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I. Introduction

A positive fraction a/N is said to be written in Egyptian form if we write

a/N 1/nl + l/n2 +’"+ link, 0 < nx < n2 <’’’< nk,

where the n are integers. Among the many expansions for each fraction a/N
there is some expansion for which nk is minimal. Let D(a, N) denote the minimal
value of nk.

Define D(N)by D(N) max {D(a, N): 0 < a < N}. We are interested in
the behavior of D(N). In our paper [1] we showed that for N P, a prime,
D(P) >_ Plog P and that for some constant K and any N > 1, D(N)<
KN (log N)4. It was surprising that such close upper and lower bounds could
be achieved by the simple techniques of [1]. In this paper we refine the tech-
niques of[1] and show that on the one hand for P large enough that log2r P > 1,

P log P log2 P
D(P) >_

r+l

log+l P l--I log/P
j=4

and on the other hand that for e > 0 and N sufficiently large (Theorem 1 and its
corollary yield more precise statements), D(N) <_ (1 + e)N (log N). We con-
jecture that the exponent 2 can be replaced by (1 + 5) for 5 > 0.
As part of the proof of the above results we need to analyze the number of

distinct subsums of the series ,= ill, say S(N). We show that whenever
log, N _> 1,

N log, N fiN fi log/N < logS(N) <_ logN i===3
log/ N

log N = 3

for some > 1/e.

II. The upper bound for D(N)

Let Pk denote the kth prime, and let Hk I]’= Pi. We recall from [1]"

LEMMA 1. If 0 < r < a(l’Ik) then there are divisors di of I1k such that
r=Zdi.
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LEMMA 2. For N sufficiently large, if k & chosen so that Ilk-1 <-- N < rig,
then

p_< logN +
log logN

Proof. If 0(x)= 2,logp then log Il (p). We note that p
is the least prime such that 0(p)> log N. By [4, Theorem 4], 9(x)_>
x(1 (1/2 log x)) for large enough x. Thus if

( 1)Xo logN +
log logN

then 0(Xo) > log N. Let Po be the least prime greater than Xo.
ciently large we have [-3, p. 323] Po < Xo + x/3. Since Pk <-- P0,

p_< logN +
log logN

for N sufficiently large.

For Xo suffi-

LEMMA 2*. IfN > 2 and I1k < N <_ Ilk then Pk < 2 log N/log 2.

Proof For N 2, Pk 2 and the lemma holds. For 3 < N < 6, Pk 3
and the lemma holds. For 1-I2 < N _< Il6 the theorem follows since for k <
16, computation shows that Pk --< 2 log Ilk-a/log 2. For N > Ill6 we have
log N > 41. By definition of O(x), log Hk O(pk) where Pk is the least prime
such that O(pk) >_ log N. Since for x > 41 we have [4, Theorem 4, Corollary]
(x) > x(1 (1/log x)), we see that

(x) > lg N fr x lg N ( + 2log3 ) >41"
logN

By Betrand’s postulate we see that Pk <-- 2Xo. Since

2 +
21oglogN

the lemma follows.

< 2/log 2 when log N > 41,

LEMMA 3. If N >_ 12, then in the closed interval Ix/N, N + x/N] there are
at least IN/2-] + 1 square-free integers with all prime factors less than N.

Proof. Let H* I-Ip<N P. Let D {m: x/N < m < N + x/N, m 1-I*}.
Let Q(x) be the number of square free integers not exceeding x. Thus

IOl >_ Q(N + x/N)- Q(x/N)- L

where L is the number of primes between N and N + x/N inclusive. Suppose
N > 242, so that x/N > 24. In the interval IN, N + x/N] only odd numbers
can be prime; there are at most 1 + 1/2 x/N odd numbers, and at least four of
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them are divisible by 3. We deduce that L < (1/2v/N) 3. From the proof of
Theorem 333 in [2] we see that

