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1. Introduction

For the purposes of this paper an H-space (X, l) is a pointed topological
space X which has the homotopy type of a connected CW complex of finite
type together with a basepoint preserving map #: X x X X with two sided
homotopy unit. An H-space is homotopy associative if the maps /(# 1)
and/(1 kt) are homotopic. An H-space is mod p finite if H* H*(X; Zip)
is a finite dimensional Zip module (Zip are the integers reduced mod p).

Let p be odd and let (X,/0 be a homotopy associative H-space which is
mod p finite. Then H* and H, H,(X; Z/p) are dual Hopf algebras. By
Theorem D of [13], H*(X; Z) has no p torsion if, and only if, H* is primitively
generated. But, by Theorem 1.1 of [5], H* is primitively generated if, and
only if, H, is commutative. Thus:

THEOREM 1.1. Let p be odd. Let (X, !) be a homotopy associative H-space
which is mod p finite. Then H*(X; Z) has no p torsion if, and only if, H, is
commutative.

This theorem suggests that one might study homotopy associative H-spaces
which are mod p finite and have integral p torsion by determining exactly how
the resulting lack of commutativity in H, occurs. The purpose of this paper
is to begin such a study.
Now commutativity or the lack of it in H, is measured by the Lie bracket

product [ ]:H, (R) H, H, which is defined by the rule

[a, fl][a, fl] a// (-1) I’l Ilfla for a, fl e H,

(] denotes the degree of an element). Let {Qk}k>_O be the Milnor elements in
the Steenrod algebra A*(p). (See [8].) In particular Qo is the usual Bockstein
operation tip. The action of A*(p) on H, is a right action obtained by duality
from its left action on H*.

THEOREM 1.2. Let p be odd. Let (X, #) be a homotopy associative H-
space which is mod p finite. Given integers k > 0 and m > suppose
x e (ker Qom)2m+1 is primitive and y Qk(X) is non decomposable. Then we
ean find nonzero primitive elements {as}l_<s_<p_ and fl in H, where (fl, y) v 0
and as is defined recursively by the rule al flQk + 1, as [as-X, fl] for s > 2.
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If (X,/0 is a mod p finite H-space then H*(X; Q) is an exterior algebra on r
odd dimensional generators for some r > 0 and X is said to be a rank r H-space.
Using Theorem 1.2 we show the following.

THEOREM 1.3. Let p be odd. Let (X, l) be a l-connected homotopy associative
H-space which is mod p finite. Then"

(a) /frank X < 2(p 1) then H*(X; Z) has no p torsion.

(b) /frank X 2(p l) and H*(X; Z) has p torsion then H, is primitively
generated and P(H,) has a Zip basis

{}_<_<,,_ {},_<_<,,_ {/}

where 13l 2p + 2 while s and s are defined recursively by the rule a
#Q1, Qo, [-,, #]fo >_ 2, [_ , #]for >_ 2.

Under the restrictions on (X,/) stated, Theorem 1.3 completely determines
the structure of H, and H* as Hopf algebras over A*(p) for the only possible
case of rank 2p 2 or less in which integral p torsion occurs. The rood 3
cohomology of F4 and the mod 5 cohomology of E8 show that this possibility
does occur. Furthermore, in all of 1.1, 1.2, and 1.3 the necessity of some type
of homotopy associativity holding for X is essential. This is demonstrated by
the H-spaces constructed in ]-3] or [10].
We prove 1.2 and 1.3 by a combination of arguments involving secondary

operations and homological algebra. In Section 2 we discuss finite H-spaces
and Hopf algebras. In Section 3 we discuss secondary operations in the co-
homology of homotopy associative H-spaces. In Section 4 we prove Theorem
1.2. In Section 5 we prove Theorem 1.3.

Finally I would like to add that both the theorems and the proofs in this
paper originated from a consideration of the work of Zabrodsky in [13].
This paper should be viewed as a sequel to that one.

