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1. Introduction

1.1 The arithmetic square. The aim of this paper is to generalize Sullivan’s
observation ([6, 3.58] and I-4, p. 192]) that the homotopy type of a simply con-
nected finite complex is determined byprimary information, rational information
and certain coherence data.

If X is a connected space and ,4 and B are abelian groups, denote (see 3.1) by
XA and A-localization of X and by XA,B the B-localization of XA in the sense of
Bousfield. One can then (see again 3.1) form the commutative arithmetic square

in which Z denotes the integers, Q the rationals, P Zip (where the direct
sum is taken over all primes p) and the bottom map is induced by the top map.
Our main result now states (see 4.1) that this arithmetic square is, up to homotopy,
afibre square ifX is a virtually nilpotent space, i.e., (see Section 2) if

(i) each Postnikov stage P,X has a finite covering space which is nilpotent,
or equivalently

(ii) nix has a nilpotent subgroup of finite index and, for every integer
n > 1, rlX has a subgroup of finite index which acts nilpotently on zr,X.

Obvious examples of virtually nilpotent spaces are spaces with afinite (or even
trivial)fundamentalgroup and nilpotent spaces, but the Klein bottle, for instance,
which has neither of these properties, is also virtually nilpotent. Other examples
are discussed in Section 2.

1.2 Application. If X is a nilpotent space, then (1.5 and 3.3) Xz X and
the above result thus implies that, up to homotopy, every nilpotent space X can
be reconstructed from its primary localization (the nilpotent space Xe), its
rational localization (the nilpotent space Xtz) and its coherence map (the map
Xo. XI,,tz); in particular no further finiteness conditions on X are necessary,
so that the alleged counter example of [4, p. 195] is incorrect. This also suggests
the question when spaces U and V and a map V --. Ucz are, up to homotopy,
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the primary and rational localizations and the coherence map of a nilpotent
space. It turns out (see 4.4) that this is the case tfand only if

(i) the space U is P-Bousfield (i.e., U, U) and nilpotent,
(ii) the space V is Q-Bousfield and nilpotent, and
(iii) the homotopy inverse limit [4, Chapter X] of the diagram V Ut ,-- U

is connected, i.e., every element y 1UQ can be written in the form y uv,
where u and v are in the image of zl U and zl V respectively. One can make
similar statements (see also 4.4) for spaces which are Z-Bousfield and virtually
nilpotent.

1.3 Application. Another manner in which the arithmetic square can be
used is due to the fact that we prove more than was mentioned in 1.1, namely
that (see 3.3) for a virtually nilpotent space X, all the spaces in the arithmetic
square (except possibly Xz) can, up to homotopy, be obtained with the use of
the completion functors of [4]. Thus in this case the arithmetic square provides
a way of getting a hold on Xz by means of spaces which are often easier to
understand than Xz itself. For instance, use of the arithmetic square facilitates
Bousfield’s calculations [1] of n.Xz when X RP2, the real projective plane.
In fact this paper is the result of our attempts at understanding these calculations
of Bousfield.

1.4 A generalization. One can generalize the above results by replacing
everywhere Z by an arbitrary subring R c Q and P by P (R) R. Note that
P (R) R 3 Z/p, where the direct sum is taken over the primes p for which
lip is not in R.

1.5 Organization of the paper. We start in Section 2 and Section 3 with a
brief discussion of (virtually) nilpotent spaces, localizations and completions.
At the end of Section 3 we formulate our first results on localizations of virtually
nilpotent spaces, Section 4 deals extensively with the arithmetic square and
Section 5 contains two lemmas which seem to be of some interest in their own
right. The rest of the paper is devoted to the various proofs.

1.6 Notation and terminology. Throughout the paper we will mean by a
space a simplicial set with base point. If the reader prefers he can, of course, use
CW-complexes with base point instead, but then he may have to take some extra
care whenever infinite products come in.
The symbol will, as usually, mean has the same homotopy type as and a

space X will be called A-Bousfield if Xa X.

