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In this paper we use the methods of [1] to partially compute the cohomology
of the classical groups with coefficients in the finite field with q elements, Fq.
Here q is a power of an oddprimep. Cohomology is the usual group cohomology
of Eilenberg-MacLane [-2] and coefficients are taken in Z, the integers mod l,
where is a prime different from p.

Inherent in this method is the equivalence between the group cohomology
of G, H*(G), and the singular cohomology of BG, H*(BG), where BG is a
classifying space for G (see for example [3, pp. 185-186]). In this paper we will
freely interchange these two concepts.
The approach as in [1] is to tie the cohomology of BG to the cohomology of

BU, where U is the infinite unitary group. This is done by the use of a virtual
complex representation induced from the natural modular representation of G
on F [4, Theorem 1-]. Strong use is made of the classical Lie theory associated
to these groups by Chevalley [5] (e.g., the action of a Weyl group on diagonal
subgroups of G is critical for the analysis). In one form the main theorem says
that the cohomology of G is generated by Chern classes (see [6, Appendix]).
As in [-1] we must pass to a certain subfield, k, of the algebraic closure of Fq

in order to complete the computations. Let T denote the diagonal subgroup of
G [7, chapter 7.-] and W the Weyl group of G. Another form of the main theorem
says that H*(G) - H*(T)w, the fixed subring of H*(T) under the induced
action of W. This theorem was proved in [ ] for GL,(k 2) and O,(kl), the general
linear and orthogonal groups. In this paper we extend the results to the other
classical groups SL,(kl), the special linear groups, SPzm(k) the symplectic
groups and if q is an even power ofp U,(k), the unitary groups. No attempt is
made to complete the results in Fq itself as is done for GL,(Fq) in [8].

1. Definitions

Let p be any odd prime and q pS where s is a positive integer. Fq will
stand for the finite field with q elements and GL,(Fq) will be the general linear
group over Fq (i.e., elements of GL,(Fq) are the n x n matrices with coefficients
in Fq whose determinant is nonzero). We will consider a number of other
classical linear groups and view them as subgroups of GL,(Fq).
The easiest to define is the subgroup of elements whose determinant is 1.

This subgroup is denoted by SL,(Fq), the special linear 9roup.
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Now suppose V, an n-dimensional vector space over Fq is endowed with a
nonsingular scalar product which is skew-symmetric (i.e., (v, w) -(w, v))
then the subgroup of isometrics with respect to the scalar product is called the
symplectic group. It is well known that n 2m must be even and we denote
this group by SP2m(Fq). It is, up to isomorphism, independent of the choice of
a skew-symmetric scalar product. We will call a basis {vl,..., v2,,} for V a
symplectic basis if (vi, Vi+m) for 1,..., rn and (vi, vj) 0 otherwise,
< j (i.e., the matrix of the bilinear form with respect to this basis is

In the special case when the order of the finite field is q Z we can define an
involution of Fq2 by 2 2 ,, 2 F2. If V is now endowed with a non-

singular hermitian scalar product (i.e., (v, w) (w, v)), then the elements of
GL,(Fq) which are isometrics with respect to this scalar product form a group
U,(FqO, the unitary group. Again this group is, up to isomorphism, indepen-
dent of the choice of a hermetian scalar product. A basis for V, {v1,...,
will be called a unitary basis if (v i, vj)

2. Main theorems

For each group G studied in the previous section we will define a subgroup
T which will play the role of the maximal torus in the classical Lie group theory.
We will show that under the map induced by the inclusion of T in G, H*(G)
H*(T) is a monomorphism, where is a prime different from p (in some cases
we will also assume 2). In the cases discussed in this paper T will always
be the diagonal subgroup of G.