2. Hopf algebras and finite H-spaces

The basic reference for Hopf algebras is [9]. We are only concerned with
graded, connected Hopf algebras of finite type over Zip. Let (X,/) be an
H-space. Then H* H*(X;Z/p) and H, H,(X;Z/p) have natural
structures as Hopf algebras over A*(p) induced by /t and the diagonal map
A: X X X. The action of A*(p) on H, is a right one and is obtained by
duality from the usual left action of A*(p) on H*.

Given a Hopf algebra F we use P(F) and Q(F) to indicate primitives and
indecomposables respectively. If F* is the dual of F then P(F*) and Q(F) are
dual in the sense of a quotient module of F being dual to a submodule of F*.
In the case F H*, Q(H*) and P(H,) possess dual Steenrod module structures
as well.

Given a Hopf algebra F we define the Lie algebra product

[, ]:r(R)rr
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as in Section 1. We define the Frobenius map p" F F by the rule ,(x) x’
for any x F. These two maps provide F with a restricted Lie algebra structure.
Further P(F) is a sub restricted Lie algebra of F. Given a restricted Lie algebra
L we can construct a primitively generated Hopf algebra V(L) such that
P[V(L)] and L are isomorphic as restricted Lie algebras. We call V(L) the
universal enveloping Hopfalgebra of L. See [9] for details on V(L).
Given a Hopf algebra F we can define its cohomology H**(F). An element

of HS’t(F) will be said to have external degree s and internal degree t. We will
consider it only as a bigraded Zip module and ignore its other algebraic structure.
Let " F F (R) F be the comultiplication of F and let " F F (R) F be
the reduced comultiplication defined by the rule

(x) (x)- x(R) (R)x for anyxF.
Define a filtration {Fq}q>_o by the rule Fo Z/p, F1 P(F) and Fq+
{x e F[ UP(x) Fq (R) Fq}. Let E(F) be the associated bigraded Hopf algebra.
As usual we can consider E(F) to be a graded Hopfalgebra by assuming elements
of E(F)’t have degree s + t. The filtration {F}q>_o induces a spectral se-
quence {E**}r_>l of bigraded Zip modules with E*= H**(E(F)) and
E** H**(F). See [7] for the properties of H**(F) and the above spectral
sequence. The above, of course, is only a simplified version of the spectral
sequence constructed in [7].
For the rest of this section we will assume that p is an odd prime and that

(X, p) is an H-space which is mod p finite. It can be shown (see Corollary 3.12
of [2]) that"

LEMMA 2.1. The dimension of Q(Hdd) (and hence P(Hoad)) as a Z/p module
equals the rank ofX as an H-space.

We will also have need of a number of structure theorems regarding Q(H*)
and P(H.).

LEMMA 2.2. Q(HeVe.) ,,>_ QomQ(H2m+l)

LEMMA2.3. Given , fl P(Hodd) then 2 f12 O, fl -fl and
Qo flQo 0.

LZMMA 2.4. Given , P(Heve,) then ’ O, and t
O.

Lemma 2.2 is a result of Lin (see [6]). Lemma 2.3 is a result of Browder
(see [5]). Lemma 2.4 can be deduced from 2.2, specifically the fact that
Q(HTM) 0 unless m rood p. For, by duality, P(Hz,,) 0 unless m
mod p. Thus, for dimension reasons, 1 acts trivially on P(Heve,) and the
restricted Lie algebra structure on P(Hven) is trivial.
The Milnor elements {Q}>_o satisfy the relations

{0_,(2.5) QQt
QQ, k
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In particular, for any k > 0, H, is a Qk differential Hopf algebra. For any
0 -# fl P(Heven) we now define Fk(fl), a sub Qk-differential Hopf algebra of
H,. Let S {fl} w {s}s>_ where s is recursively defined by the rule zl flQk
and [z_ 1, fl] for s > 2. Let L(S) be the Zip module generated by S.
By 2.3 and 2.4, L(S) has a well defined restricted Lie algebra structure. Then
Ik(fl) is the universal enveloping Hopf algebra of L(S). To completely de-
termine lk(fl) it remains to determine which of the elements zs are nonzero.
Obviously ct 0 implies cz 0 for > s.

LEMMA 2.6. For any k > 0 and any fl P(Heven), op 0 ill I’k(fl).