2. Virtually nilpotent spaces

We start our brief discussion of virtually nilpotent spaces with a review of a
definition [4, p. 59].
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2.1 Nilpotent spaces. A space X is called nilpotent if it is connected and

(i) IX is a nilpotent Troup, and
(ii) for every integer n > 1, zr,X is a nilpotent niX-module, i.e., n,X has a

finite niX-filtration for which nX acts trivially on the successive quotients.

This is equivalent to requiring that each map P,X- P,-1X (n >_ 1) in the
Postnikov decomposition of X is, up to homotopy, a finite composition of
principal fibrations.

We now define in a similar manner"

2.2 Virtually nilpotent spaces. A space X is called virtually nilpotent if it is
connected and

(i) nix is a virtually nilpotent group, i.e., zrlX has a nilpotent normal sub-
group of finite index, and

(ii) for every integer n > 1, n,X is a virtually nilpotent nX-module, i.e.,
zX has a normal subgroup of finite index which acts nilpotently on n,X.

This implies that, for every integer k > l, there is a nilpotent normal sub-
group ofX of finite index which acts nilpotently on nX for 1 < <_ k. It
may however not be possible to find a nilpotent normal subgroup of nix of
finite index which acts nilpotently on all nX (n > 1).

An immediate consequence is:

2.3 PROPOSITION. A space X is virtually nilpotent ifand only ifeach Postnikov
stage P,X has a finite regular covering space which is nilpotent.

2.4 Remark. The words normal in 2.2 and regular in 2.3 could have been
omitted, because of the algebraic fact that every subgroup offinite index contains
a normal subgroup offinite index.

2.5 Remark. Virtually nilpotent groups and K-modules (which were
implicitly defined in 2.2) behave a lot like nilpotent groups and K-modules. For
instance

(i) every subgroup, quotient group and central extension ofa virtually nilpotent
group is virtually nilpotent, and

(ii) in a short exact sequence 0 M’ M M" 0 of z-modules, the
module M is virtually nilpotent if and only ifM’ and M" are so.

This follows immediately from the corresponding properties of nilpotent groups
and n-modules.

2.6 Examples. (i) Simply connected spaces.
More generally,

(ii) nilpotent spaces, and
(iii) spaces with a finite fundamental group, such as, for instance, the real

projective spaces RP".
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(iv) K(n, 1)’s, where n is a supersolvable group, i.e., n has a finite filtration
by normal subgroups for which the successive quotients are cyclic groups. The
Klein bottle is such a space. To show that these spaces are indeed virtually
nilpotent one uses induction as follows. Let

be a short exact sequence of groups in which C is cyclic and D is virtually
nilpotent and let N c D be a nilpotent subgroup of finite index. As the group
of automorphisms of C is finite, there is a subgroup M c N of finite index
which acts trivially on C, and from this one readily deduces thatf-lM c E is
a nilpotent subgroup of finite index.

(v) Supersolvable spaces, i.e., connected spaces X such that IX is a super-
solvable group and, for every integer n > 1, nnX has a finite niX-filtration for
which the successive quotients are cyclic. The argument is essentially the same
as in (iv).

3. Localizations and completions

In order to state and prove our main results and put them in their proper
perspective we need the notions of localizations and completions of spaces.

3.1 Localizations. Given a space X and an abelian group A, one can con-
sider all A-homology equivalences X ---, Y, i.e., all maps X Y which induce
an isomorphism H.(X; A) H.(Y; A), and ask whether there is, up to
homotopy, a terminal one among these. If there is one, it is obviously unique,
up to homotopy, and is called an A-localization of X. The existence of A-
localizations for arbitrary X has long been an open question. It was finally
settled by Bousfield in [3], where he constructed a functorial A-localization
X Xa, which is also natural in A in the sense that there is a functorial com-
mutative diagram

X

(in which the vertical maps are the localization maps) whenever B is such that
every B-homology equivalence is an A-homology equivalence. This happens,
for instance, if B Z. Bousfield also showed [2] that there is no loss of gener-
ality in assuming that A is either a subring of the rationals or a direct sum of
groups Zip, where p runs through a set of primes. More precisely, if R c Q
denotes the subring which contains lip for the primes p for which A is uniquely
p-divisible, and if P is as in 1.1, then

Xa X if A is not a torsion group
Xa Xv. if A is a torsion group.
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In general, given X and ,4, it is quite difficult to find out what XA looks like.
This may be due to the fact that XA is obtained from X by means of a trans-
finite construction. Still, for certain X and ,4, one can get a good hold on XA
using completions, which are a kind offirst approximation to loealizations.

