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1. Introduction

Recently Schoenberg [5] and later Cavaretta [1] have revived interest in
Landau’s problem and its generalization due to Kolmogorov. The methods of
Schoenberg are quite general but require appropriate differentiation formulae
which when higher derivatives are involved can be quite intricate. The approach
of Cavaretta is first to prove the results for functions having an integral period
and then to reduce the general case to this situation by a simple device.

In a forthcoming paper [3], Schoenberg extends Landau’s problem in a
different direction which is related to the study of cardinal ’-splines. For
example he shows that if [[f[[o < Ao, [If" + f[[(R) <- 1, then []f’l]oo <
x/Ao(2 + Ao), where equality holds for certain functions.
We propose to consider the linear differential operators 5(’, given by

&av, (D- Vl)...(D- Vv), v 1,2,...,n

where Vl, V2,. ’, are real. In Section 2 we give an explicit expression for the
generalized exponential Euler spline ,, r(x) introduced by Schoenberg I-4] and
state the first main result in Theorem 1, where the functions ,, r(x) come out
as extremal functions. In particular we show that if

Ilfll(R) < Mo, 11(O2 y2)f[] <_ M2

then ]l(D __+ Y)f[[ < v/Mo(2M2 Mo’2), provided Moy2 < M2. It is inter-
esting to observe that Schoenberg [3-1 obtained the same bound for IIf’[Ioo. In
Section 6, using a different method we are able to show that the same bound
holds for Ilf’ fllo provided

I1 < M2{Mo(2M2 Moy2)} -1/2,

which includes our result also as a special case.
In Section 3 we sketch the proof of Theorem which is patterned on the lines

of Cavaretta’s proof [1]. In Section 4 we prove our second main result as
Theorem 2 using a different approach based on a Theorem of Hirschman and
Widder [2]. Section 5 deals with some special cases where M, <_ MoIYlY2 "Y,I.
The results of Theorem 3 and the corollaries of Section 5 complement in a sense
the results of Section 2 and Section 6.
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444 A. SHARMA AND J. TZIMBALARIO

2. Generalized exponential spline .,(x)

We shall denote by .,(x; t) the exponential -spline determined by the
following conditions:

(i)
(ii)
(iii)

DSe....(x; t) 0 in (vrl, Vrl + rl) for every integer v,.. r(x; t) C"- (R),
., r(x + r/; t) tO.. r(x; t),

where r/ > 0 is a constant. Here 7 refers to the vector (71, 72,..., 7n) where
71, 72,..-, 7. are real numbers. When -1, we shall denote the W-spline
by .. r(x).

Let A..r(x; t) denote the restriction of ..r(x; t) to [0, r/). Schoenberg has
shown [4] that if 0 < x < r/, then A..r(x; t) has n simple and negative t-zeros
and if x 0, it has n simple and negative t-zeros. Earlier we have shown
[6] that if 71, 72,. 7. are distinct and nonzero, then

A..r(x; t)= 1 + (1- t)
ev’‘

Multiplying the above by a suitable constant it is easy to see that A.,(x; t) is
the divided difference of (t 1)eY"/(t e) with respect to the variable y at
the nodes 0, 71,..., 7.. In the rest of the paper we shall set

(2.1) A.,r(x; t) [0, 71,..., 7.; erX( 1)/(t err)].

This formulation is valid without any restriction on 7’s. From (2.1) it follows
easily that

(2.2) (D 7.)A..r(x; t) A._l.(x; t)

where (y,,..., ._ ,) in A._ 1, (X; t).
Schoenberg also showed [4] that A..(x; t) for a fixed < 0 has exactly one

simple zero in 0 < x < r/. We shall give a direct short proof of this assertion.
This is obviously true for n 1. If we suppose that this is true for A._ 1. r(x; t),
then it follows from (2.2) that e-r"XA.(x; t) is bell-shaped and hence can have
at most two zeros in [0, r/). Since A..r(r/; t)= tA..(0; t) it follows that
A..r(r/; t) and A..r(0; t) are of opposite sign when < 0. Hence A..r(x; t) can
have only an odd number of zeros in [0, r/) which implies that it can have only
one simple zero there. This proves the assertion.
We observe that because of (iii), .,r(x)--..r(x;- 1) is periodic with

period 2q. Set

n,v
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We now consider the class z of real-valued functions defined on R which
satisfy the conditions:

(i) f(x) 0(1) as Ixl - .(ii) f(x) e c"- (R),
(iii) ft"-1)(x) is piecewise continuously differentiable for all real x,
(iv) ’...fis bounded.

