SUBGROUPS WITH TRIVIAL MAXIMAL INTERSECTION

BY
STEVEN BAUMAN

In a group G, let ®(G) be the intersection of all maximal subgroups. If
H < G, then it is clear that H < ®(G) if and only if H < M for every maximal
subgroup M of G. It is well known that if G is finite then ®(G) is a nilpotent
group. It follows that if H n M = H for all maximal subgroups M of a finite
group G, then H is nilpotent. In this note we will consider a similar situation.

DEFINITION. A subgroup H of G is said to satisfy 2(G) if for any maximal
subgroup M of G either HNn M = Hor Hn M = {(1).

It is proved in [1] that if G is finite and solvable then if H satisfies 2(G), H is
nilpotent. In this note we provide more information about H. In particular, we
say something of the embedding of H in G when H satisfies 2(G).

All groups will be finite and most notations standard. We use M <- G for
M being a maximal subgroup of G.

LemmA 1. Let K < H < G with H satisfying ?(G). If N<a G then K satis-
fies ?(G) and HN|N satisfies P(G/N).

Proof. The statement about Kis clear. Let M/N <+ G/N. Then Dedekind’s
theorem yields
HN A M _ (Hn M)N
N N N

Since H satisfies 2(G) the result follows.

There are some particular situations where subgroups H satisfying 2(G)
arise. For example, if H < ®(G) or H < N where N is a minimal normal sub-
group of a solvable group G, then H satisfies (G). Let G be a Frobenius group
with kernel N and complement M. If N is minimal normalin G and H < ®(M),
then H is easily seen to satisfy #(G). Thus Frobenius actions sometimes give
rise to subgroups satisfying 2(G).

DEFINITION. A group H is said to be of Frobenius type if it has Sylow p-

subgroups which are cyclic for p > 2 and cyclic or generalized quaternion for
p =2

LeMMA 2. Let H satisfy 2(G) in a solvable group G. If N is a minimal normal
complemented subgroup of G with (|[H|, |N|) = 1, then either
() [H,N]=1or
(2) H is of Frobenius type.
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Proof. Let M <- G be a complement to N in G. Since (|H|, |[N]|) = 1, by
choosing conjugates, we may assume that H < M. Suppose that for somen € N
we have H n H" # {1). By Lemma 1 we know that H" satisfies 2(G) and thus
H" < M. Therefore H* < HN n M = H and by comparing orders we see
that H* = H. It follows that [H, n] < H n N = (1) and n e C(H). Thus if
H ~ H" # 1 then n € Cy(H). Since (|H|, |N]|) = 1, Fitting’s theorem implies
that N = [N, H] x Cy(H). If [N, H] = <1} then we have (1). Thus assume
[N, H] # 1. Let X = [N, H]H. Since no nonidentity element of [N, H]
centralizes H, it follows that Ny(H) = H and that the conjugates of H are a

TI set. Thus X is a Frobenius group with complement H. It follows that H is
of Frobenius type.

LemMa 3. If H satisfies (G) and N is a minimal normal abelian subgroup of
G with H " N # {1 then either

(1) H < O(G)or
(2) HN is a p-group.

Proof. If N < ®(G) then since H n N # (1) and H satisfies #(G) we have
that H < ®(G). Thus assume N is complemented in G by the maximal sub-
group M. Since H n N # (1) we must have that H n M = {1). However
it also follows that H n M? = (1) for any g € G. Since (G: M) is prime power,
Sylow’s theorem therefore forces H to be a p-group for some prime p. Since
H n N # (1) the proof is complete.

THEOREM 1. If G is solvable and H satisfies P(G) then one of the following is
true:

(1) H < ©(G).
(2) H is elementary abelian of prime power order.
(3) H is of Frobenius type.

Proof. Let G be a minimal counterexample to the theorem. Thus G contains
a subgroup H satisfying 2(G) but not satisfying (1) or (2) or (3). We will show
this leads to a contradiction. Since H satisfies (G) it is clear that H n ®(G) =
1. Let N be a minimal normal subgroup of G.