Let N, the normalizer of T in G, act on T by conjugation. We then have a
finite group W =- NIT acting on T. W is called the Weyl group. Let H*(T)w

denote the fixed subring of H*(T) under the induced action of W. An inner
automorphism of G induces the identity on cohomology [3, Proposition 16.2]
so we will consider H*(G) as a subring of H*(T)w.
At this point we pass to a subfield, k, of the algebraic closure, k, of Fp

which contains all the/rth roots of unity for all r. In this case there is no odd
dimensional cohomology classes to consider (see [1]). We define the analogous
subgroups of GL,(k) and their diagonal subgroups. The "Brauer lift" of the
natural modular representation of a subgroup, G, of GL,(kl) on k" induces a
map in the homotopy category from BG --, BU (see [1]; Section 1]). If ci
denotes the ith universal Chern class we get the following addendum to Theorem
4.7 of [1].

THEOREM 1. Let rl: BSL,(kl)--. BU represent the homotopy class induced
by the natural modular representation. Let be a prime, p and X n; then

H*(BSL,(ka) Z,) - Zltl*(C2), "l:(Cn)],
a polynomial algebra in n indeterminates.
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COROLLARY 1.1. H*(BSL,(kl)) is generated by Chern classes.

Note. This follows trivially from the theorem.

COROLLARY 1.2. H*(SL,(kl) - H*(T)w where T is the diagonal subgroup.
This corollary will follow from the proof of Theorem (Section 3).

THEOREM 2. Let 2: BSp2,,(kx) BU represent the homotopy class induced
by the modular representation and let be an odd prime dOferent from p. Then

H*(BSpz,(kl) Z,) - Z/[/*(c2),... /*(C2m)].

THEOREM 3. Let be an odd prime, p, and let 6: BU,(kl) - BU be the
homotopy class induced by the modular representation. Then

H*(BU,(kl); Zl) Zl[(*(Cl),... $(Cn)].
The obvious corollaries analogous to those stated after Theorem can be

stated and proved. In addition if we use the fact proved in the appendix to [1]
that 2: BSp2,,(kl) BU factors through BSp, the infinite symplectic group,
we get the following additional corollaries.

COROLLARY 2.1. 2 induces an isomorphism from H*(BSp(kl)) to H*(BSp)
where Sp(kl) is the infinite symplectic group over the field k 1.

COROLLARY 3.1. induces an isomorphism H*(BU(kl) - H*(BU) where
U(kl) is the infinite unitary group over kl.

Proof. Both corollaries follow by letting n and using the known
results about the cohomology of BU and Bsp.

3. SL (Fq)
For G SL,(Fq) we let T ST,_ l(Fq) be the subgroup of diagonal matrices

of determinant 1. T is isomorphic to (F*)"-1, where F* is the multiplicative
group of non zero elements in F. Let N be the subgroup of the normalizer
described as follows. N is generated by the elements of T together with all
permutation matrices which have a _+ in the nth column nth row. If ,
denotes the symmetric group on n-elements then N is isomorphic to the semi-
direct product of ,_ and (F*)"-1, where ,_ acts by permuting the n
copies of F*. Another way of writing this is 2V ,_ I’L F*, the wreath
product of ,_ and F*. The normalizer N is of order n !(q 1)"-1 and can
be described as g SL,(F) such that conjugating any diagonal matrix by g
induces a permutation of the diagonal entries.

n(n 1) 2 3ISL,(F)I q (q 1)(q 1)"’(q"-- 1) [7, chapter 1]
2

and as in [1, Lemma 4.2] if/is a prime dividing q then [SL,(F)" N] is
an l-adic unit. IN:/V] n so that if we assume further that v n then
H*(SL,(Fq)) H*(R) will be a monomorphism [3, Theorem 16.4].
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We say that a family Hi, I, of subgroups of a group G detects the cohomol-
ogy of G (mod l) if the map H*(G) 1-[i H*(Hi) given by the restriction
homorphisms is injective.

LEMMA 1. Let G be a 9roup whose rood cohomology is detected by a family
of abelian subgroups of exponent dividin9 with a >_ 1. Then , "L. G has the
same property.

Proof [1, Proposition 3.4].

