ON THE COHOMOLOGY OF THE CLASSICAL LINEAR GROUPS

BY
Jack Shapiro

In this paper we use the methods of [1] to partially compute the cohomology of the classical groups with coefficients in the finite field with q elements, F_{q}. Here q is a power of an odd prime p. Cohomology is the usual group cohomology of Eilenberg-MacLane [2] and coefficients are taken in Z_{l}, the integers mod l, where l is a prime different from p.

Inherent in this method is the equivalence between the group cohomology of $G, H^{*}(G)$, and the singular cohomology of $B G, H^{*}(B G)$, where $B G$ is a classifying space for G (see for example [3, pp. 185-186]). In this paper we will freely interchange these two concepts.

The approach as in [1] is to tie the cohomology of $B G$ to the cohomology of $B U$, where U is the infinite unitary group. This is done by the use of a virtual complex representation induced from the natural modular representation of G on F_{q}^{n} [4, Theorem 1]. Strong use is made of the classical Lie theory associated to these groups by Chevalley [5] (e.g., the action of a Weyl group on diagonal subgroups of G is critical for the analysis). In one form the main theorem says that the cohomology of G is generated by Chern classes (see [6, Appendix]).

As in [1] we must pass to a certain subfield, k_{1}, of the algebraic closure of F_{q} in order to complete the computations. Let T denote the diagonal subgroup of $G[7$, chapter 7] and W the Weyl group of G. Another form of the main theorem says that $H^{*}(G) \cong H^{*}(T)^{W}$, the fixed subring of $H^{*}(T)$ under the induced action of W. This theorem was proved in [1] for $G L_{n}\left(k_{1}\right)$ and $O_{n}\left(k_{1}\right)$, the general linear and orthogonal groups. In this paper we extend the results to the other classical groups $S L_{n}\left(k_{1}\right)$, the special linear groups, $S p_{2 m}\left(k_{1}\right)$, the symplectic groups and if q is an even power of $p U_{n}\left(k_{1}\right)$, the unitary groups. No attempt is made to complete the results in F_{q} itself as is done for $G L_{n}\left(F_{q}\right)$ in [8].

1. Definitions

Let p be any odd prime and $q=p^{s}$ where s is a positive integer. F_{q} will stand for the finite field with q elements and $G L_{n}\left(F_{q}\right)$ will be the general linear group over F_{q} (i.e., elements of $G L_{n}\left(F_{q}\right)$ are the $n \times n$ matrices with coefficients in F_{q} whose determinant is nonzero). We will consider a number of other classical linear groups and view them as subgroups of $G L_{n}\left(F_{q}\right)$.

The easiest to define is the subgroup of elements whose determinant is 1 . This subgroup is denoted by $S L_{n}\left(F_{q}\right)$, the special linear group.

Received Feb. 28, 1974.

Now suppose V, an n-dimensional vector space over F_{q} is endowed with a nonsingular scalar product which is skew-symmetric (i.e., $(v, w)=-(w, v)$) then the subgroup of isometries with respect to the scalar product is called the symplectic group. It is well known that $n=2 m$ must be even and we denote this group by $S p_{2 m}\left(F_{q}\right)$. It is, up to isomorphism, independent of the choice of a skew-symmetric scalar product. We will call a basis $\left\{v_{1}, \ldots, v_{2 m}\right\}$ for V a symplectic basis if $\left(v_{i}, v_{i+m}\right)=1$ for $i=1, \ldots, m$ and $\left(v_{i}, v_{j}\right)=0$ otherwise, $i \leq j$ (i.e., the matrix of the bilinear form with respect to this basis is

$$
\left(\begin{array}{rr}
0 & I_{m} \\
-I_{m} & 0
\end{array}\right)
$$

In the special case when the order of the finite field is q^{2} we can define an involution of $F_{q^{2}}$ by $\lambda \rightarrow \lambda^{q} \equiv \bar{\lambda}, \lambda \in F_{q^{2}}$. If V is now endowed with a nonsingular hermitian scalar product (i.e., $(v, w)=(\overline{w, v})$), then the elements of $G L_{n}\left(F_{q^{2}}\right)$ which are isometries with respect to this scalar product form a group $U_{n}\left(F_{q^{2}}\right)$, the unitary group. Again this group is, up to isomorphism, independent of the choice of a hermetian scalar product. A basis for $V,\left\{v_{1}, \ldots, v_{n}\right\}$ will be called a unitary basis if $\left(v_{i}, v_{j}\right)=\delta_{i j}$.