We now formulate:

THEOREM 1.

(2.3)

then

(2.4)

Iff(x) and satisfies

II,fll < r() v 2, n- 1

The bounds in (2.4) are sharp, since they are attained whenf oo., (x).
For a more general formulation of the theorem, let F(x) al. Set

(2.5) II,FII M, v 0, 1,..., n

and f(x) aF(bx). Choose a and b such that

v(b) and II,,ufll r(be) 1

Then the equations which determine a and b are

amo F(ff,, ab"m, 1.

COROLLARY 1. Suppose Mo, M. are such that thefollowing equation in b

(2.6) ’"a r(br)
..x..o Mo

has a solution. IfF and []FI] Mo and []&a.,Fl[o M., then

(2.7) My I1,fll -< ,(’-(/n)MX/-.-
where

(2.8) C) (r). tr()/.-

and b is 9iven by (2.6).

Example 1. Let n 2. Then the restriction of z,(x) to [0, q] is given by
A, r(x; 1) where

A,,(x; -1) [0, r, r; 2e’/( + e’")].

(2.5a)

We then have:
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If Y2 1 ) > 0, then

Hence

h2,(x; -l)
7
21 [1_ cosh (x Z q___/2),]

cosh yrl/2 _]

n,0 ffy2 1
cosh

Similarly

F)2,1

so that

2,
by 2

Also z,zr() 1. Then (2.6) becomes

M2[1 M072
cosh /2

and from (2.8),

{r) tanhb- 1 2

Thus we have proved that if [[f[[ Mo, [I(Dz v2)f[[ Mz and MoVz <
M, then

(Z9) I1(O r)fll (go(2g Mor).
It is interesting to observe that this bound was obtained by Schoenberg for
[[Df[[. We shall return to a more general problem later in Section 6.

3. Proof of Theorem 1

The proof is similar to that of Cavaretta [1].
(a) We will first prove the theorem for periodic functions with integral

multiple of q as a period. Supposef(x + krl) f(x) where k is an even integer.
From Section 2, we know that

(3.1) (I)n, g(X -3
I- k/) (I)n, 7(x)

and also that ., v(x) has exactly one zero in [0, r/), so that there are exactly k
distinct zeros of ., (x) in any period of length krl. Since

(I)n, 7(X -I- /) (I)n, 7(X),
there are at least k disjoint or abutting intervals in an interval of length kq such
that in each interval . r(x) takes its maximum rx) with positive and negativean, 0

sign alternately. Set

(3.2) II fll
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We will assume t > and arrive at a contradiction. Choose Xo such that

(3.3) I,,f(xo)l II,,,J"llo
and we now choose x, such that

(3.4) .qo, I)., (Xo x,) q,f(xo).
We now set h(x) ,,, r(x xa) (lflz)f(x). Since 1/e < 1, h(x) has at least
one zero in each of the above intervals.
Again from (D- Y)9 er’D(e-r’9), we can use Polya’s generalized

Rolle’s theorem and see that 5e, h(x) has at least k distinct zeros in a period for
v < n- 1. Since Xo is a local maximum for ,rf(x) and also for
5e, r(I)., r(x x) we have

DP,,, rf(xo) D’, ,O,,, r(xo xx) 0

so that Dq’,,,h(xo) O. Hence

,,+ ,.eh(xo) (D ,+ ,)a, rh(xo)
(3.5) --n+ l[,v,),fn,,(Xo X1) (l/)P,,,rf(xo)]

0

so that again using Rolle’s generalized theorem it follows from (3.5) that
Z’+ a,rh(x) has at least k + distinct zeros in a k-period. By another use of
the Rolle’s theorem again, we see that ., rh(x) has at least k + sign changes.