If l(q- 1) then Fq* satisfies the hypothesis of Lemma and therefore
there exists abelian subgroups, A i, of N of exponent a, where lal(q 1),
a >__ 1, satisfying the conclusion. As remarked, an inner automorphism on the
group level induces the identity on the cohomology level. Therefore, if we can
show that each A is conjugate to a subgroup of ST,_ l(Fq) in SL,(Fq) we get
the following proposition"

PROPOSrrION 1. If is a prime which divides q andfurthermore if X n
then H*(SL,(Fq); Zl) -- H*(ST,_I(Fq); Zl) is a monomorphism, where the map
is induced by inclusion.

Proof By the previous remarks we must show that each A is conjugate to
a subgroup of ST,_ (Fq) in SL,(Fq). A is abelian and has exponent dividing
q therefore the irreducible subspaces of F under the action of A are all
1-dimensional [-9, p. 272]. Since the order of A is prime to p the representation
is completely reducible [-9, p. 253]. This implies that there is a basis for F for
which all of A is simultaneously diagonalized (i.e., A is conjugate to a subgroup
of the diagonal matrices). Since this conjugation can be done using elements of
SL,(Fq) the image lies in ST,_ (Fq). Q.E.D.

Proof of Theorem 1. We pass to k l, a subfield of the algebraic closure of
Fq which contains all the /rth roots of unity for all r Z. H*(k) - Zl[x]
where x is the first Chern class of the 1-dimensional complex representation
induced by embedding k in S

_
C*. T ST,_I(kl) is isomorphic to

(k)"- by projecting onto the first n diagonal entries. In the notation of
[1, Section 4], H*(T) - Z[xx,..., X,-x]. W , [12, p. 115] and acts by
permuting the diagonal entries of T. If we let x, =- -(x + + x,-1) then
the induced action on H*(T) is the action of

Since the Brauer lift of the natural modular representation restricted to
ST,_I(k) is a homomorphism into the diagonal matrices of determinant 1,
IIBST,_x(k) factors through BSU BU where SU is the infinite special
unitary group.

H*(BSU) Z,[sc2,..., sc,]

where the sci are the images of ci under the map H*(BU) H*(BSU).
Therefore

n*(c,)lBST,_a(ka) (nlBST,_(k))*(sc,) for _> 2.



COHOMOLOGY OF THE CLASSICAL LINEAR GROUPS 593

Let be the diagonal subgroup of SU(n), - ($1)"-1. The Weyl group
acts on by permuting the diagonal entries [12, p. 115]. If we write

H*(B) - Zl[yl, Y,-I]

and if we define y, -(Yl +’"+ Y,-1) then the Weyl group acts on

H*(BT) as the full symmetric group on the set {Yi}’=l. We also have that

rl* BST,_ 1(kl) palls Yi back to xi for all i. In this notation the sci are the ith
elementary symmetric polynomials in the y. In particular rl*(c)IBST,_ 1(kl)
is the ith elementary symmetric polynomial in the x where

H*(ST,_ (kl)) - Z[xl,..., x,_l] and x, -(xl + + x,_l).

The result now follows. Q.E.D.

4. SPn
Let m(Fq) be the intersection of the diagonal subgroup of GLzm(Fq) with

SPzm(F). If the matrices are written with respect to a symplectic basis then a
diagonal matrix ((2i))=ml will be in Spzm(Fq) if 2i+m 2[ 1. This implies that
7m(F) - (Fq*)m. The normalizer of 7m(Fq) in SPzm(F) is generated by: (a)
matrices of the form

where Pm is an rn rn permutation matrix; (b) matrices which by conjugation
on a diagonal matrix transpose the th and (i + m)th diagonal entries; and
(c) ,(Fq). Therefore [NI 2mm!(q 1)m. The order of the group is

2jISP2m(Fq)I q l-I (q -1) [7, chapter 1-l.
j=l

If is an odd prime which divides q then as before [SP2m(Fq)" N] is an
l-adic unit and H*(SP2m(Fo) H*(N) is a monomorphism.