2. Main theorems

For each group G studied in the previous section we will define a subgroup T which will play the role of the maximal torus in the classical Lie group theory. We will show that under the map induced by the inclusion of T in $G, H^{*}(G) \rightarrow$ $H^{*}(T)$ is a monomorphism, where l is a prime different from p (in some cases we will also assume $l \neq 2$). In the cases discussed in this paper T will always be the diagonal subgroup of G.

Let N, the normalizer of T in G, act on T by conjugation. We then have a finite group $W \equiv N / T$ acting on T. W is called the Weyl group. Let $H^{*}(T)^{W}$ denote the fixed subring of $H^{*}(T)$ under the induced action of W. An inner automorphism of G induces the identity on cohomology [3, Proposition 16.2] so we will consider $H^{*}(G)$ as a subring of $H^{*}(T)^{W}$.

At this point we pass to a subfield, k_{1}, of the algebraic closure, k, of F_{p} which contains all the l^{r} th roots of unity for all r. In this case there is no odd dimensional cohomology classes to consider (see [1]). We define the analogous subgroups of $G L_{n}\left(k_{1}\right)$ and their diagonal subgroups. The "Brauer lift" of the natural modular representation of a subgroup, G, of $G L_{n}\left(k_{1}\right)$ on k^{n} induces a map in the homotopy category from $B G \rightarrow B U$ (see [1]; Section 1]). If c_{i} denotes the i th universal Chern class we get the following addendum to Theorem 4.7 of [1].

Theorem 1. Let $\eta: B S L_{n}\left(k_{1}\right) \rightarrow B U$ represent the homotopy class induced by the natural modular representation. Let l be a prime, $l \neq p$ and $l \Varangle n$; then

$$
H^{*}\left(B S L_{n}\left(k_{1}\right) ; Z_{l}\right) \cong Z_{l}\left[\eta^{*}\left(c_{2}\right), \ldots, \eta^{*}\left(c_{n}\right)\right]
$$

a polynomial algebra in $n-1$ indeterminates.

Corollary 1.1. $H^{*}\left(B S L_{n}\left(k_{1}\right)\right)$ is generated by Chern classes.
Note. This follows trivially from the theorem.
Corollary 1.2. $H^{*}\left(S L_{n}\left(k_{1}\right)\right) \cong H^{*}(T)^{W}$ where T is the diagonal subgroup. This corollary will follow from the proof of Theorem 1 (Section 3).

Theorem 2. Let $\lambda: B S p_{2 m}\left(k_{1}\right) \rightarrow B U$ represent the homotopy class induced by the modular representation and let l be an odd prime different from p. Then

$$
H^{*}\left(B S p_{2 m}\left(k_{1}\right) ; Z_{l}\right) \cong Z_{l}\left[\lambda^{*}\left(c_{2}\right), \ldots, \lambda^{*}\left(c_{2 m}\right)\right] .
$$

Theorem 3. Let l be an odd prime, $l \neq p$, and let $\delta: B U_{n}\left(k_{1}\right) \rightarrow B U$ be the homotopy class induced by the modular representation. Then

$$
H^{*}\left(B U_{n}\left(k_{1}\right) ; Z_{l}\right) \cong Z_{l}\left[\delta^{*}\left(c_{1}\right), \ldots, \delta^{*}\left(c_{n}\right)\right]
$$

The obvious corollaries analogous to those stated after Theorem 1 can be stated and proved. In addition if we use the fact proved in the appendix to [1] that $\lambda: B S p_{2 m}\left(k_{1}\right) \rightarrow B U$ factors through $B S p$, the infinite symplectic group, we get the following additional corollaries.

Corollary 2.1. λ induces an isomorphism from $H^{*}\left(B S p\left(k_{1}\right)\right)$ to $H^{*}(B S p)$ where $S p\left(k_{1}\right)$ is the infinite symplectic group over the field k_{1}.

Corollary 3.1. δ induces an isomorphism $H^{*}\left(B U\left(k_{1}\right)\right) \cong H^{*}(B U)$ where $U\left(k_{1}\right)$ is the infinite unitary group over k_{1}.