Since 1/ < 1, [&a,, f(x)l < I[&,, ,.(x x)11 and since

.’.,.,(x x)

is a step function with exactly k sign changes in a period, it follows that .,h(x)
has also exactly k sign changes which is a contradiction. Hence _< 1.
The case v n is proved similarly with minor modifications.
(b) In order to prove the theorem in the general case we shall first show that

if f e and satisfies (2.3), then M,, M,,(f) ]]’v,v(f)]] is bounded. For
this it is enough to show that Ma is bounded.
We set

e’*x ev’x

1 e"’* e
p(x)

1 enm,1 enm,.

Then r/, 2q,..., nq are the only zeros ofp(x), and they are simple. We choose
fl > 0 such that

(3.6) ILe.,vpl > M,,,

(3.7) o_<1_<.min p(+jri) > Mo.
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Define c < r/and d > nq such that

[p(c)[ Mo and Ip(d)l Mo.
Let m maxxtc, d I&l,rp(x)[. We claim that Mx < mx. For if not there is
an Xo such that i&l,f(xo)l > mx. From (3.7) it follows that there is an
x (c, d) such that p(x) f(xo). Consider the function

H(x) p(x) -f(x + Xo xx).

Then H(xx) 0 and Ix,rf(xo)] > [,rp(xa)]. In other words,

e-r’’l(D y)f(x + Xo x)lx=, > e-r’’l(D- Va)p(x)],=,,,
i.e.,

(3.8) [D{e-r’*f(x + Xo- Xl)}l=x, > [D(e-r’P(X))lx=,.
From simple geometric considerations we see on using (3.8) that H(x) has at
least n + zeros in [c, d]. By generalized Rolle’s theorem, it follows that.,H(x) has at least one zero in It, d], but this is impossible because of (3.6).

This completes the proof that M is bounded. We now associate a periodic
function F(x) with the given function f(x) and show that M(F) is close to
M(f). Following Cavaretta [1] we set

1)"(x 2)"
n + k 1

(x- 1)t, 1 < x < 2,

(-1)"(x + 2)"
n + k- 1

(x + 1), -2 < x < -1
o k

0, Ixl 2.

Set F(x) f(x)a(x/kn) for -2kn x 2kn and F(x + 4kn) F(x) for
all x. Since ,r = (D ) is a polynomial in D of degree v, the
remaining proof is exactly the same as that of Cavaretta with very minor
modifications.

4. A different approach

In Section 2, we observe in Corollary that (2.7) holds only when (2.6) has a
solution. In Example also we give the bound on I(D v)fl under the con-
dition MoVz < Mz. In the case when this is not so we can use the following
theorem of Hirschman and Widder in some situations.

THEOREM (Hirschman and Widder [2]). Suppose dp(x) is continuous and
bounded on R. Then the only function satisfying

(4.1) .La,, rf b(x), x R,

O(ex), x +c,
(4.2) f(x)

(O(e’X), x c,
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where 1 is the largest negative ])k (or -- if all the ])k ill Section are positive)
and 2 is the smallest Vk (or + if all the Vk are negative) is 9iven by

(4.3) f(x)=_ooG(x- t)dp(t)dt

where G(t) tT * 2 *’"* #, 9k(t) (sgn 7k)9(kt) alld

et, -- < < O,
(4.4) #(t) 1/2, 0,

!1.0, 0< t< c.

Consider the operator P,,(D) "d aD, < rn < n 1, a,, O. Then
by the above theorem

(4.5) Pm(D)f(O) Km,(t)qb(t) dt

where

(4.6) K,,,r(t) [P,,(D)G(x- t)]=o.

By a reasoning similar to that of Hirschman and Widder ([2], p. 91, Theorem
5.1) we can show that K,,,(t) does not have more than rn changes of sign for
any choice of 71, 7,. 7,.

Set bo(t) sgn Km, r(t) and

(4.7) fo,r(t) j-?o G(x- t)dpo(t ) dr.

Then fo, is bounded and Ao,, fo, r bo(X). Also

(4.8) Pm(D)fo,r(O)=ffmlKm, r(t)ldt.