If N is the subgroup of N generated by matrices of type (a) and (c) then N -,, "k. Fq* and IN: N-I 2m. Since is odd this implies that

H*(SP2m(Fq) -- H*(N)

is a monomorphism. As in the previous case, I-l, Lemma 3.4] assures the
existence of abelian subgroups, A i, of N of exponent where l"lq- 1,
a > 1, such that H*(N) 1-[ H*(A) is 1-1. It then follows, as described
previously, that A is conjugate to a subgroup of diagonal matrices. In order to
complete this case, we must show that this conjugation can be carried out inside

SP2m(F) (i.e., there is a symplectic basis under which all elements of A are
simultaneously diagonalized).

Let vl, v2,..., Vzm be a basis of V under which all of A is simultaneously
diagonalized. Such a basis exists since Ais conjugate to a subgroup of diagonal
matrices. If a e A then avi 2(a)v where 2(a) e Fa*. Since p 2 our scalar
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product is alternate (i.e., (v, v) 0 for all v V). Therefore there is a vi,

2 < < 2m, for which (v 1, vi) - 0. We might as well assume that + rn
and that (vl, vl +m) 1. Since a is symplectic, 21 +re(a) 21(a) -. If we now
complete {vx, vl +m} to a basis

{v, v+, w,..., +,..., w}
for V so that (vl, w0 (v +,,, w) 0 for all [10, pp. 79-80] then the space
spanned by the {w} forms a subrepresentation space for Ai. For if

awl lv + #1 +mVl +m r"

then /,,+1 (awl, vl) (w, a-iv1) 0 and similarly for 1. By finite
induction we can find our desired symplectic basis and we get the following
proposition.

PROPOSITION 4. If is an oddprime which divides q then

H*(Sp2m(F) Z,) --+ H*(,,(F);
is a monomorphism.

Proof of Theorem 2. We again pass to k and get m(kl) (k). Therefore

H*(,,(K1)) - Z,[x,,..., x,,].
Let us choose as the isomorphism from (k’) to ,,(kl) the projection onto the
first m diagonal entries. Then W acts by permuting the first m diagonal entries
(simultaneously permuting the last m diagonal entries in the identical manor)
and by transposing the th and (i + m)th entries. Since the first Chern class of
a dual representation is equal to minus the first Chern class of the representation
[6, Appendix] W acts by permuting the x and by sending x -x,. It follows
then that H*(,,(k))w is generated by symmetric polynomials in the xz.
The induced complex representation restricted to ,,(kl) is a homomorphism

into a diagonal subgroup of Uzm(C). This is the subgroup of all diagonal
matrices whose (i + m)th diagonal entry is the inverse of the ith diagonal
entry, _< _< m.

Let
Sp2=(C) (JrU2=(C)

be the natural inclusion. Then the diagonal subgroup of Sp2(C), T’, is the
subgroup of diagonal matrices in U2,,(C) just described. Suppose j also
represents the induced map from BSt, - BU; then

H*(BSp) Z,[e,, e,...],
where e, is the ith universal symplectic Pontryagin class and within sign
ei j*(c2i) [11, 9.6]. Let T be the diagonal subgroup of U2,(C) then

H*(T) Zt[y,..., Y2,,], H*(T’)) - Zl[vl,..., v,,,]
andj*(y) v, j*(y+,,) -v, <_ < m. With this notation e is the ith
elementary symmetric polynomial on {v1,.. v,,}.
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The above analysis implies that 2 Bm(kl) factors through BSp and in fact

A*(c2,) BT(k) (2 BT(k))*(e,).
It now follows from the product formula for Chern classes and from the
previous remarks that 2*(c2)lBTm(kl) is the ith elementary symmetric poly-
nomial in the x where H*(7m(kl)) Z,[Xl,..., xm]. Q.E.D.

Note. As remarked previously, in the appendix to [1] it is shown that

2 BSP2m(kl) --+ BU

factors through BSp. Letting 2 also designate the map BSPzm(kl) -+ BSp then

It*(BSpzm(kl) - Z[2*(el),..., 2*(e,)]
and Corollary 2.1 follows from the fact that H*(BSp) - Zt[el, ez,... ].