Proof. Both corollaries follow by letting $n \rightarrow \infty$ and using the known results about the cohomology of $B U$ and $B s p$.

$$
\text { 3. } S L_{n}\left(F_{q}\right)
$$

For $G=S L_{n}\left(F_{q}\right)$ we let $T=S T_{n-1}\left(F_{q}\right)$ be the subgroup of diagonal matrices of determinant 1. T is isomorphic to $\left(F_{q}^{*}\right)^{n-1}$, where F_{q}^{*} is the multiplicative group of non zero elements in F_{q}. Let \bar{N} be the subgroup of the normalizer described as follows. \bar{N} is generated by the elements of T together with all permutation matrices which have a ± 1 in the nth column nth row. If \sum_{n} denotes the symmetric group on n-elements then \bar{N} is isomorphic to the semidirect product of \sum_{n-1} and $\left(F_{q}^{*}\right)^{n-1}$, where \sum_{n-1} acts by permuting the $n-1$ copies of F_{q}^{*}. Another way of writing this is $\bar{N} \cong \sum_{n-1} 乙 F_{q}^{*}$, the wreath product of \sum_{n-1} and F_{q}^{*}. The normalizer N is of order $n!(q-1)^{n-1}$ and can be described as $g \in S L_{n}\left(F_{q}\right)$ such that conjugating any diagonal matrix by g induces a permutation of the diagonal entries.

$$
\left|S L_{n}\left(F_{q}\right)\right|=q \frac{n(n-1)}{2}\left(q^{2}-1\right)\left(q^{3}-1\right) \cdots\left(q^{n}-1\right) \quad[7, \text { chapter } 1]
$$

and as in [1, Lemma 4.2] if l is a prime dividing $q-1$ then $\left[S L_{n}\left(F_{q}\right): N\right]$ is an l-adic unit. $[N: \bar{N}]=n$ so that if we assume further that $l \nmid n$ then $H^{*}\left(S L_{n}\left(F_{q}\right)\right) \rightarrow H^{*}(\bar{N})$ will be a monomorphism [3, Theorem 16.4].

We say that a family $H_{i}, i \in I$, of subgroups of a group G detects the cohomology of $G(\bmod l)$ if the map $H^{*}(G) \rightarrow \prod_{i} H^{*}\left(H_{i}\right)$ given by the restriction homorphisms is injective.

Lemma 1. Let G be a group whose mod l cohomology is detected by a family of abelian subgroups of exponent dividing l^{a} with $a \geq 1$. Then $\sum_{n} 2 G$ has the same property.

Proof. [1, Proposition 3.4].
If $l \mid(q-1)$ then F_{q}^{*} satisfies the hypothesis of Lemma 1 and therefore there exists abelian subgroups, A_{i}, of \bar{N} of exponent l^{a}, where $l^{a} \mid(q-1)$, $a \geq 1$, satisfying the conclusion. As remarked, an inner automorphism on the group level induces the identity on the cohomology level. Therefore, if we can show that each A_{i} is conjugate to a subgroup of $S T_{n-1}\left(F_{q}\right)$ in $S L_{n}\left(F_{q}\right)$ we get the following proposition:

Proposition 1. If l is a prime which divides $q-1$ and furthermore if $l \nmid n$ then $H^{*}\left(S L_{n}\left(F_{q}\right) ; Z_{l}\right) \rightarrow H^{*}\left(S T_{n-1}\left(F_{q}\right) ; Z_{l}\right)$ is a monomorphism, where the map is induced by inclusion.

Proof. By the previous remarks we must show that each A_{i} is conjugate to a subgroup of $S T_{n-1}\left(F_{q}\right)$ in $S L_{n}\left(F_{q}\right) . \quad A_{i}$ is abelian and has exponent dividing $q-1$ therefore the irreducible subspaces of F_{q}^{n} under the action of A are all 1 -dimensional [9, p. 272]. Since the order of A_{i} is prime to p the representation is completely reducible [9, p. 253]. This implies that there is a basis for F_{q}^{n} for which all of A_{i} is simultaneously diagonalized (i.e., A_{i} is conjugate to a subgroup of the diagonal matrices). Since this conjugation can be done using elements of $S L_{n}\left(F_{q}\right)$ the image lies in $S T_{n-1}\left(F_{q}\right)$. Q.E.D.

