\{1\}$, according as $3 \in B$ or $3 \notin B$. So when $3 \in B$, there is a unique (up to conjugacy) non-Galois cubic field L with discriminant $d \cdot 9^{2}$. When $3 \notin B$, it can be checked that $S(9 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ if $p \in A_{2}$. Hence when $3 \notin B$ and $p \in A_{2}$, there is a unique (up to conjugacy) non-Galois cubic field L with discriminant $d \cdot 9^{2} \cdot p^{2}$. When $3 \in B$ and $p \in A_{2}$, it is also true that $S(9 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$. However, since $S(9)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ when $3 \in B$, the cubic extension associated with $S(9 p)^{-}$is the one associated with $S(9)^{-}$. So no new cubic field occurs in this case. The results of this paragraph and Lemma 4(ii and iv) imply Theorem 2(c)(iii-iv).

Now we consider $d \equiv 3(\bmod 9)$. In this case $S(3) \cong \mathbf{Z} / 3 \mathbf{Z}$ or $\{1\}$, according as e is a cubic residue mod (3) or not, according as $3 \in B$ or $3 \notin B$ (using the notation of Theorem 2). Since there is no cyclic cubic extension of \mathbf{Q} with
conductor 3 , then $S(3)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ or $\{1\}$, according as $3 \in B$ or $3 \notin B$. So there is a unique (up to conjugacy) non-Galois cubic field L with discriminant $d \cdot 3^{2}$ when $3 \in B$. If $3 \notin B$, then it can be checked that $S(3 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ if $p \in A_{2}$, and hence there is a unique (up to conjugacy) non-Galois cubic field with discriminant $d \cdot 3^{2} \cdot p^{2}$. When $3 \in B$ and $p \in A_{2}$, then $S(3 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$. However $S(3)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ when $3 \in B$, and hence no new cubic field is associated with $S(3 p)^{-}$. Next we consider $m=(9)$. We note that the Sylow 3-subgroup of $\left(\mathcal{O}_{F} /(9)\right)^{x}$ is isomorphic to $\mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 9 \mathbf{Z}$. So

$$
S(9) \cong \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z} \quad \text { or } \quad \mathbf{Z} / 3 \mathbf{Z}
$$

If $3 \in B$, then $S(9) \cong \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}$ with $S(9)^{+} \cong \mathbf{Z} / 3 \mathbf{Z}$ (since there is a unique cyclic cubic extension of \mathbf{Q} with conductor 9) and $S(9)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$. However, since $S(3)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ when $3 \in B$, no new cubic field is associated with $S(9)^{-}$. When $3 \notin B$, it can be checked that $S(9) \cong S(9)^{+} \cong \mathbf{Z} / 3 \mathbf{Z}$ and $S(9)^{-} \cong$ $\{1\}$. If $p \in A_{2}$, then $S(9 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$. However no new cubic field occurs because $S(3)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ when $3 \in B$, and $S(3 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ when $3 \notin B$. The results of this paragraph and Lemma 4(ii and iv) imply Theorem 2 (c) (v-vi).

Finally we let $d \equiv-3(\bmod 9)$. Then $S(3)^{+}=\{1\}$, and $S(3)^{-} \cong S(3) \cong$ $\mathbf{Z} / 3 \mathbf{Z}$ or $\{1\}$, according as $3 \in B$ or $3 \notin B$. So when $3 \in B$, there is a unique (up to conjugacy) non-Galois cubic field with discriminant $d \cdot 3^{2}$. It can be checked that $S(3 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ when $3 \notin B$ and $p \in A_{2}$, and hence there is a unique (up to conjugacy) non-Galois cubic field with discriminant $d \cdot 3^{2} \cdot p^{2}$. Also $S(3 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ when $3 \in B$ and $p \in A_{2}$, but no new cubic field occurs since $S(3)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$ when $3 \in B$. We now take $\mathfrak{m}=9$. The Sylow 3-subgroup of $\left(\mathcal{O}_{F} /(9)\right)^{x}$ is isomorphic to

$$
\mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}
$$

Then $S(9)^{+} \cong \mathbf{Z} / 3 \mathbf{Z}$, and $S(9)^{-} \cong \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}$ or $\mathbf{Z} / 3 \mathbf{Z}$, according as $3 \in B$ or $3 \notin B$. When $S(9)^{-} \cong \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}$ (i.e., $3 \in B$), there are four nonconjugate non-Galois cubic fields associated with $S(9)^{-}$. One of them is the cubic field associated with $S(3)^{-}$. So there are three non-conjugate non-Galois cubic fields with discriminant $d \cdot 9^{2}$ when $3 \in B$. If $3 \notin B$, then $S(9)^{-} \cong \mathbf{Z} / 3 \mathbf{Z}$, and hence there is a unique (up to conjugacy) non-Galois cubic field with discriminant $d \cdot 9^{2}$. If $3 \notin B$ and $p \in A_{2}$, then it can be checked that $S(9 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z} \oplus$ $\mathbf{Z} / 3 \mathbf{Z}$. So there are four nonconjugate non-Galois cubic fields associated with $S(9 p)^{-}$. One of these is associated with $S(3 p)^{-}$and another with $S(9)^{-}$. So there are two nonconjugate non-Galois cubic fields with discriminant $d \cdot 9^{2} \cdot p^{2}$ when $3 \notin B$ and $p \in A_{2}$. For $3 \in B$ and $p \in A_{2}, S(9 p)^{-} \cong \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z} \cong$ $S(9)^{-}$. So no new cubic fields occur in this case. The results of this paragraph and Lemma 4 (ii and iv) imply Theorem 2 (c) (vii-xi).

References

1. T. Callahan, The 3-class groups of non-Galois cubic fields II, Mathematika, vol. 21 (1974), pp. 168-188.
2. F. Gerth, Ranks of 3-class groups of non-Galois cubic fields, Acta Arith., to appear.
3. H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf Klassenkörpertheoretischer Grundlage, Math. Z., vol. 31 (1930), pp. 565-582.
4. C. S. Herz, "Construction of class fields," in Seminar on complex multiplication, Lecture Notes in Math., vol. 21, Springer-Verlag, Berlin and New York, 1966.
5. T. Honda, Pure cubic fields whose class numbers are multiples of three, J. Number Theory, vol. 3 (1971), pp. 7-12.
6. H. Reichardt, Arithmetische Theorie der kubischen Körper als Radikalkörper, Monatshefte Math. Phys., vol. 40 (1933), pp. 323-350.

The University of Texas
Austin, Texas