5. BU

For the final case, G U,(Fq2) <_ GL,(Fq2). Let T UT,(Fq) be the
subgroup of diagonal matrices. If matrices are written with respect to a unitary
basis then the diagonal matrix ((2)) is in U,(Fq2) iff 2Ii 2+1 1. The
elements 2 e Fq which have the above property form a cyclic subgroup of
order q + l, Z+ 1, in Fq*. This implies that UT,(Fq2) - (Zq+ 1)". Since the
permutation matrices are all unitary, it follows that N, the normalizer of
UT.(Fq2) in Un(FqO is isomorphic to _,."LZq+ and INI n!(q + 1)".

Therefore

n(n 1)U.(F=)I q fi (q j (-
2

n(n 1) & q (- 1)[U.(Fq,_)" N] q
2 j=l j(q + 1)

LEMMA.
l-adic unit.

If is odd and lq + 1, # p, then (-1)J)/j(q + 1) is an

Proof Supposeq + kl"wherel/k. Then

qJ (--1) (kl 1)j (-1)j

s=O () (kl")s(-1)j-s- (-1)j

,=1()
J

qj- (_1) j(--1)j-’ A- 2 kS-’l"(S-1)(-1)j-s

j(q + 1) j

Therefore (1)
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Ifj is an/-adic unit then the result is obvious. So suppose j bl", > 1, and
b is prime to I. Dividing in formula (1) gives us

q J--(--l)j

1+
1 (l’k-l,,(s-)( 1)J-s

j(q + l) bl"2 \s]
This will be an/-adic unit if

"+1 I(1;)ln(s-) where2_<s_< I".

We will prove this for n 1, which implies all other cases (i.e., we will show
that

1"+2 (l;)’l,
for 2 <_ s <_ u).

(l;) r=fi /U-(r-1)r
If s is prime to then for every term in the denominator of the form t.

(t prime to l) there corresponds in a 1-1 fashion the term l" t. in the
numerator. Taking into consideration the first term in the numerator, , and
the fact that s > 2 we conclude that

if s is prime to l.
Suppose s t. l", rn >_ 1.

tl

u ).l" (tl 1).
tlm- 1 tl

Since tl is prime to it follows that

i(l )l/t--m
tl

To finish the proof we note that m+l la., since x + _< x, > 3, for all
real x. Q.E.D.

The previous lemma implies that H*(U,(Fq2); Zt) --, H*(N; Zl) is a mono-
morphism if is an odd prime dividing q + 1. Since N , "L. Zq + there are
abelian subgroups A i, of N, of exponent l"lq + 1, a > 1, with the property
that H*(N) I-Ii H*(Ai) is 1-1. By the usual argument Ai is conjugate to a
subgroup of diagonal matrices. We now have to show that this conjugation
can be carried out inside U,(Fq2) (i.e., there is a unitary basis which diagonalizes
all of A i).
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If we can find an eigenvector v such that (v, v) - 0 then we can construct our
unitary basis of eigenvectors by finite induction. Suppose v,,..., v, is a
diagonalizing basis for A and suppose (v,, vx) 0. Let us look at the set
(5 {v] (v,, vi) va 0}, nonempty by the nonsingularity of the scalar product.
We might as well assume that (5 {v2,..., vs} s > 2 and that (v,, v) 1,
2 < < s. Ifav 2i(a)vfor <_ <_ s,a e Ai, 2(a Fq2then (va, v)=
(ava, avi) 2(a)2i(a). Since the exponent of At divides q + 1, 2i(a)q+

which implies that 2(a) 2,(a), 2 < < s. Let V be the subspace generated
by 6. The scalar product restricted to V must also be nonsingular and since
every vector in V is an eigenvector we are done.

PROPOSITION 5. If is an oddprime which divides q + then

H*(U.(Fq2); Z,) H*(UT.(Fq))
is a monomorphism.

Proof of Theorem 3. As in [1, Theorem 4.7], 6*(ci)[BUT.(kx) is the ith
elementary symmetric polynomial in the x where

H*(BUT.(kx)) - Z[x,,..., x.].
Therefore the argument is completely analogous to the case GL,(k,) of [1].
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