Proof By 2.4, tiP= 0. It follows that ’_Y fliflp-i-a= (flt,)Qk O.
Thus it suffices to show % ’_Y fliflp-i. It follows by induction on s that

One uses the definition ,+a ,fl fl and the binomial identities

(si) (s-1)+i (7 1)1 for/< s.

And, since

( 1)i(p-I) modp,

it then follows that % is of the required form. Q.E.D.
Of course 2.6 is not necessarily the strongest bound on the size of Fk(fl) for

a given k and ft. It is entirely possible that i 0 for < p as well. However
Theorem 1.2 assures us that under suitable hypotheses this will not happen.
For, the hypotheses enable one to construct secondary cohomology operations
by which it can be proved, using homological algebra, that # 0 for < s _<
p 1. These secondary operations are constructed in the next section.

3. Secondaw operations

Besides 2.5 the Milnor elements satisfy the additional relations

(3.1) Qk’’+p= "+PQk Qk+l" for any m > 0, k > 0.

It follows that for k, m > 0 we have the relation

QO’n+PkQk QoQk,’n+ t’" + QoQk + 1’".
For elements of dimension 2m + 2 this reduces to the relation

(3.2) Qo’’+PQk Qk + 100".
Now (unstable) relations in the Steenrod algebra give rise to (unstable)

secondary operations. We will construct an unstable secondary operation b
in dimension 2m + associated with 3.2 such that"
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THEOREM 3.3. Let (X, !) be a homotopy associative H-space. Let k > 0 and
m > be integers. Let x P(HEra/ 1)(3 ker(Qo#m). Let y Qk(X). Then,
in H* (R) H*,

where z ker (/7* (R) (R)/*).

This theorem is analogous to Proposition 2.1 of [13]. Section 2 of [13], in
particular, is a useful preliminary to our proof. The rest of this section will be
devoted to proving Theorem 3.3.

All coefficients will be understood to be Zip. We use K to denote the
Eilenberg MacLane space K(Z]p, s) and t to denote the fundamental class in
HS(K,).

Consider the following homotopy commutative diagram of infinite loop
spaces and maps.

Here

lk 2mp + l2mp + 2p

hE Eo

hK,,, + gm+

h
l2mp+ 2 l2mp+ 2p +

h*(t2mp+2pk+a)-- Qk+l(t2mp+2), h(12m+2pk) Qk(12m+l),

9*(t2mp+2) Qom(t2m+ ) and 9’(2mp+Zp+’+ ) Qom+p(t2m+2,).
The remaining vertical maps arise as the fibre sequence of y and go respectively
while h2 and fh are the induced maps between the two fibre sequences. In
H*(E) let u j*(t2m+ 1) and w Qk(U).

LEMMA 3.5. There exists v H2rap+ 2Pk+’(E) such that

(a) i*(v) Qk+ l(12mp+ 1)

(b) /7(v)-- 1 I(P.- wP-’(R)w
-l kl/p

Proof By Proposition 3.1 of [11], Eo K2+2p x K2mp+2pk+t and we
can choose the equivalence such that

o(1 12mp+2pU+t) : 1
(12m+2pU 1)p_i (12m+2pU 1)i"

Since h is an H-map we let v h(1 @ tzm+zp+,). Q.E.D.

LEMMA 3.6. W # 0.
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Proof Since f9 * it follows that fE g2m X g2mp. Since Ok(t2m) 0
it follows by the naturality of the loop map f: H*(E) --+ H*(E) that w = 0.

Q.E.D.
Secondary operations are defined by means of universal example (see Section

of [11]). We define a secondary operation qb by the universal example (E,/, v).
To see that b satisfies 3.3 pick f: X K2m+ such that f*(12m + 1) X and

let f: X E be a lifting off.
g2mp+

Since x is primitive f is an H-map. Now f is not an H-map but its H-map
deviation can be calculated. That is, let r/be the composition

Ix/
E x K2mt+l---, E x E E.