Proof of Theorem 1. We pass to k_{1}, a subfield of the algebraic closure of F_{q} which contains all the l^{r} th roots of unity for all $r \in Z . H^{*}\left(k_{1}^{*}\right) \cong Z_{l}[x]$ where x is the first Chern class of the 1-dimensional complex representation induced by embedding k_{1}^{*} in $S^{1} \subseteq \mathbf{C}^{*} . T=S T_{n-1}\left(k_{1}\right)$ is isomorphic to $\left(k_{1}^{*}\right)^{n-1}$ by projecting onto the first $n-1$ diagonal entries. In the notation of [1, Section 4], $H^{*}(T) \cong Z_{l}\left[x_{1}, \ldots, x_{n-1}\right] . W \cong \sum_{n}[12$, p. 115] and acts by permuting the diagonal entries of T. If we let $x_{n} \equiv-\left(x_{1}+\cdots+x_{n-1}\right)$ then the induced action on $H^{*}(T)$ is the action of \sum_{n} on $\left\{x_{1}, \ldots, x_{n}\right\}$.

Since the Brauer lift of the natural modular representation restricted to $S T_{n-1}\left(k_{1}\right)$ is a homomorphism into the diagonal matrices of determinant 1 , $\eta \mid B S T_{n-1}\left(k_{1}\right)$ factors through $B S U \rightarrow B U$ where $S U$ is the infinite special unitary group.

$$
H^{*}(B S U) \cong Z_{l}\left[s c_{2}, \ldots, s c_{n}\right]
$$

where the $s c_{i}$ are the images of c_{i} under the map $H^{*}(B U) \rightarrow H^{*}(B S U)$. Therefore

$$
\eta^{*}\left(c_{i}\right) \mid B S T_{n-1}\left(k_{1}\right)=\left(\eta \mid B S T_{n-1}\left(k_{1}\right)\right)^{*}\left(s c_{i}\right) \quad \text { for } i \geq 2
$$

Let \bar{T} be the diagonal subgroup of $S U(n), \bar{T} \cong\left(S^{1}\right)^{n-1}$. The Weyl group acts on \bar{T} by permuting the diagonal entries [12, p. 115]. If we write

$$
H^{*}(B \bar{T}) \cong Z_{l}\left[y_{1}, \ldots, y_{n-1}\right]
$$

and if we define $y_{n} \equiv-\left(y_{1}+\cdots+y_{n-1}\right)$ then the Weyl group acts on $H^{*}(B T)$ as the full symmetric group on the set $\left\{y_{i}\right\}_{i=1}^{n}$. We also have that $\eta^{*} \mid B S T_{n-1}\left(k_{1}\right)$ pulls y_{i} back to x_{i} for all i. In this notation the $s c_{i}$ are the i th elementary symmetric polynomials in the y_{i}. In particular $\eta^{*}\left(c_{i}\right) \mid B S T_{n-1}\left(k_{1}\right)$ is the i th elementary symmetric polynomial in the x_{i} where

$$
H^{*}\left(S T_{n-1}\left(k_{1}\right)\right) \cong Z_{l}\left[x_{1}, \ldots, x_{n-1}\right] \quad \text { and } \quad x_{n}=-\left(x_{1}+\cdots+x_{n-1}\right)
$$

The result now follows. Q.E.D.

$$
\text { 4. } S P_{2 m}
$$

Let $\widetilde{T}_{m}\left(F_{q}\right)$ be the intersection of the diagonal subgroup of $G L_{2 m}\left(F_{q}\right)$ with $S p_{2 m}\left(F_{q}\right)$. If the matrices are written with respect to a symplectic basis then a diagonal matrix $\left(\left(\lambda_{i}\right)\right)_{i=1}^{2 m}$ will be in $S p_{2 m}\left(F_{q}\right)$ if $\lambda_{i+m}=\lambda_{i}^{-1}$. This implies that $\widetilde{T}_{m}\left(F_{q}\right) \cong\left(F_{q}^{*}\right)^{m}$. The normalizer of $\widetilde{T}_{m}\left(F_{q}\right)$ in $S p_{2 m}\left(F_{q}\right)$ is generated by: (a) matrices of the form

$$
\left(\begin{array}{cc}
p_{m} & 0 \\
0 & p_{m}
\end{array}\right)
$$

where p_{m} is an $m \times m$ permutation matrix; (b) matrices which by conjugation on a diagonal matrix transpose the i th and $(i+m)$ th diagonal entries; and (c) $\widetilde{T}_{m}\left(F_{q}\right)$. Therefore $|N|=2^{m} m!(q-1)^{m}$. The order of the group is

$$
\left|S p_{2 m}\left(F_{q}\right)\right|=q^{m^{2}} \prod_{j=1}^{m}\left(q^{2 j}-1\right) \quad[7, \text { chapter } 1]
$$