On the other hand iff is any function which satisfies (4.2) and I1, fll oo < 1,
then by (4.5),

IPm(D)f(O)l<lKm,,(t)ldt.
Since the point x 0 is as good as any other, we have proved"

THEO,EM 2. lff(x) satisfies (4.2) and if I1=, rfll -< 1, then

(4.9) IIPm(D,fll <_lKm,(t)idt
where Kin, r(t) is yiven by (4.5). The bound in (4.9) is sharp.

In particular, we have"
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COROLLARY 2.

then (4.9) holds.

If Ilflloo Mo where Mo is a constant > Ilfo,ll and if

II..fll ,
A slightly more general result is given by

COROLLARY 3.
exists a real positive b which satisfies the condition

(4.10) IIfo,vllbM <_ Mo.
Then

(4.11)

Suppose Ilfllo Mo, II..flloo M are such that there

IlPm(D)flloo M, -o IKm,(t)l dt.

Proof. In order to prove (4.11), we set F(x) af(bx). Then ilFlloo aMo
and ll.,oFll abnMn Choose a and b such that F satisfies the hypothesis
of Corollary 2. Then aMo > Ilfo,brll, ab"M. 1. Choose b to be a solution
of (4.10) and a > Ilfo,brll/Mo. By (4.9), we have

bmllP.,(D/b)F abm[lPm(D)fll

<_ bmf _ IKm.br(t)l dt

Hence

bm-n f-oo Igm,(t)! dt.

IIPm(O)fllo IKm, r(t)l dt.

5. Some special cases

(a) n 2, 2 > 0, 1 < 0. In this case

eT1
-, >0,

G(t)--
)2 1

e,F2t
t<O.

2 1

Here PI(D) D a so that from (4.5),

{G’(-t) aG(-t)}dp(t) dt

f-oo Kl’(t)c(t)dt
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where

Hence

_
Y_2. e- 2t,

Kl,(t) 7 7x

1..

t>O,

t<O.

(
o(t) sgn /(1 r(t) sgn

(sgn (t 72),
so that (4.7) gives on simplification

sgn (- 71) sgn ( 72) e,X +
Y(Y2 )

fo,(x)
sgn (ct -_72)_-- sgn (z 71) e2X +

72(71 72)
Then

t<O,
t>O,

sgn (o 72)

1 1

Condition (4.10) thus becomes

(5.2)
From (5.1), we have

(5.3) I IK,(t)l dt
1

72 71

Finally from Corollary 3, we get"

M2 _< Mo171721.

o- 721 o 711].
COROLLARY 4. Suppose 71 < O, 7112 > O. If

I]fl](R) < mo, II(O yx)(O- y2)/ll < M2
and if (5.2) is satisfied, then

(5.4) If(x) f(x)l _<

where is any real number.

(b) n 2, 0 < 71 < 72" In this case

O, > O,

G(t) er,’_ e
--, t<__O.

2tK,,(t) (71 )

t<O,

t>0.(72 )e-

Also

x>0,

x<0.
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We consider the cases (i) cr < ]), and (ii) > ]),. In case (i), K,,(t) has only
one change of sign at z where

])2 O
(5.6) z In

In this case we choose

Then

(5.7) fo,(X)___-- ])1])21

-1 for < %,qb(t)
+1 fort >-r.

Sincef,r(x) > 0 for x < z,, it follows that Ilfo,lloo 1/])l])z. Further

(5.8) f?oo Ig’(t)ldt--=2(y-=)e-=])ly2])1])2

However in case (ii), Kl,(t) is negative for > 0 and then we choose Co(t)
for all t. Herefo,r(x) l/y,])2 and Ilfo,ll 1/a2. Further

IKl,r(t)l dt
o

Combining cases (i) and (ii), we have (as in Corollary 4)"

COROLLARY 5. Suppose 0 < y < ])2 and suppose

Ilflloo < mo, ]l(O- 2’1)(O- Tz)fll < mz.
If (5.2) is satisfied, then

[M_
(5.9) Ilf’ flloo </Y:

(c)
that

+ 2M2(]), oO

n > 2,0 < Y < 72 <"" < ]),- In this case we can see by induction

(5.10) G,(t)
1)"+’[]1, ]),; er’], < O,

where [71,--., ])n; ert] is the divided difference with respect to ]) of et on the
nodes yl,..., Yn- In other words for < O,

erkt
(5.11) G,(t) (- 1)"+ where

o’()
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For any positive integer m < n 1, let Pro(D) _, akDk, a,. # O. Suppose
Pro(x) satisfies the condition

(5.12) e(--1)kp)(V)_< 0 foryl < V < ?.,e __+1 (k 0, 1,...,m).