3.2 Completions. Given a space X and a ring R, which is either a subrino
of the rationals or Z/p, the integers modulo a prime p, the R-completion ofX is
[4, Chapter I] a functorial map X RooX, where the space RooX is the inverse
limit of a tower of principal fibrations with abelian fibres, on which one has a
fairly good hold. Sometimes this map is an R-homology equivalence and in that
case [-4, Chapter VIII it is an R-localization. This happens, for instance, when
RooX is nilpotent (3.3 and [4, p. 24]). In particular one has for nilpotent spaces
([4, Chapter V and Chapter VII and [3, 4.3]).

3.3 PROPOSITION. Let X be a nilpotent space. Then
(i) for every subring R c Q, the space RooX is nilpotent (in fact ZooX X)

and the map X RooX is an R-localization, and
(ii) for every set ofprimes p, the space I-I (Z/p)ooX is nilpotent and the map

X - I-I (Z/p)ooX is a ( Z/p)-localization.

For virtually nilpotent spaces one has a similar but weaker result, which will
be proven in Section 6.

3.4 PROPOSITION. Let X be a virtually nilpotent space. Then
(i) the space Q(R)X is nilpotent and the map X QooX is a Q-localization,

and
(ii) for every set ofprimes p, the space I-I (Z/p)(R)X is virtually nilpotent and

the map X I] (Z/p)ooX is a ( Z/p)-localization.

IfX is virtually nilpotent and R c Q a proper subring, then (see 4.2) the space
XR is also virtually nilpotent, but the map.X RooX need not be an R-homology
equivalence and hence not an R-localization either (this happens, for instance,
for the real projective plane and R Z [4, p. 216]). Still it is in this case
possible to get a good hold on the homotopy type of Xa, because X fits into an
arithmetic square, which (see 4.1) is, up to homotopy, a fiber square and in
which (3.4) the homotopy types of the other three spaces can be described in
terms of the completion functors. Before going into all this in more detail in
Section 4, we state one more proposition, which will also be proven in Section 6.

3.5 PROPOSITION. Let X be a virtually nilpotent space. Then, for every set

of primes p, every element y zxQoo(I-I (Z/p)ooX) can be written in the form
y uv, where u and v are in the image of 1(I-I (Z/p)(R)X) and
respectively.

4. Arithmetic square theorems

Throughout this section R c Q will be an arbitrary but fixed subring,
P Zip (p prime) as in 1.1 and hence P (R) R Z/p, where the direct



AN ARITHMETIC SQUARE 247

sum runs through the primes p for which 1/p is not in R.
then is"

Our main result

4.1 FIRST ARITHMETIC SQUARE THEOREM. If X is a virtually nilpotent space,
then the arithmetic square for X (see 1.1, 3.1 and 1.4)

is, up to homotopy, afiber square.

Combining this with 3.4, 3.5 and the argument of I-5, 7.1] one gets:

4.2 COROLLARY. IfX is a virtually nilpotent space, then so is

One also clearly has the slightly more general statement:

4.3 COROLLARY.
Theorem 4.1 holds.

If XR is a virtually nilpotent space, then the conclusion of

To prove Theorem 4.1 one factors the arithmetic square for X into a map
XR W and a commutative diagram

which is, up to homotopy, afiber square. Then [3, 5.5, 9.1 and 12.9] we have to
show that the map Xg - W is an A-homology equivalence for A R or
equivalently for A Q and ,4 P (R) R. Thus it suffices to show that the maps
W - Xp(R) and W - XR,Q are P (R) R- and Q-homology equivalences re-
spectively. But this follows immediately from 3.4, 3.5 and the following result
which is in some sense a complement of Theorem 4.1 and which will be proven
in Section 7.