If l is an odd prime which divides $q-1$ then as before $\left[S p_{2 m}\left(F_{q}\right): N\right]$ is an l-adic unit and $H^{*}\left(S p_{2 m}\left(F_{q}\right)\right) \rightarrow H^{*}(N)$ is a monomorphism.

If \bar{N} is the subgroup of N generated by matrices of type (a) and (c) then $\bar{N} \cong$ $\sum_{m} 乙 F_{q}^{*}$ and $[N: \bar{N}]=2^{m}$. Since l is odd this implies that

$$
H^{*}\left(S p_{2 m}\left(F_{q}\right)\right) \rightarrow H^{*}(\bar{N})
$$

is a monomorphism. As in the previous case, [1, Lemma 3.4] assures the existence of abelian subgroups, A_{i}, of \bar{N} of exponent l^{a} where $l^{a} \mid q-1$, $a \geq 1$, such that $H^{*}(\bar{N}) \rightarrow \prod_{i} H^{*}\left(A_{i}\right)$ is 1-1. It then follows, as described previously, that A_{i} is conjugate to a subgroup of diagonal matrices. In order to complete this case, we must show that this conjugation can be carried out inside $S p_{2 m}\left(F_{q}\right)$ (i.e., there is a symplectic basis under which all elements of A_{i} are simultaneously diagonalized).

Let $v_{1}, v_{2}, \ldots, v_{2 m}$ be a basis of V under which all of A_{i} is simultaneously diagonalized. Such a basis exists since A_{i} is conjugate to a subgroup of diagonal matrices. If $a \in A_{i}$ then $a v_{i}=\lambda_{i}(a) v_{i}$ where $\lambda_{i}(a) \in F_{a}^{*}$. Since $p \neq 2$ our scalar
product is alternate (i.e., $(v, v)=0$ for all $v \in V$). Therefore there is a v_{i}, $2 \leq i \leq 2 m$, for which $\left(v_{1}, v_{i}\right) \neq 0$. We might as well assume that $i=1+m$ and that $\left(v_{1}, v_{1+m}\right)=1$. Since a is symplectic, $\lambda_{1+m}(a)=\lambda_{1}(a)^{-1}$. If we now complete $\left\{v_{1}, v_{1+m}\right\}$ to a basis

$$
\left\{v_{1}, v_{1+m}, w_{2}, \ldots, \hat{w}_{i+m}, \ldots, w_{2 m}\right\}
$$

for V so that $\left(v_{1}, w_{i}\right)=\left(v_{1+m}, w_{i}\right)=0$ for all $i[10, \mathrm{pp} .79-80]$ then the space spanned by the $\left\{w_{i}\right\}$ forms a subrepresentation space for A_{i}. For if

$$
a w_{i}=\mu_{1} v_{1}+\mu_{1+m} v_{1+m}+\cdots
$$

then $\mu_{m+1}=\left(a w_{i}, v_{1}\right)=\left(w_{i}, a^{-1} v_{1}\right)=0$ and similarly for μ_{1}. By finite induction we can find our desired symplectic basis and we get the following proposition.

Proposition 4. If l is an odd prime which divides $q-1$ then

$$
H^{*}\left(S p_{2 m}\left(F_{q}\right) ; Z_{l}\right) \rightarrow H^{*}\left(\widetilde{T}_{m}\left(F_{q}\right) ; Z_{l}\right)
$$

is a monomorphism.
Proof of Theorem 2. We again pass to k_{1} and get $\widetilde{T}_{m}\left(k_{1}\right) \cong\left(k_{1}^{*}\right)^{m}$. Therefore $H^{*}\left(\widetilde{T}_{m}\left(k_{1}\right)\right) \cong Z_{l}\left[x_{1}, \ldots, x_{m}\right]$.
Let us choose as the isomorphism from $\left(k_{1}^{*}\right)^{m}$ to $\widetilde{T}_{m}\left(k_{1}\right)$ the projection onto the first m diagonal entries. Then W acts by permuting the first m diagonal entries (simultaneously permuting the last m diagonal entries in the identical manor) and by transposing the i th and $(i+m)$ th entries. Since the first Chern class of a dual representation is equal to minus the first Chern class of the representation [6, Appendix] W acts by permuting the x_{i} and by sending $x_{i} \rightarrow-x_{i}$. It follows then that $H^{*}\left(\widetilde{T}_{m}\left(k_{1}\right)\right)^{W}$ is generated by symmetric polynomials in the x_{i}^{2}.