Case 1. Suppose H n N = {1). Since HN/N satisfies Z(G/N) the min-
imality of G forces HN/N < ®(G/N). If N < ®(G), it follows that ®(G/N) =
®(G)/N. This is a contradiction to H ¢ ®(G). Thus N is complemented. Let
M be a maximal subgroup complementing N. Suppose core (M) # (1) and
let T be a minimal normal subgroup of G inside of M. Since HN/N < ®(G/N)
and H £ ®(G), we may choose M sothat H n M = (1). Therefore HNn T =
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(1>. Knowing that H £ M we have HT|T < MJ|T. Therefore HT|T 4
®(G/T). Since HT|T =~ H and G is a minimal counterexample we must have
a contradiction. Thus core (M) = (1> and C(N) = N. It follows that
O,(G/N) = (1) and thus (|®(G/N)|, IN]) = 1. Since HN/N < ®(G/N) we
have that (|H|, |N|) = 1. Lemma 2 yields a contradiction.

Case 2. If Hn N # (1) then, by Lemma 3, HN is a p-group. Since
H n ®(G) = 1, N is complemented. Suppose M is a maximal subgroup com-
plementing N. Since Hn N # (1), then Hn M = (1>. If core 4(M)
# (1), then we can produce a minimal normal subgroup T of G such
that H n T = (1). This situation was argued in Case 1. Thus C(N) = N
and O,(G/N) = (1). Since H n N # <1) and H satisfies 2(G) then HN/N <
®(G/N). Thus HN/N is a subnormal p-group of G/N. This forces H < N.
This final contradiction completes the proof of Theorem 1.

Putting Theorem 1 together with the result of [1] demonstrating that H is
nilpotent gives us more information on the structure of H. In fact, if H is not
abelian, nor a subgroup of ®(G), then it must be a direct product of a quaternion
group and a cyclic group of odd order. Such nonabelian groups may occur as
the following example will show. Let Q be a quaternion group of order 8 with
generators a and b of order 4. Let C, be a cyclic group of order 2 with generator
t. Consider X as the wreath product of Q by C,. Denote the base group of X
by O x Q where a' = a, b' = b. It is not difficult to show that Z(X) =
(a*a*y. If H = {uii | u € Q}, then ®(X) = H<{a*) = H{a*). Itis clear that
Z(X) < H < ®(X) < X. Since Z(X) is cyclic it is well known that for any
p > 2, X admits a faithful irreducible representation over GF(p). Let N be a
representation module and let G = N x X with the natural action of the
representation. We claim that H satisfies 2(G). If H < ®(X) then HN/N <
®(G/N). Therefore if N < M <- G it follows that H < M. Since N is min-
imal normal and C(N) = N, it follows that the only other maximal subgroups
of G are the conjugates of X by elements of N. Let z € Z(X) be the unique
involution in H. It is clear that X = C(z). Suppose that H n X" # (1) for
some n € N. Since H = Q we must have z € X", Thus z and nzn™ are both in
X n N{z>. It follows that z = nzn™ or that n = 1. Therefore if H n X" #
{1> then H < X". Note again that H =~ Q and thus H need not be abelian.

If H is a cyclic group, find a cyclic group C such that H = ®(C). By the
Dirichlet theorem on primes in arithmetic progressions we can choose a prime p
such that p = 1 (|C|). Thus C acts faithfully on a cyclic group N such that
|IN] = p LetG = N > C with this natural action. It is not hard to see that H
satisfies 2(G).

In the examples above, the groups H satisfying 2(G) behave in the following
manner. There is in each case a normal subgroup N of G such that H " N =
(1) and NH/N < ®(G/N). The following theorem shows that this is not a
random occurrence.
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THEOREM 2. Let G be solvable and H satisfy P(G). There exists an N < G
(perhaps trivial) with H n N = {1) such that one of the following occurs:

(1) |H| is a prime.
(2) HN|N < ®(G/N).
(3) HNJ/N is contained in a minimal normal subgroup of G/N.

Proof. As usual the proof will proceed by induction on |G|. Let T be min-
imal normal in G and assume H n T = (1). By induction on HT/T in G/T,
there is an N/T <1 G/T such that |HN/N| is a prime, HN/N < ®(G/N) or
HNJN is contained in a minimal normal subgroup of G/N. Further, since
HT|T n N/T = T|T, it follows that HT n N = (Hn N)T = T. Thus
HNnN<Tand Hn N=<1). If Hn T # 1), we may assume that T is
complemented and by Lemma 3 that HT is a p-group. Let M be any comple-
ment to T in G. Since H N T # (1), it follows that H n M = {1>. If
core (M) # 1, we can find a minimal normal subgroup of G which intersects
H trivially. This case has been handled. Thus C(T) = T and O,(G/T) is
trivial. Since H n T # {1) and H satisfies 2(G), it follows that HT/T <
®(G/T). Since HT/T is a p-group we have H < T. This completes the proof.