Thus

Q(x) d..d

Q(N + x/N)- Q(/N)=
d "/N + ,/N d

d<N1/4

>. (N + /N) p(d)

d<x/N+’/N d 2

[,/N +

Since E=a p(d)/d2 11((2) 6/n2 and I(d)l _< 1 we get

Q(N + x/N) Q(x/N) > 6N [x/N + x/N] N ., 1

2 d>/N+/N d 2

x/N
N < d <_ /N + /N -6N

> M
2

n x/N "IN’M /4]

where M [x/N + x/N]. Since x/N + x/N x/N x/N > 1, we see that

M > x/N x/N and hence that the above expression is decreasing in M. Thus
we obtain

Thus

Q(N + /N) Q(x/N) > 6N x/N + x/N-2
N

/N + /N

(1 )x/N
[N’/4] x/N + x/N

6N 2N x/N
x/N + /N [N1/4]

6N 2N ,x/N x/____N + 3.
/N + /N [N’/4] 2
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To show that [D[ > N/2 it suffices to show that

6 2 3
0.1079 > + +

2- +
which is true for N 242, whence for N > 242. On the other hand one can
verify directly and/or by special arguments that the lemma is true for 576 >
N_>12.

LEMMA 4. If Ilk(1 (2/x/pk)) < r < 2Hk then there are distinct di such that

d,[IIk,di > Ilk-x(Pk + x/Pk) -1 and r

Proof We note, in order to begin a proof by induction, that the lemma is
true for k 1, 2, 3, since for these cases I-Ik_ l(Pk + x/Pk)- < 1. We suppose
k > 4 and that the lemma is true for all k’ < k. Consider the set

D- {d: V/pk < d < Pk / V/Pk, d Ilk_x}.

Case 1. k > 6, i.e., Pk > 13. Let r be given in the desired range. According
to Lemma 3, [D[ > (Pk + 1)/2. Also note that no two elements of D are con-
gruent mod Pk and that none is congruent to zero mod Pk. Let

D* {0} w {n_,/d; d e D}.

If d e D*, d g= 0 then II-l(x/P,) -1 -> d > II,-l(P, + x/P,) -1. We note that
[D*[ > (p, + 3)/2 and no two elements of D* are congruent mod p,. If r
2dmodp, for some de D*, let D** D*\{d}, otherwise let D**-D*.
Hence [D**[ > (p + 1)/2 and we may apply the Cauchy-Davenport Theorem
to find d’ and d", distinct elements of D** such that r d’ d" 0 mod p,.
Let r* r- d’ d". Then

2ilk_l >_ 1-[k (1 2 2 )r* >_r
x/Pk x/Pk PRx/P

Since 1/x/pk_ 1/x/pk >_ 1/Pkx/Pk as is seen by using the mean value theorem
on 1/x/x, we deduce that r* _> Hk(1 (2/X/pR_ 1)). Let r’ r*/Pk, an integer.
Then

Hk- x/Pk-
SO by induction r’ di where di[ Hk-1, di > (Pk-1 + x/Pk-1)-1Hk-2" It
follows that r Y’, Pkd + d’ + d", and since the d, were distinct by induction,
so are the Pkdi; also, unless either d’ or d" is zero, in which case we discard it

from the sum, d’, d" # 0 mod Pk SO that all the terms in the sum are distinct.
Clearly