The induced complex representation restricted to $\widetilde{T}_{m}\left(k_{1}\right)$ is a homomorphism into a diagonal subgroup of $U_{2 m}(\mathbf{C})$. This is the subgroup of all diagonal matrices whose $(i+m)$ th diagonal entry is the inverse of the i th diagonal entry, $1 \leq i \leq m$.

Let

$$
S p_{2 m}(\mathbf{C}) \stackrel{(}{\hookrightarrow} U_{2 m}(\mathbf{C})
$$

be the natural inclusion. Then the diagonal subgroup of $S p_{2 m}(\mathbf{C}), T^{\prime}$, is the subgroup of diagonal matrices in $U_{2 m}(\mathbf{C})$ just described. Suppose j also represents the induced map from $B S_{p} \rightarrow B U$; then

$$
H^{*}(B S p) \cong Z_{l}\left[e_{1}, e_{2}, \ldots\right]
$$

where e_{i} is the i th universal symplectic Pontryagin class and within sign $e_{i}=j^{*}\left(c_{2 i}\right)[11,9.6]$. Let T be the diagonal subgroup of $U_{2 m}(\mathbf{C})$ then

$$
\left.H^{*}(T) \cong Z_{l}\left[y_{1}, \ldots, y_{2 m}\right], \quad H^{*}\left(T^{\prime}\right)\right) \cong Z_{l}\left[v_{1}, \ldots, v_{m}\right]
$$

and $j^{*}\left(y_{i}\right)=v_{i}, j^{*}\left(y_{i+m}\right)=-v_{i}, 1 \leq i \leq m$. With this notation e_{i} is the i th elementary symmetric polynomial on $\left\{v_{1}, \ldots, v_{m}\right\}$.

The above analysis implies that $\lambda \mid B \widetilde{T}_{m}\left(k_{1}\right)$ factors through $B S p$ and in fact

$$
\lambda^{*}\left(c_{2 i}\right) \mid B \widetilde{T}_{m}\left(k_{1}\right)=\left(\lambda \mid B \widetilde{T}_{m}\left(k_{1}\right)\right)^{*}\left(e_{i}\right)
$$

It now follows from the product formula for Chern classes and from the previous remarks that $\lambda^{*}\left(c_{2 i}\right) \mid B \widetilde{T}_{m}\left(k_{1}\right)$ is the i th elementary symmetric polynomial in the x_{i}^{2} where $H^{*}\left(\widetilde{T}_{m}\left(k_{1}\right)\right) \cong Z_{l}\left[x_{1}, \ldots, x_{m}\right]$. Q.E.D.

Note. As remarked previously, in the appendix to [1] it is shown that

$$
\lambda: B S p_{2 m}\left(k_{1}\right) \rightarrow B U
$$

factors through $B S p$. Letting λ also designate the map $B S p_{2 m}\left(k_{1}\right) \rightarrow B S p$ then

$$
H^{*}\left(B S p_{2 m}\left(k_{1}\right) \cong Z_{l}\left[\lambda^{*}\left(e_{1}\right), \ldots, \lambda^{*}\left(e_{n}\right)\right]\right.
$$

and Corollary 2.1 follows from the fact that $H^{*}(B S p) \cong Z_{l}\left[e_{1}, e_{2}, \ldots\right]$.