Then from (4.6), we have

Km,(t) [Pm(O)Gn(x t)]x=o

(5.13) 1 .x (n-l)(n 1)! k=0 k

where 7a < < 7, and the last equality follows from (5.11) and the mean-value
theorem.
We set o(t) -e (e +1). Then

fo,(x) _fo G.(x-t)dt _fo G.(t) dt
e

2"" ".
Also

IK,, v(t)l dt (- 1)" (- 1)" 7,..., Y,,; e.
o’() 7 d

We have thus proved"

THEOREM 3. Let 0 < ?a <’"< ?,. Suppose Ilflloo -< Mo, II&.,rflloo
M, and

M, < MoyaY2""Y,.

If Pm(X) is a polynomial of degree m (1 < m < n 1) satisfying (5.12), then

(5.13) IlPm(D)flloo < M,I[y,..., y,; Pm(Y)/Y]l.

6. Case n 2, 72 --71 ? >" 0

Suppose Ilflloo Mo and II(Dz ?z)fllo where Mo?2 < 1. We are
interested in finding the best bound for [I(D )fl[oo. If _% we have this
result in (2.9). If 0, Schoenberg [3] gave the best bound which turns out
to be the same number as in (2.9). We shall follow the idea of Schoenberg and
find an expression for f’(0) f(0).

Indeed we have

(6.1) f’(0) af(0) Af(-rl) + Bf(rl) + Rf
where Rf 0 when f er* and e-r*.
Then we have

1 a sinh ?r/ + ? cosh ?r/A -1/2(a sech ?r/ + ? cosech ?r/) - cosh ?q sinh ?r/
(6.2)

B -1/2(a sech ?q ? cosech ?r/)
1 a sinh ?r/ ? cosh ?q

2 cosh ?q sinh ?q
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It follows from Peano’s theorem that

(6.3)

where

Rf K(t)(D2 ])2)f(t) dt
-q

_o sinh ])r/ ]) cosh ])r/sinh ])(r/ t), > 0

(6.4) K(t)
sinh ])r/ + ]) cosh ])r/sinh ])(r/ + t), < O.

Choose r/such that

(6.5) (1/])2 Mo) cosh ])q + 1/])2.
Set

(6.6) fo(x) -(1/])z Mo)cosh])(x_ q) + 1/])2, 0 < x < 2r/

and fo(x + 2r/) -fo(x) for all x. Hence [[fo(x)[[ mo. Also

-1, 0<_ x <_ 2rl(D2 ])2)f
/ 1, -2q < x < 0.

If 101 < y coth ])r/, then K(t) < 0 for > 0 and is > 0 for < 0. Hence

f(O)- afo(O)= -MoA + BMo + f’
Using (6.5), we get

(6.7)

Mo ]) + ’|
sinh ])q J

[K (t)l dt

K(t) dt ; K(t) dt.

If6(O)- afo(O)l x/Mo(2- Mo])2).

From (6.1) and (6.3), we get

[if(0)- /(0)l < IZlMo / IBIMo / fn
3-q

-If(O) fo(0)l.

IK(t)l dt

By an appropriate change of scale we get on using (6.5)"

THEOREM 4. Suppose Ilflloo Mo, Ilf"- 2fll M2 where Mo])2 < M2.
Let a be a real number with I1 < M2{Mo(2M2 Mo])2)} x/2, then

(6.8) lift(x) f(x)ll /Mo(2Mz Mo])Z).

Remark. The case a 0 was studied by Schoenberg [3] and when
this was done in Example above.
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