Ilk-d’ d">
Pk + X/ Pk"
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On the other hand, by induction

thus
Pk-1 -t- # Pk-1

Ilk- 2 Pk Ilk-diPk >_ >
P- + /P- P + x/P

Case 2. k 4, 5. Pk 7, 1 I. An easy computation shows that forpk 7,
D* {0, 5, 6, 10}. Every nonzero congruence class mod 7 can be obtained as
a sum of two or fewer elements of D* as follows: 1 5 / 10, 2 6 + 10,
3 -= 10 + 0,4 5 + 6,5 5 + 0, and6 6mod7. Thus forr 0mod7
we may proceed to define r’ as in Case 1. If r 0 mod 7, let r* r and pro-
ceed as in Case 1.
ForPk 11, D* {0, 2.3.7, 5.7, 2.3.5, 3.7, 3.5} {0, 9, 2, 8, 10, 4}

mod 11. Every congruence class mod 11 can be obtained as a sum of at most
three distinct elements of D* as follows: 0 0, 1 10 + 2, 2 2, 3 10 +
4, 4 4, 5 10 + 4 / 2, 6 4 + 2, 7 10 + 8, 8 10 + 9, 9 9,
10 10. Thus we may define r’ and proceed as in Case 1. The proof is com-
pleted.
We are now ready to prove:

THEOREM 1. For every N, D(N) < ,3(N)N(lnN)2 where 2/log 2 >_ 2(N) > 1
and limN_ 2(N) 1.

Proof Given a/N choose Ilk such that Ilk-1 < N < IIk. If N Ilk, then
a/N b/ilk. By Lemma 1, b Y’, d, dil l-Ik. By reducing the fractions in, di/ilk we obtain a representation of a/N in which no denominator exceeds
Ilk < 2N log N/log 2.

If N Ilk write a/N (qN + r)/Nilk where r is chosen so that

Flk(1 p) <r <2ilk"

This can be done since we may assume a > 2 and since N < I1k. The fraction
q/Ilk can be handled by Lemma 1, as in the paragraph above. We now use
Lemma 4 to write r/Ilk in Egyptian form using very small denominators. By
Lemma 4, r d where d Ilk, the d are distinct and di> 1-Ik_ (Pk nt- x/Pk)- 1.
Thus r/ilk (, di)/Hk , 1/n’i where n’i Ilk/di. Thus the n’ are distinct and

n’i < Pk(Pk + x/Pk)" It follows that r/NHk 1/ni where ni n’iN and the
n are distinct from each other as well as from the denominators in the expan-
sion of q/Ilk since these denominators all divide Ilk while N lni and N ,( rig.
Furthermore

n, < NPk(Pk + x/Pk) < 2(N)N(lnN)z

where 2(N) can be chosen to satisfy 2/log 2 > 2(N) by Lemma 2", limN_,o
2(N) 1 by Lemma 2, and 2(N) > (1 + (1/x/log N)).
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N

III. The number of distinct subsums of 1/i.
i=1

DEFINITION. Let S(N) denote the number of distinct values of = e,k/k
where the ek’S take on all possible combinations of values with ek 0 or 1.

To obtain a lower bound for S(N) we begin wth the following lemma.

LEMMA 5. For all N >_ 3, S(N) >_ 2N/gN.

ProoJ It is clear that each distinct choice of the ep’s for p prime yields a
different value of pN ep/p. Thus S(N) > 2(). Since for N > 17, n(N) >
N/log N by Corollary 1 of Theorem 2 of [4], the lemma is true for N > 17. To
verify that the result holds for 3 < N < 16, note that both S(N) and 2N/gv

are monotone and 24/1g4 _< 8 _< S(3), 212/1g12 < 25 < S(5)and 216/1g16 <
26-- 2n(13)_< S(13), where S(3)= 8 and S(5)= 25 are a result of direct
verification. Thus the lemma is proved.

THEOREM 2. If r > 1 and N is large enough that log2r N > 1, then

S(N) > exp . logj N
log N j=3

where 1/e is a permissible value for and logx logx, logjx
log (logi_ x).

Proof The proof is by induction on r.
In order to prove the theorem with the proper constant we make the slightly

stronger (as will be shown at the end of the proof) inductive hypothesis

(,) s(g) > exp (fi (1-j=3 log2j-3g)"gillgiN)23

for 1Og2k N >_ 1. The hypothesis (,) is clearly true for k 1, 2 by Lemma 5.
We assume the induction hypothesis holds for k 1, 2,..., r 1 and show
that it also holds for k r >_ 3.