Then there exists 09: X x X--, K2mv+ such that the following diagram is
commutative

X x X a,,x (X x X) x (X x X) ss,, E x K2m+

(3.8)

X E

(see Section 2 of [13]). It follows that

(3.9) *f*(v) blP-i ( "31- Ok+ lfD*(12mp+ 1)"

Letting z *(t2m+a) we need only show z ker (fi* @ @ fi*). To
do this we give a different interpretation of . Now choosing f amounts to
choosing a null homotopy 1" 9f *. And is then defined in terms of 1. But 1
also induces a homotopy equivalence between the fibre F of 9f and the fibre
X x Kzz+ ofthe trivial map .. However the H-space structure on X x K2+
induced from F by this equivalence is not simply the product H-space structure.
There is the twisting factor " X x X K2p+ as well. That is, the H-space
structure on X x K2m+ is given by the composition

X X K2mp+ X X K2mp+l
lxTxl

Axx

/z X.uo

X/to

X X X X K2mv+ X K2mp+

(X x X) x (X x X) x K2mv+ X K2mv+
,X x K2.,v+ x K2mv+l
X X K2mp+
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(Again, see Section 2 of [13] for this second interpretation of 09.) (Here T is
the twist map and /to is the multiplication on Kz,,p+ 1.) Thus to show z
ker (/7* (R) (R)/7*) it suffices to show:

LEMMA 3.10. F is a homotopy associative H-space.

Proof If A and B are homotopy associative H-spaces and h: A -, B is an
H-map then there is an invariant ct(h)[A A x A, fiB] which is trivial if
and only if the induced H-space structure on the fibre of h is homotopy
associative (see Section 2 of [13]). Also

o(gf) (fg)#o(f) + (f x f x f)#o(g)

where ( )# and ( )# denote the mappings induced on homotopy classes.
But fg while 0(g) 0 since g is an infinite loop map. Q.E.D.

Remark. John Harper has considerably generalized Theorem 3.3 by using a
different argument. His results apply to any decomposition Y, abi Qo"
of Oom.

4. Proof of Theorem 1.2

In this section we will prove Theorem 1.2. Theorem 3.3 is actually the first
part of this proofmthe part involving secondary operations. In this section we
will be concerned with the part of the proof involving homological algebra.

Let x, y, k, and m be as in 1.2. Pick fle P(H2m+2pk) such that (fl, y) 4: 0.
Let F I-’k+ l(fl) be the Qk+ differential Hopf algebra defined as in Section 2.
To prove 1.2 we need only show %_ 0 in F. The inclusion map p" F c H,
dualizes to a map of Qk+l differential Hopf algebra p*" H* F*. Pick a

Z, basis B {bi} of H* such that

(i)
(ii)
(iii)

a subset B’ c B is a basis of ker p*,
A {yi}l<_i<_p_ c B,
forl < s <p- (flS, bi) 0unlessb =yS.

By identifying elements with their images we will speak of elements of H* as
being in F*. Thus C B B’ is a basis of F* and

C(R)C= {c’(R)c"lc’,c"eC}

is a basis of F* (R) F*. (Throughout this section tensor product of sets will be
defined in a similar manner.)

LEMMA 4.1 For any w (1*)2mp+2pk+1, fi*(W) can be expanded in F* (R) F*
in terms of the elements C (R) C A (R) A.

Proof The only elements of A (R) A in dimension 2mp + 2pk+l are
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But, for anyl < s <p- 1,

(/-’ (R)/’, *(w)) (,(/-’ (R)/’), w) (/, w) 0

since tip 0 by 2.4. Q.E.D.

Let

Theorem 3.3 implies that in H*(R) H*, and hence in F*(R) F*, fi*qS(x)=
t(y) + Qk+l(z). Further, z ker (/7* (R) (R)/7*). Thus z represents an
element {z) in H2’2"p/ I(F) when one considers H**(F) as being defined via
the cobar construction.

LEMMA 4.2. {Z} -: 0.

Proof. We consider H**(F) as being defined via the cobar construction.
Then Qk+l induces a map on H**(F) and it suffices to show {Qk+ l(z)} -: 0 in
H2,2mp+ 2pk/,(F). But this follows from the relation

Qk+ (z) (y) + /7*b(z)

since, by 4.1, -t(y) + #*dp(z) has a non zero image in ker (/7* (R) (R) fi*)]
image/7*. Q.E.D.