4.4 SECOND ARITHMETIC SQUARE THEOREM. Let

W-U

be a fiber square of connected spaces in which
(i) the space U is P (R) R-Bousfield (i.e., U, (R) U) and virtually nilpotent

and the map U Uo. is a Q-localization of U, and
(ii) the space z is Q-BousfieM and nilpotent.
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Then the space W is R-Bousfield and virtually nilpotent and the maps W U
and W V are P (R) R- and Q-homology equivalences and hence P (R) R- and
Q-localizations of W respectively. Moreover, if U is nilpotent, then so is W.

4.5 Summary. The first arithmetic square theorm implies that the homotopy
type of an R-Bousfield and (virtually) nilpotent space X is completely determined
by

(i) its P (R) R-localization, the P (R) R-Bousfield and (virtually) nilpotent
space Xe (R) R,

(ii) its Q-localization, the Q-Bousfield and nilpotent space Xe, and
(iii) the coherence map Xe - Xe (R) a, 0."

The second arithmetic square theorem provides a kind of complement, as it
implies that spaces U and V and a map V - U are, up to homotopy, the
P (R) R- and Q-localizations and the coherence map of an R-Bousfield and
(virtually) nilpotent space/f and only if

(i) the space U is P (R) R-Bousfield and (virtually) nilpotent,
(ii) the space V is Q-Bousfield and nilpotent and
(iii) the homotopy inverse limit [4, Chapter X] of the diagram V Ue U

is connected, i.e., every element y c zr U can be written in the form y uv,
where u and v are in the image of zr U and r V respectively.
We end with the observation (4.6) that not all arithmetic squares are, up to

homotopy, fibre squares.
Let r be an infinite cyclic group, let M inj lira Q[r]/I, where I denotes

the augmentation ideal of the rational group ring Q[r], let n > and let Y2
and Y2+ be the spaces with two nontrivial homotopy groups

zr, Y2. rc, Y2,,+ zr and r2.Y2. rr2,,+Y2,,+ M

and the given action of r on M (which is clearly not nilpotent). Then we prove
in Section 8"

4.6 Counter examples. For at least oneof the two spaces Yz, and Yz,+ x, the
arithmetic square is not, up to homotopy, afiber square.

5. Two useful lemmas

We state and prove here two lemmas which are used in the proofs of Prop-
osition 3.4 and Theorem 4.4, but which are also of some interest in themselves.

5.1 NILPOTENT ACTION LEMMA. Let X K(b, 1) and X K(, 1) be
fibrations with fibers F and G respectively. IfF is nilpotent and the induced map
nX --, ck x is onto, then the 9roup

(i) is nilpotent, and
(ii) acts nilpotently on the 9roups H(G A)for every coefficient 9roup A.
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Proof. Conclusion (i) follows readily from the fact that the fibration
X K(, 1) restricts to a fibration F K(, 1) with connected fiber. To
prove (ii) observe that the fibration X K(, 1) is the composition

X K(b, 1) K($, 1) K($, 1)

of two fibrations with connected fibers. In the first of these ff acts nilpotently
on the A-homology of the fiber because [4, p. 60 and p. 62] this is true for the
induced fibration F K(, 1), in view of the fact that the latter is a fibration
of nilpotent spaces with connected fiber. In the second fibration obviously
acts trivially on the A-homology of the fiber, and the desired result now follows
by the argument of [_4, p. 64].

5.2 PRE-NILPOTENCY LEMMA. Let R c Q be a subrin#, let d? be an R-perfect
!Troup (i.e., Hi(t#; R) 0) and let Y -, K($, 1) be a fibration with nilpotent
fiber N. Then Roo Y is nilpotent and hence so is YR.

Proof. It suffices (3.2 and 3.3) to show that Y is R-homology equivalent to a
nilpotent space. We do this in three steps.