Let Q 2N/log N and Q’ N/log2 N. Note that Q’ > Q. We define by

{N >_ p >_ Q’p a prime}.

Let T (k g N" there existsp e , p k}.
S(N) is greater than the number of distinct values of the sume -,ke T ek/k,

which we denote by T (N). We rewrite the sum as

Set ’.kU/=P ek/k ap/bp where log bp 9(N/p), (x) v,, log p. Also

ap <_ 2bp log Nip for p <_ N/3.
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Thus, if
c

bd
then p ld ifp X (ap a[,). But for p <_ N/3,

ap- a <_ 2bp log Nip _< 2 log (N/p)eq’(s/p).

Since @(x) < (1.04)x [4, Theorem 12] we see that

ap ap < 2 log (N/Q)e(l"4)s/Q < Q <_ p,

since N _> ee. For p > N/3 it is clear that p )(" (ap a).
Thus p X (ap a) and p d. It follows that distinct choices of ap/bp yield

distinct sums. Thus T(N) >_ I-Ip S(N/p), so that S(N) >_ 1-[p S(N/p).
We will now evaluate the above product using our inductive hypothesis. First

note that

For simplicity let S*(x) log S(x).
We recall the well-known method using Stieltjes integration with respect to

8(x) and integration by parts by which one evaluates sums where the variable
runs over primes [4, p. 74].

LEMMA 6. Iff’(p) exists and is continuous then

Q<p<Q’ log x \ log x
f(x)

Q

(O(x) x) --d-x \log X,]
Let S*(x) xllog x H- logs x, ana note tkat for Q < p <__ Q’, Nip >

log N; b_ence log(,_ 1) Niv > iog2, N > 1, and tiae induction assumption tells
us that

S*(N/p) >_ fi Iog2j_23DL*(N/p)"
We thus obtain

-1

S*(N) >_ L*(N/p)
Q<p<Q’

f2’ L*(N/X)log x dx + O(X)log-x x L*(NIx)

(O(x) x)-x \ log x ,l
dx

Q

S -[-- S2 -]-- $3, say.
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We shall estimate the absolute values of S2 and S3 and then the value of Sx,
the main term. We use the estimate [4, p. 70] ]0(x) x] < x/(2 log x) to obtain

N
[$21 < II log./ N

log2 N 4

as follows"

ISzl < L*(N/Q’) +
2 log2 Q

L*(N/Q)

NL* (log2 N)
2 log2 N (log N log3 N)2 log N (log N + log 2 log2 N)2

N

2 log2 N.log2 N (1 lg3)2

log

log2 N
l| log./N

log3 N

N

log3 N (1 + log 2 log2 N’2

log N

log N
1| log./N

2 (log2 N log 2) 4

< log./N
2 log2 N 4

I log,.+i Nlog3 Nlog4N
log3)2

log log
(log2 N log 2)

< log./N.
log2 N 4

A straightforward calculation yields

d L*(N/x)
dx log x

N r-1

< H log./Nix
x21ogxlogN/x

for x in the prescribed range. Thus

,-,1’3 <
N

2x log2 x log NIx 1-13 log./Nix dx.
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Using the facts that Nix < log N and 2 log2 x > (3/2) log2 N for all x in the
range of integration, we see that

2N fi logj N
4 f’ dx

[$31
log2 N x log NIx

2N fi logj N
4 (-log2 NIxie’)

3 log2 N

2N fi log N
_< 4 log2 NIx 0.’