We may say something a little more about the embedding in Theorem 2 if
option (3) occurs.

THEOREM 3. Let G be solvable and H satisfy #(G). Suppose there is a min-
imal normal subgroup N with (|N|, |H|) = 1 such that HN|N is contained in a
minimal normal subgroup of G/N. Then either

(1) |H] is prime or
(2) H is contained in a minimal normal subgroup of G.

Proof. If N is complemented then Lemma 2 implies that H is of Frobenius
type or [H, N] = {1). Since H is elementary abelian, by hypothesis we may
assume the second alternative. Suppose HN/N < K/N where K/N is a chief
factor of G/N. We may also assume |HN/N| > 1. Since Cx(N) > N it follows
that N < Z(K). The hypothesis also implies that (|K/N|, [N|]) = 1. Thus the
Schur splitting theorem yields that K = N x L, where L is a minimal normal
subgroup of G and H < L. This completes the proof.

COROLLARY. Let H satisfy 2(G) in a solvable group G, and N a normal sub-
group of G with (|H|, |N|) = 1. Suppose HN|N is contained in a minimal normal
subgroup of GIN. Then either

(1) |H| is prime or
(2) H is contained in a minimal normal subgroup of G.

Proof. Use Theorem 3 and work down a chief series of G in N.
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In this section we consider the case in which #(G) on H is relaxed to where
H n M < H for all maximal subgroups of G. We prove the following theorem.

THEOREM 4. Let G be solvable and H < G such that H n M < H for every

M < - G. If the quarternion group is not involved in H then H/H n ®(G) is
supersolvable.

In proving Theorem 4 we consider groups which are not supersolvable but in
which every proper subgroup is supersolvable. Such groups have been studied
in [2] by Doerk. We list the results needed in the next lemma.

LEmMMA 4. If H is a nonsupersolvable group all of whose proper subgroups are
supersolvable, then H contains a normal p-Sylow subgroup H, for some prime p.
It also follows that :

(1) H,/®(H,) is a noncyclic chief factor of H.

(2) Chief factors of H above H, and below ®(H,) are all cyclic.
3) @(H, < Z(H),).

4) Ifp>2,exp(H,) =pandifp = 2 thenexp (H,) < 4.
(5) HJK is supersolvable if and only if H, < K.

Proof. The proofs of (1)-(4) appear in [2]. To prove (5) note that (2) implies
that H/H, is supersolvable. Thus if H, < K, H/K is also supersolvable. Con-
versely, since H/H, is supersolvable, H/H, n K is also. Since H,/®(H,) is a
chief factor of H, ®(H,)-(H, n K) equals ®(H,) or H,. The first alternative
contradicts the supersolvability of H/H, n K while the second yields the result
by using the nongenerating property of the Frattini subgroup.

Proof of Theorem 4. We proceed by induction on |G| and |H|. We note that
the hypothesis which H satisfies in G inherits to HN/N in G/N for all N< G
and to X in G where X < H.

(1) ®(G) is trivial. If not, choose N ‘<t G where N < ®(G). By induction
on HN/N in G/N, and the fact that ®(G/N) = ®(G)/N, it follows that
H/H n ®(G) is supersolvable.

(2) G is primitive. Let N -<a G and ®y/N = ®(G/N). Itis clear that Py =
() M where the intersection runs over all maximal subgroups of G containing
N. Asin (1), it follows that H/H n ®y is supersolvable, and thus H/H n M is
supersolvable for all M < - G containing N. If core (M) # 1forallM < G,
then by the formation property of supersolvables we find that H/H n ®(G) is
supersolvable. Thus we may assume that there is an M <- G in which
core (M) is trivial.