First we apply the fiber-wise R-completion of I-4, Chapter I] to the fibration
Y K(b, 1) and denote the resulting fibration by ’ --. K(b, 1). The map
Y Y’ then is an R-homology equivalence, because (3.3) the map N RooN
is so.
Next we note that (3.3),RooN is nilpotent and.that in fact [4, p. 133] the group

v 7raRgoN is R-nilpotent, i.e., v is nilpotent and its lower central series
quotients are R-modules. If n r Y’ and q is the R-completion of n in the
sense of [4, Chapter IV-], then the 5-term exact sequence of the Serre spectral
sequence together with the fact that H(b; R)= 0 yields that the map
H(v; R) Ha(n; R) is onto and from this and [4, p. 30] it follows that the
map v is also onto. This in turn implies that the obvious map n --. b x
is onto. Thus (5.1) the fiber M of the fibration Y’ --* K(, 1) is connected and

acts nilpotently on its R-homology. Moreover is nilpotent and, as is the
R-completion of n z Y’, it follows [3, 7.5] that the map Y’ K(, 1)
induces an isomorphism H(Y’;R) H(;R) and an epimorphism
Hz(Y’;R) Hz(9; R). A Serre spectral sequence argument now yields that
Ho(O; H(M; R)) 0. But this, together with the nilpotency of the action of
on Ha(M; R), readily implies that H(M; R) 0 and hence [4, p. 206] the

map M RooM is an R-homology equivalence. If we apply the fiber-wise R-
completion to the fibration Y’ K(, 1) and denote the resulting fibration by
Y" K(, 1), then the map Y’ Y" is clearly also an R-homology equivalence.

Finally we observe [4, p. 206] that re,RooM 1 and [-4, p. 133] hence
H.(M; R), H.(RM; Z). Thus the group 0 acts nilpotently on the Z-
homology of the simply connected space RooM. In view of [4, p. 63], there-
fore acts nilpotently on the E-term and hence all of the integral homotopy
spectral sequence of Room [4, p. 283]. As Room is simply connected, this
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spectral sequence converges strongly to the homotopy groups of RooM. From
this it follows that q acts nilpotently on the homotopy groups of RooM and, as

itself is nilpotent, this finally implies that the space Y" is nilpotent.

6. Proof of Propositions 3.4 and 3.5

Proof of Proposition 3.4. As it suffices to show that 3.4 holds for each
Postnikov stage P,X, it is no real restriction if we assume the existence of a

fibration X K(ck, 1)for which the group ck is finite and thefiber N is nilpotent.
Under this assumption, (i) is an immediate consequence of 3.3 and 5.2.
We will prove (ii) only for "the set of all primes," as the proof of the other

cases is essentially the same. Let J be the set of primes which divide the order of
nl(b; Z) and let R Z[J-1] c O. Then (3.3, 5.2 and 1-4, p. 184 and p. 188])
the spaces RooX and I-I (Z/q)(R)X I-I (Z/q)oRooX are nilpotent, the map
X --. I-I (Z/q)ox is a ( Z/q)-localization and/.(I-I (Z/q)oox; Z/p) 0 for
all p e J, where the direct products and the direct sum run through the primes
q which are not in J.
To complete the proof suppose p e J and let FPtk c be the maximal

(Z/p)-perfect subgroup. Then it is not hard to see that bp b/Fb is a finite
p-group. Furthermore, if M is the fiber of the fibration X K(b, 1) and
R’ c Q is the largest subring not containing l/p, then N is the fiber of the
fibration M K(Fb, 1) and, as HI(Fb; R’) 0, it follows from 3.3, 5.2
and I-4, p. 188] that the spaces RM and (Z/p)ooM (Z/p)ooR’M are nil-
potent. In the fibration X K(bp, 1) the finite p-group bp must [4, p. 215] act
nilpotently on the (Z/p)-homology of M and as the maps

M --, (Z/p)ooM and K(tkp, 1) (Z/p)ooK(dp, 1)

are (Z/p)-localizations (every finite p-group is nilpotent), it follows readily from
[4, p. 62] that the map X (Z/p)ooX is also a (Z/p)-localization and that the
space (Z/p)ooX is virtually nilpotent. Furthermore .((Z/p)ooX; Z/r) 0 for
all primes r - p, because the same holds for (Z/p)ooM and (Z/p)(R)K(dpp, 1)
[4, p. 184]. Application of the Kunneth theorem now completes the proof of
Proposition 3.4.