3 log2 N
IN/log N)

N fi logj N
< 3

log2 N

We next obtain a lower bound for $1"

N r-1

S
x log x log Nix I-I3 log Nix dx

r-1

>_
log N x log Nix

With u I-I- log Nix and v -log2 Nix we integrate by parts to obtain

x log Nix

r-1

l-I log./NIx dx
3

2 X log NIx \i=3 j=i+l

> logj N/Q logj N 2 fi log N/Q
dx

2 4 x log NIx

>filogN(1 5 N)3 2 log4

where we have used that

9 log? > 1 U logx
log x 2

Substituting this in the lower bound for $1 we obtain

S > N "filogjN(1- 5 )logN 3 21og,N

for log2 N < x < log N.
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Combining the estimates for $1, IS21 and IS3] we obtain

3 ))-1 S,(N)
log2j_ 2 N

>_ logj N 1
log N 3 2 log N log N log3 N log N

)log, N logN a

which satisfies (,). Thus (,) holds for all r > 1.
Since we know log2 N 1 we deduce tat log2s-2 N e2-2s+2. Thus

s=3 log2s- 2 N s=3 e2-2s+2

j=l

3

l/e,

where the last inequality follows from the facts that for 0 N x N 3/e
0.406..., log (1 x) -3x/2 and -(3/2)= 3/e -0.526... > -1.
The theorem is proved.

LEMMA 7. For N > 1, S(N) < 2N.

Proof The result follows immediately since there are 2N distinct choices for
1 < < N,ei 0orl.

LEMMA 8. For log2 N > l, S(N) < exp (N/log2 N).
For log4 N _> 1, S(N) <_ exp (N log2 N/log N).

Proof of Lemma 8. Let Q N/log N. Let

5= (p’Q <p < N},

Z1 {k < N: there existsp 3,p k}
and

Z2 {k < N: k Z}.
Thus we may write

N

k’ _.k k
k k,-+

Let St(N) denote the number of distinct values of the sum with k Zi as the
ek’S take on all possible values with ek 0 or 1. As before S*(N) log S(N)
and S(N) log S(N), 1, 2.
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The case log2 N _> 1.

Subcase A. N> 10a.
we see that

We estimate ST(N) first. From the definition of Z1

Using the estimates of [4, Theorem 5 and corollary], we obtain

/
]Z 1] < N log2 N- log2 Q A

Since St(N) < 2Izll, it follows that

log2 N 2 log2 Q

(1) S(N) < N(log2) log2N- log2Q /
lg2N 210g2Q

We now estimate S2(N). Suppose Ek eZ2 e’k/k a/b, then independent of the
choice of the 8k’S we may choose b 1.c.m. Z2. From the definitions of (x)
and O(x) [2, pp. 340-341] we deduce that log b (N) (O(N) O(Q)).
Since (x) Eff)=l O(xl/k), one can show O(x) O(x) < 1.5x1/2 (see [_4,
Theorem 13]). Hence we see that log b < O(Q) + 1.5x/N. On the other hand

_a <_ _1 <_logN+y +1
b i=It N

where y 0.57 is Euler’s constant. Thus we see that the number of distinct
possibilities for a is at most b(log N + + l/N). It follows that

S2(N) < (log U + y + 1IN) exp (O(Q) + 1.5v/U).
Whence

(2) S(N) <_ log (log N + + 1IN) + O(Q) + 1.5x/N.
Since S*(N) < S(N) + S(N) we can now estimate S*(N).
By the above estimates (1) and (2) for S’(N) and S’(N) we get

S*(N) <_ N (log2((log2N)2-10g2Qlog2N+log2 N
log2 N log2 N "(log N)2 + 2 (log )2

log (log N + / + l/N)" log2 N
N

1.02 log2 N + 1.5 log2 N
log N

where we have used [4, Theorem 9] for the penultimate term. A straight-
forward calculation shows that for log2 N > 1 the term in the braces is de-
creasing when N _> 108, and is less than 1.
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Subcase B. 108 > N > ee. If log2 N < 1/log 2 1.4"-’, i.e., N <
68.8..., then 2N < exp (N/log2 N) and the desired inequality holds.
For N 69, 70, 71, 72, or 73 we note by direct calculation from the definition