5. $B U_{n}$

For the final case, $G=U_{n}\left(F_{q^{2}}\right) \leq G L_{n}\left(F_{q^{2}}\right)$. Let $T=U T_{n}\left(F_{q^{2}}\right)$ be the subgroup of diagonal matrices. If matrices are written with respect to a unitary basis then the diagonal matrix $\left(\left(\lambda_{i}\right)\right)$ is in $U_{n}\left(F_{q^{2}}\right)$ iff $\lambda_{i} \lambda_{i}=\lambda_{i}^{q+1}=1$. The elements $\lambda_{i} \in F_{q^{2}}$ which have the above property form a cyclic subgroup of order $q+1, Z_{q+1}$, in $F_{q^{2}}^{*}$. This implies that $U T_{n}\left(F_{q^{2}}\right) \cong\left(Z_{q+1}\right)^{n}$. Since the permutation matrices are all unitary, it follows that N, the normalizer of $U T_{n}\left(F_{q^{2}}\right)$ in $U_{n}\left(F_{q^{2}}\right)$ is isomorphic to $\sum_{n} 乙 Z_{q+1}$ and $|N|=n!(q+1)^{n}$.

$$
\left|U_{n}\left(F_{q^{2}}\right)\right|=q \frac{n(n-1)}{2} \prod_{j=1}^{n}\left(q^{j}-(-1)^{j}\right)
$$

Therefore

$$
\left[U_{n}\left(F_{q^{2}}\right): N\right]=q \frac{n(n-1)}{2} \prod_{j=1}^{n} \frac{q^{j}-(-1)^{j}}{j(q+1)}
$$

Lemma. If l is odd and $l \mid q+1, l \neq p$, then $\left(q^{j}-(-1)^{j}\right) / j(q+1)$ is an l-adic unit.

Proof. Suppose $q+1=k l^{n}$ where $l \nmid k$. Then

$$
\begin{aligned}
q^{j}-(-1)^{j} & =\left(k l^{n}-1\right)^{j}-(-1)^{j} \\
& =\sum_{s=0}^{j}\binom{j}{s}\left(k l^{n}\right)^{s}(-1)^{j-s}-(-1)^{j} \\
& =\sum_{s=1}^{j}\binom{j}{s}\left(k l^{n}\right)^{s}(-1)^{j-s}
\end{aligned}
$$

Therefore (1)

$$
\frac{q^{j}-(-1)^{j}}{j(q+1)}=\frac{j(-1)^{j-1}+\sum_{s=2}^{j} k^{s-1} l^{n(s-1)}(-1)^{j-s}}{j}
$$

If j is an l-adic unit then the result is obvious. So suppose $j=b l^{\mu}, \mu \geq 1$, and b is prime to l. Dividing in formula (1) gives us

$$
\frac{q^{j}-(-1)^{j}}{j(q+1)}=1+\frac{1}{b l^{\mu}} \sum_{s=2}^{l \mu}\binom{l^{\mu}}{s} k^{s-1} l^{n(s-1)}(-1)^{j-s}
$$

This will be an l-adic unit if

$$
l^{\mu+1} \left\lvert\,\binom{ l^{\mu}}{s} l^{n(s-1)} \quad\right. \text { where } 2 \leq s \leq l^{\mu}
$$

We will prove this for $n=1$, which implies all other cases (i.e., we will show that

$$
l^{\mu+2} \left\lvert\,\binom{ l^{\mu}}{s} \cdot l^{s}\right.
$$

for $\left.2 \leq s \leq l^{\mu}\right)$.

$$
\binom{l^{\mu}}{s}=\prod_{r=1}^{s} \frac{l^{\mu}-(r-1)}{r}
$$

If s is prime to l then for every term in the denominator of the form $t \cdot l^{m}$ (t prime to l) there corresponds in a $1-1$ fashion the term $l^{\mu}-t \cdot l^{m}$ in the numerator. Taking into consideration the first term in the numerator, l^{μ}, and the fact that $s \geq 2$ we conclude that

$$
l^{\mu+2} \left\lvert\,\binom{ l^{\mu}}{s} l^{s}\right.
$$

if s is prime to l.
Suppose $s=t \cdot l^{m}, m \geq 1$.

$$
\binom{l^{\mu}}{t l^{m}}=\binom{l^{\mu}}{t l^{m}-1} \cdot \frac{l^{\mu}-\left(t l^{m}-1\right)}{t l^{m}} .
$$

Since $t l^{m}-1$ is prime to l it follows that

$$
l^{\mu-m} \left\lvert\,\binom{ l^{\mu}}{t l^{m}}\right.
$$

To finish the proof we note that $l^{m+1} \mid l^{l^{m}}$, since $x+1 \leq l^{x}, l \geq 3$, for all real x. Q.E.D.