Proof of Proposition 3.5. If rclX is abelian, this is an easy calculation and
for nilpotent nix the desired result then follows from I-4, p. 130 and p. 170].
Finally one gets the general case by a careful analysis of the above proof of
Proposition 3.4, which yields the exactness of the sequences

rcxQooN rcxQooX 1,

(rI (Z/p)ooN) =, (I-I (Z/p)oox) --, FI k --, ,
re1Qoo(I-I (Z/p)ooN) --, rc Q (I-I (Z/p)ooX) 1.



AN ARITHMETIC SQUARE 251

7. Proof of Theorem 4.4

Clearly V and Ua are R-Bousfield and so [4, p. 188] is U and [3, Section 12]
hence W. Moreover the argument of [5, 7.1] shows that W is (virtually)
nilpotent.
To prove the rest of the theorem we show that there exists an integer n > 1

and a factorization

W A, -->...--, A A_ ...- A U

V --. B,... B B_ ... B1 U
of the fiber square such that

(i) each small square is, up to homotopy, a fiber square,
(ii) each B is -Bousfield and nilpotent,
(iii) each map A --, B is a -homology equivalence,
(iv) each map A A_ is a P (R) R-homology equivalence, and
(v) the map ztV --, zB, is onto,

and then proceed as follows. Let F be the homotopy fiber of the maps V B,
and W - A. Then F is connected and [4, p. 60, p. 62] zB, and zrA, act
nilpotently on the -homology of F. As the map A, B, is a -homology
equivalence, so is, by the Quillen-Zeeman comparison argument of [-4, p. 92],
the map W V. Thus the latter is a -localization of W. To prove that the
map W U is a P (R) R-localization of W, we observe that [4, Chapter V] F
has uniquely divisible Z-homology groups. Hence/.(F; P) 0 and thus the
map W - A, is a P (R) R-homology equivalence.
The idea behind the construction of the above factorization is to try and "kill

off" the cokernel of the map Y --, zaU by killing off the cokernel of its
abelianization H(V; Z) H(Uo.; Z). This does not succeed right away,
but it succeeds eventually.

Suppose we already constructed the spaces A and B for 1 < < /c in such
a manner that (i), (ii), (iii) and (iv) are satisfied. If the map r V --, zlB is onto,
we are done. Otherwise let

$ coker (H(V; Z) - H(B; Z))

and define A+ and B+ as the covering spaces ofA and B which correspond
to the kernels of the maps zA --, $ and nB $. Clearly nB $ is
onto and, as every element of rB is the product of an element in the image of
z V and one in the image of zA, so is the map zA --, $. Thus the resulting
square is a fiber square. Furthermore it follows from the fact that B and
K($, 1) are nilpotent and have uniquely divisible homotopy groups, that B+
has the same properties.
To prove (iii) and (iv) for / + 1 we observe, as at the beginning of

Section 6, that it is no real restriction to assume the existence of a fibration
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U K(b, 1) for which the group b is finite and the fiber N is nilpotent, and
construct the diagram of fiber squares

Nk+l Nk ’’’ Nt--* Ni-1 "*’" N1 N

Ak + -+ Ak --- --- A A i_ -- -- A U

in which each Nt+ is the covering space of N corresponding to the kernel of
the map zrlNt , which is onto because fit has no subgroups of finite index.
One then readily verifies that for 1 < < k,

(vi) each N/ is nilpotent,
(vii) each map zrtAt tk x is onto, and
(viii) Ni/ is the fiber of the fibration At/ K(b, 1).