that IZl _< 23 < N. (23/69) N/3. Thus

S*(N) < Nlog2 < Nlog2.()3 log2 N

S(N) K log (log (N + 7 + 1/N) + O(Q) + 1.5/N)
N ;log (log (N + /+ l/N))logz N log2 N 1.5 log/N]<

log/N N log N /N
Since S*(N) < S(N) + S(N) we obtain

S*(N) <
N {log2+log(log(N+l))log2N log2N 1.51og2N}log2 N 2 N log N x/N

Since the term in braces is less than 1 for 69 < N < 74, the inequality hold
for N < 74.
For 74 < N < 10a we use the estimates of [4, Theorems 18, 20, and 13] to

obtain the desired result in a manner analogous to the case when N > 108.
The difference in the cases 74 < N < 10a and N > 108 are all consequences
of the different estimates for lip and 0(x). The calculations are left to the
reader.
Thus the first half of Lemma 8 is established.

The case log4 N >_ 1.

S*(N) <_

In this case N > 108. From (1) and (2) we get

Nlg2N{lg2(lgNlogN _log2QlOgNlog2N

+ log N+
log N log2 N 2 log2 N log2 Q

+ (log. (log N + 1) log N 1.02
N log2 N log2 N

Using the estimates

logN
logzQlogN _< + logzN

log2 N log N

in the above inequality yields

logz N x/N 1-g:
log (logN + 1) log2N+ \

S,(N) < NlogEN{log2(1 q logEN + logN Q)log N log N log N log2 N 2 log2 N log2
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An easy calculation shows that in the range under consideration, log4 N > 1,
each term in the parentheses is decreasing. Trivial numerical estimates show
that for log4 N 1 the quantity in braces is less than 1.

Lemma 8 is proved.

LEMMA 9.
Then

Let Q N/log N and Q’ N/log2 N. Suppose that log6 N _> 1.

< log3 N(1 lOg4 N
p u 7vf

Proof This is proved by using Lemma 6 almost exactly the same way it was
used in the paragraphs following its proof, except that in this casef(x) is simpler
and slight adjustments must be made since we are deriving an upper bound.
The details are left to the reader.

THEOREM 3. For r >_ 1 and 1og2r N >_ 1,

( NlogrN fi logsN).S(N) <_ exp iog- N log2 N j=l

Proof. The values r 1, 2 yield the statements of Lemma 8. We suppose
the result is true for r 1 _> 2 and show that it holds for r.
We divide the integers less than N in a way similar to that in the proof of

Theorem 2. Let Q N/log N and Q’ N/log2 N. We define Z1 and Z2 by

Z1 {k < N: there existsp, Q < p < N, plk}
and

Z2 {k < N: k q Z}.
Thus

N

kl /.._k k E.__k

If Si(N) denotes the number of distinct values of the sums over Zi as the ek’S
take on all possible values with ek 0 or 1, then S(N) < S(N)Sz(N). We
estimate each of S(N) and S2(N) separately. Let S(N) log S(N); then
S*(N) <_ S(N) + S(N).
We estimate S(N) first. For any choice of ek’S we may write

z ek- a
wherea <( )bandb =l.c.m.(Zz).

k 2k b i=

As in the proofs of Lemma 8, we obtain from (2),
S(N) <_ log (log N + 1) + O(Q) + 1.5x/N

(4) < log2 N + 1/log N + N/log N + N/log2 N + 1.5x/N
< 2N/log N

where we have used [4, Theorem 4] and 1/(2 log Q) < 1/log N for the values
of N under consideration.
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We now turn to an estimation of SI(N). We rewrite the sum as follows

k Q<p<N p \k=

where the /3k’S on the internal sums (which properly should be ep,k) are inde-
pendently taking on all possible combinations of values of 0 or 1. We see from
this representation that

S(N) <_ E S*(N/p).
Q<p<N

We break the sum in two parts as follows:

(5) Z S*(N/p), Z2
, S*(N/p).