By induction on proper subgroups of H, and noting that ®(G) = 1, we may
assume that H is a minimal nonsupersolvable group. Thus all the notation and
results of Lemma 4 apply to the subgroup H. Further, if N is the unique min-
imal normal subgroup of G, then, by induction on G/N and Lemma 4(5), it
follows that H,N/N < ®(G/N).
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(3) |N| is relatively prime to p. If |N| = p* then, since G is primitive,
O,(G/N) is trivial. Since H,N/N < ®(G/N) it follows that H, < N. Let Q be
a complement to H,in H. We may choose M < G such that M n N is trivial
and Q < M. It follows that H n M = Q. Thus Q <« H and this forces H =
H, x Q to be supersolvable. This contradiction assures the result.

Since (|N], p) = 1 we have by Fitting’s theorem that N = [N, H,] x Cy(H,).
Let X be the first factor. Since C(N) = N, X is not trivial. Choose M <- G
with M n N trivial and H, < M. By (3) this is possible. Suppose that for
some ne N, H, < M". 1t follows that H,N n M" = H, = H,. Therefore
H, < M"if and only if n € Cy(H)).

(4) ®(H,) is trivial. By Maschke’s theorem, X = @J; where the J; are
irreducible H,, invariant subgroups of X. Let C; = Cy (Jy). It is clear that
N C; = Cy,(X). Since C(N) = N and N = X x Cy(H,), it follows that
Cyu,(X)is trivial. Let L; = J,H,. Forany ¢ e J, consider the group H, n H,.
Recall that H n M'< H and thus also H,n M'< H. If HHH, n M" is
supersolvable it follows from Lemma 4(5) that H, < M‘. By the preceding
comment this forces € Cy(H,) which contradicts the fact that J* n Cy(H,) =
0. Since H,/®(H,) is a chief factor of H and H, £ M, we may conclude that
H,n M'< ®H,) < Z(H,). Therefore H, n H, < Z(H,). A dual argument
shows that H, n H; < Z(H,). Since H, and H, are distinct maximal sub-
groups of L;, it follows that H, n H} < C;. Thusif te J7, then H, n H} <
C,;. It follows that the group L,/C; is a Frobenius group with complement
H,/C;. By the structure of Frobenius complements and Lemma 4, if p > 2 we
may conclude that (H,: C;) < p. Thus ®(H,) < C; for each i and since
ﬂ C, = 1, (4) follows. If p = 2, since the quarternions are not present in H,
H,/C; might be cyclic of order 4. In any case, since ﬂ C; = 1, H, is abelian
of exponent <4. Let Q be a complement to H,in H. It follows that

H, = [Hj, Q] x Cy,(Q).

If the first factor is not H, then H = [H,, Q]Q x Cy (Q) is supersolvable.
Thus we may assume that [H,, Q] = H,or Cy (Q) = 1. It follows that ®(H,)
is a normal elementary abelian subgroup of the supersolvable group ®(H,)Q.
Therefore ®(H,) < Cy (Q) and again ®(H,) is trivial.

By Lemma 4, H, is a minimal normal subgroup of H. Let L = XH,. Sup-
pose for x € X, H, n H is nontrivial. Since H, n M* < H and is a nontrivial
p-group, the minimality of H, < H forces H, < M?*. This implies x € Cy(H,).
Therefore x = 1 and L is a Frobenius group with complement H,. Since
quaternions are not involved in H, this forces H, to be cyclic and therefore H
is supersolvable. This completes the proof of Theorem 4.

Examples. (i) Let Q = <a, b) be a quaternion group of order 8 and C =
{¢)> be cyclic of order 9. Let Q act on Cby ¢® = ¢~ and ¢® = ¢. We may form
M = C >4 Q with this action. It is easy to see that H = {c3, a) is a super-
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solvable group of order 12. Let F be the field with 37 elements and choose
ee F* where |¢e| = 9. It follows that

c—+80 a—>01 b—>60
0 &)’ -1 0)° 0 -6

gives a faithful irreducible representation of degree 2 of the group M. Letting N
be a representation module we can form the group G = N > M. It is routine
to check that H n R <1 Hforall R <- G. Itisalso true that ®(G) is trivial and
H is not nilpotent.

(ii)) Let C = {¢;) % {c,» where |C;| = 4 and 4 = (a) where |a| = 3.
Let 4 act on C according to the following: ¢f = c¢,c, and ¢§ = c¢,c3. Form
G = C > A with the above action. It is easy to check that H = {c?, c3, a)
has the property that H n R < H for all R <- G but H itself is not super-
solvable. Of course H/H n ®(G) is supersolvable.
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