Thus (5.1) the group ffk acts nilpotently on the Q-homology of Ak+ and Bk/
and condition (iii) for k + 1 now follows from the case k by the
argument of [4, Chapter III, Section 7-1. Furthermore we note (5.1) that Ck acts
nilpotently on the P-homology of Ak+ 1. From this and the fact that

/,(K(k, 1); P) 0

it is not hard to deduce that the map Ak+ Ak is a P-homology equivalence.
It remains to show (v), but this follows from"

7.1 LEMMA. Let v be a group, c v a subgroup and vi (i > 1) the
associated relative derived series subgroups of v 1, i.e.,

v+l ker (v - coker (//l2g - vi/F2vi))

where I2 denotes the commutator subyroup. If v is nilpotent, then there is an
inte#er n >_ 1 such that v #for j >_ n.

This can be proved by verifying inductively that each v is contained in the
subgroup of vl generated by # and Ftvl, the ith term of the lower central series
of v

8. Proof of counter examples 4.6

The key to the proof of 4.6 is an algebraic lemma.

8.1 LEMMA. Let zr and M be as in 4.6 and let tr r (R) Q. Then the zr-
module structure on M can be extended to a unique a-module structure and this
extension has the property that the induced epimorphism

Ho(zC; M (R) M) --, Ho(tr; M (R) M)

is not an isomorphism. (Here the tensor product is taken over Z and the re- and
a-actions are the diagonal ones.)
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Since M is a rational vector space, the tensor square M (R) M is naturally
isomorphic to the direct sum Sym2M ) A2M, where SymEM and A2M are
the second symmetric and exterior powers of M. The following corollary is thus
immediate.

8.2 COROLLARY. At least one of the induced epimorphisms

Ho(z; A2M) Ho(a; A2M) and Ho(rr; Sym2M) --, Ho(a; Sym2M)

is not an isomorphism. (Probably neither is.)

Proof of 4.6. If the first alternative of 8.2 holds, put X Y2,+ and assume
that the arithmetic square for X is, up to homotopy, a fiber square. An easy
Serre spectral sequence argument then shows that the obvious map X S is
a P-homology equivalence. As [-3, 5.5] Xz X, it is not hard to deduce from
this that Xo has only two nontrivial homotopy groups

nXo n @ Q a and 2n+,Xq M

where the action of a on M extends the one of n. However this implies that the
induced map

H,,+z(X; Q) Ho(n; AM) H,,+z(Xo; Q) Ho(a; hZM)

is an isomorphism, in contradiction to our assumption.
If the second alternative of 8.2 holds, one puts X Y2, and uses a similar

argument.

Proof of 8.1. Identify M with the additive group of formal power series
Q[[x]] is one variable over Q. The action of the generator a e n then is given
by the formula

a.p(x) (1 + x)p(x).

As for every integer n > 0 the power series 1 + x has a unique nth root with
constant term 1, it follows that the n-module structure extends to a unique
a-module structure. Thus there is an element b e a with b a for which the
action is given by the formula

b p(x) (1 + x)X/Zp(x)

where (1 + x)/z denotes the obvious binomial power series. Now make the
invertible change of variables u (1 + x)/z 1, so that M becomes iso-
morphic to Q[[u]] with

a .p(u) (1 + u)Zp(u), b. p(u) (1 + u)p(u).

If n’ a denotes the subgroup generated by b, then we will finish the proof by
showing that the map Ho(n; M @ M) Ho(n’; M @ M) has a nontrivial
kernel.
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If one thinks of M (R) M as the additive group of Q[[u]] (R) Q[[v]] inside
Q[[u, vii, then it is not hard to see that it suffices to show that

(1 + u)(1 + v) 1 u + v + uv

is not divisible within Q[[u]] (R) Q[v]] by

(1 + u)2(l + v)2 1 (u + v + uv)(2 + u + v + uv)

or equivalently, that (2 + u + v + uv) -x does not lie in Q[[u]] (R) Q[[v]].
And this can be proven by the identity

k ( 1)k 4- k

2 + U + V+ UV 2 + U +
together with the algebraic fact that a formal power series Cuv lies in
Q[[u]] (R) Q[[v-]] only if the rank of the matrix (C) (i.e., the least upper bound
of the ranks of its finite submatrices) is finite.
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