Filter F as in Section 2 and let E(F) be the associated graded Hopf algebra.
By 4.2 and the spectral sequence of Section 2 it follows that"

LEMMA 4.3. H2’2mp+I[E(F)] # 0.

But H**[E(F)] is easy to compute. First, E(F) is isomorphic, as a Hopf
algebra, to the Hopf algebra (R),s,o E(s)(R) P(fl)/(fl) where E indicates
exterior algebra, P indicates polynomial algebra, and all generators are assumed
to be primitive. Secondly cohomology respects tensor products; that is, given
a tensor product (R)’-1 F of Hopf algebras, then H**[(R)’._I Fi] and
(R)’-1 H**(F3 are isomorphic as bigraded Zip modules. Finally, we can
calculate the cohomology of the factors E(s) and P(fl)/(fl).

(a)

(b)

H**[E(a)] and P() are isomorphic as bigraded Z/p modules where
has bidegree (1, I1).
H**[P(fl)/(flP)] and E(fl) (R) e(fl)are isomorphic as bigraded Z/p
modules where fi and fl have bidegree (1, 2m + 2pk) and (2, 2mp + 2pk/

respectively.

It now follows from 4.3 that op_ # 0. For the only possible non zero element
in n2,2mp+ I[E(F)] is p-l.
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5. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Let (X,/0 be a 1-connected H-space
which is homotopy associative and mod p finite. To prove 1.3 we use 1.2.
Hence we first establish"

LEMMA 5.1. There exists m > and x P(H2m+ 1) c ker Qo" such that
y Qo(x) is non decomposable.

Proof By 4.9 of [1], Q(H even) 4: 0. Pick the minimal n >_ 0 such that
Q(H2n+2) O. By Theorem 6.11 of [1] and the 1-connectedness of X it
follows that n > 1. Using 4.9 of [-1] and the fact that H, is associative it
follows that in dimensions 2n + or less, H* is isomorphic, as a Hopf algebra,
to a primitively generated exterior Hopf algebra. By 2.2, Q(H2n+2)
QoQ(HZn+ 1). Hence there exists P(H2n+ 1) such that Qo(x) is non decom-
posable. Pick the minimal s such that ker Qops"... p"". Let x
ifs 0andx Ps-’"..."(ff)ifs > 0. Letm fin. ThenxP(HZ"+l) n
ker Qom. Also Qo(x) is non decomposable. For s > 0 this follows from
4.21 of [9] since Qo(x) is primitive and lies in dimension 2m + 2 where
m 0modp. Q.E.D.

Pick fl P(H2m+ 2) such that (fl, y) -: 0 where y and m are as in 5.1.

LEMMA 5.2. H, contains a sub Hopf algebra l) which is primitively 9enerated
and P(f) has a Zip basis

where 1 flQ1 1 flQo, while , [,-1, fl] and , E,_ 1, ill for s >_ 2.

Proof By 2.3, 2.4, and 2.6 the Zip module L generated by S has a well
defined restricted Lie algebra structure. Hence there exists a primitively
generated Hopf algebra f c H, such that P(f)- L. It is left to show
p_ 0 and p_ 4: 0. Since fll 0 by 2.4 it follows that p_ (p-11"
Hence it suffices to show p_ - 0. This follows from 5.1 and 1.2. Q.E.D.
Now part (a) of 1.3 follows from 2.1 and 5.2. To prove part (b) we first

observe that if rank X 2p 2 then, by 2.1 and 2.3, P(’odd) and P(Hodd) are
isomorphic as Steenrod modules. In particular q acts trivially on P(Hodd) if
q > 1. Then, by the dual of 2.2, fl has dimension 2p + 2 plus P(f) and P(H,)
are isomorphic as Steenrod modules. It remains to show P(H,) is primitively
generated. By 2.1 of [2] it suffices to show xp 0 if x H2p+2. But xp

P+ l(x) PIp(x). Let y (x). Now x must be primitive and thus y is
primitive. By 4.21 of I-9] y will be non decomposable if y is non zero. But this
is not possible since Q(H2) 0 ifs : p + 1. Thus xp l(y) O.
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