Q<p<_Q" Q’<p<N

Notice that for Q < p _< Q’ we have Nip >_ log2 N and thus

log2_) N/p >_ log2 N >_ 1

so that the induction hypothesis for r 1 is satisfied for Nip in the first sum.
For the second sum we will use the estimates of Lemmas 7 and 8 which yield
S*(x) <_ x log 2 and S*(x) <_ (x log2 x)/log x. We estimate E2 first.

Z2 _< Z N logz Nip + Z N
log 2

Q’<p<_l/ p log NiP v/,<p<_u p

where E is chosen so that log E 1. The first sum can be estimated by the
use of Lemma 6 with

f(p) logz (N/p).
p log (N/p)

After some calculation one gets

N log42 N, f(P) <
Q’<p<U/ log N

Using the standard estimates [4, Theorem 5] for lip one obtains

We thus obtain

Nlog2 _< NlogE
v/,<p<_u p log N

(6) Ez G
N (log24 N + log E).

log N

We now estimate E1 from (5), where we substitute for S*(N/p) the bound
given by the induction hypothesis to obtain

Z E N logr-i (N/p) rI] logj (N/p)
Q<p<_Q’p log2 (N/p) log2 (N/p) j=l

(7)
N log._l N/Q (-i< lo -Z- g- /Q log (N/Q) Z= Q<pQ’ p log NiP
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where we have used the fact that

log,._ NIx "ill logj (N/x)
log NIx io--22-NIx =

is decreasing in the interval Q < x < Q’ since the two terms in the denominator
cancel into the numerator and the rest of the numerator is clearly decreasing
in x. But N/Q log N and 2 1/(p log N/p) can be estimated by Lemma 9;
thus

Nlog, N(fi )logaN(log4N)Z < logj N
log2 N log3 N j=2 log N J 1-0gi q]

The above can be rewritten as

Nlog, N ( N)( ’g4 -N- )(8) E < h logj
log2 N log2 N = 2 log3 N]

We combine (4), (6), and (8) to obtain

S*(N) <_
N log, N N)logN (=lrI3 lg

2 log3 N log, N i-I logj N log, N h log N
j=3 j=3

It is not difficult to verify that the quantity in braces in (9) is less than 1;
hence,

(10) S*(N) <
N log, N 1-r-I log. N.11log N =a

But (10) is clearly equivalent to the inequality of Theorem 3, which is thus
proven.

IV. A lower bound for D(P)

The proof is virtually the same as that for Theorem 2 of [1] except that we
have a better bound for S(N).

THEOREM 4. If P is a prime then for P lar9e enough that log2, P >_ 1

P. log P. log2 P
r+l

log,+ P H log1 P
j=4

Proof For eacha/P, 1 a < P, write

a_ 1(_ + 1__ +,,,+ .) +
_

P P x2 Yl Y2

D(P) >_
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where xi < xi+ 1, (Xi, P) (Y, P) 1, and xt, is minimal for all expansions
of alP. Let N max {xt." 1 _< a < P}. Each value of a requires a different
value of

ek+-- +’’’-t
X X2 Xta k= k

for some choice of ek’S. Thus N must be such that S(N) > P, the value a 0
corresponding to the choice of all ek 0. From Theorem 3 we see that for P
large enough that log2r P > 1, N must be bigger than

log P log2 P
r+l

logr+l P I-I logj P
j=4

since for that value S*(N) < log P. The desired inequality follows.
There are both heuristic and experimental reasons to suppose that the order

of D(N)/N is largest for N P, a prime. This could be established if one could
prove that for (M, N) 1, D(MN) < D(M).D(N), since we already know
[1, Theorem 5-1 that D(Pk) <_ 2D(P)Pk- 1. Exact estimates for D(P) seem diffi-
cult since D(P)/P is not monotone.
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