The previous lemma implies that $H^{*}\left(U_{n}\left(F_{q^{2}}\right) ; Z_{l}\right) \rightarrow H^{*}\left(N ; Z_{l}\right)$ is a monomorphism if l is an odd prime dividing $q+1$. Since $N \cong \sum_{n} 乙 Z_{q+1}$ there are abelian subgroups A_{i}, of N, of exponent $l^{a} \mid q+1, a \geq 1$, with the property that $H^{*}(N) \rightarrow \Pi_{i} H^{*}\left(A_{i}\right)$ is 1-1. By the usual argument A_{i} is conjugate to a subgroup of diagonal matrices. We now have to show that this conjugation can be carried out inside $U_{n}\left(F_{q^{2}}\right)$ (i.e., there is a unitary basis which diagonalizes all of A_{i}.

If we can find an eigenvector v such that $(v, v) \neq 0$ then we can construct our unitary basis of eigenvectors by finite induction. Suppose v_{1}, \ldots, v_{n} is a diagonalizing basis for A_{i} and suppose (v_{1}, v_{1}) $=0$. Let us look at the set $\delta=\left\{v_{i} \mid\left(v_{1}, v_{i}\right) \neq 0\right\}$, nonempty by the nonsingularity of the scalar product. We might as well assume that $\delta=\left\{v_{2}, \ldots, v_{s}\right\} s \geq 2$ and that $\left(v_{1}, v_{i}\right)=1$, $2 \leq i \leq s$. If $a v_{i}=\lambda_{i}(a) v_{i}$ for $1 \leq i \leq s, a \in A_{i}, \lambda_{i}(a) \in F_{q^{2}}$ then $1=\left(v_{1}, v_{i}\right)=$ $\left(a v_{1}, a v_{i}\right)=\lambda_{1}(a) \overline{\lambda_{i}(a)}$. Since the exponent of A_{i} divides $q+1, \lambda_{i}(a)^{q+1}=1$ which implies that $\lambda_{i}(a)=\lambda_{1}(a), 2 \leq i \leq s$. Let V^{1} be the subspace generated by δ. The scalar product restricted to V^{1} must also be nonsingular and since every vector in V^{1} is an eigenvector we are done.

Proposition 5. If l is an odd prime which divides $q+1$ then

$$
H^{*}\left(U_{n}\left(F_{q^{2}}\right) ; Z_{l}\right) \rightarrow H^{*}\left(U T_{n}\left(F_{q^{2}}\right)\right)
$$

is a monomorphism.
Proof of Theorem 3. As in [1, Theorem 4.7], $\delta^{*}\left(c_{i}\right) \mid B U T_{n}\left(k_{1}\right)$ is the i th elementary symmetric polynomial in the x_{i} where

$$
H^{*}\left(B U T_{n}\left(k_{1}\right)\right) \cong Z_{l}\left[x_{1}, \ldots, x_{n}\right]
$$

Therefore the argument is completely analogous to the case $G L_{n}\left(k_{1}\right)$ of [1].

Biblography

1. D. Quillen, The Adams conjecture, Topology, vol. 10 (1971), pp. 67-80.
2. S. Eilenberg and S. MacLane, Cohomology theory in abstract groups, I; Ann. of Math, vol. 48 (1947), pp. 51-78.
3. P. J. Hilton and U. Stammbach, A course in homological algebra, Springer, New York, 1971.
4. J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc., vol. 80 (1955), pp. 402-447.
5. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2), vol. 7 (1955), pp. 1416.
6. M. F. Atiyah, Characters and cohomology of finite groups, Publ. Math. l'I.H.E.S., no. 9, 1961.
7. R. W. Carter, Simple groups of Lie type, Wiley, New York, 1972.
8. D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2), vol. 96 (1972), pp. 552-586.
9. M. Hall, The theory of groups, Macmillan, New York, 1959.
10. N. Bourbaki, Algebra, Éléments de Mathématique, Livre II, Chapter IX, Herman, 1959.
11. A. Borel and F. Hirzebruch, Characteristic classes and homogenous spaces, I., Amer. J. Math., vol. 80 (1958), pp. 458-538.
12. J. F. Adams, Lectures on Lie groups, W. A. Benjamin, Reading, Mass., 1969.

Washington University
St. Louis, Missouri
Israel institute of Technology
Haifa, Israel

