STABLE OPERATIONS ON COMPLEX K-THEORY

BY
J. F. Adams and F. W. Clarke

1. Introduction

Let K be the spectrum representing classical (periodic) complex K-theory. A stable operation (of degree zero) on complex K-theory should then correspond to an element of the K-cohomology group $K^{0}(\mathbf{K})$; equivalently, it should correspond to a map of spectra $\mathbf{f}: \mathbf{K} \rightarrow \mathbf{K}$. (It will be convenient if the word "map" means a homotopy class, and is restricted to maps of degree zero.) Two maps from K to K are well known: Ψ^{1}, the identity map, and Ψ^{-1}, the map induced by complex conjugation. One may then form integral linear combinations $\lambda \Psi^{1}+\mu \Psi^{-1}$, where $\lambda, \mu \in \mathbf{Z}$. It has been conjectured, and some have tried to prove, that in this way one obtains all the maps from \mathbf{K} to \mathbf{K}. Although some of our colleagues have found it hard to believe, we will show that this conjecture is false; there are uncountably many maps from K to K. We deduce this from a result which has other applications in K-theory.

2. Study of K-homology

Let $\mathbf{K}_{*}(\mathbf{K})$ be the K-homology of the spectrum K. It has been sufficiently described by Adams, Harris, and Switzer [3]; but these authors omit the following fundamental result.

THEOREM 2.1. $\quad \mathbf{K}_{*}(\mathbf{K})$, considered as a left module over $\pi_{*}(\mathbf{K})$, is free on a countably infinite set of generators (of degree zero).

Because of the structure of $\pi_{*}(\mathbf{K})$, any graded module M_{*} over $\pi_{*}(\mathbf{K})$ which is zero in odd degrees satisfies $M_{*} \cong \pi_{*}(K) \otimes_{Z} M_{0}$. So Theorem 2.1 will follow from the following result.

THEOREM 2.2. $\quad \mathbf{K}_{0}(\mathbf{K})$ is a free abelian group on a countably infinite set of generators.

In order to prove this, recall that according to [3] we have an embedding $\mathbf{K}_{0}(\mathbf{K}) \subset \mathbf{K}_{0}(\mathbf{K}) \otimes \mathbf{Q}=\mathbf{Q}\left[w, w^{-1}\right]$ where $w=u^{-1} v(u$ and v being as in [3]). Let $F(n, m)$ be the intersection of $\mathbf{K}_{0}(K)$ with the \mathbf{Q}-module generated by $\boldsymbol{w}^{\boldsymbol{n}}$, w^{n+1}, \ldots, w^{m}.

Lemma 2.3. $F(n, m) / F(n, m-1)$ and $F(n, m) / F(n+1, m)$ are free abelian groups of rank 1.

Proof. We give the proof for $F(n, m) / F(n, m-1)$; the proof for $F(n, m) / F(n+1, m)$ is parallel.

An element of $F(n, m)$ may be written in the form $\sum_{n \leq r \leq m} c_{r} w^{r}$, where the coefficients c_{r} lie in \mathbf{Q}. We can define an embedding

$$
F(n, m) / F(n, m-1) \rightarrow \mathbf{Q}
$$

by sending $\sum_{n \leq r \leq m} c_{r} w^{r}$ to the coefficient c_{m} of w^{m}. We wish to determine the image I of this embedding. It is a subgroup of \mathbf{Q}, and clearly contains \mathbf{Z}, since w^{m} belongs to $F(n, m)$. The result will follow if we show that there is an integer M such that the image I is contained in $(1 / M) Z$. We prove this by localization; it will be sufficient to prove the following.
(i) For each prime p there is a power p^{e} such that

$$
I \subset\left(1 / p^{e}\right) \mathbf{Z}_{(p)}
$$

(where $\mathbf{Z}_{(p)}$ means the localization of \mathbf{Z} at p, as usual.)
(ii) For all but a finite number of primes p we can take $p^{e}=1$.

So let p be a prime. Then in $\mathbf{K}^{0}\left(\mathbf{K} ; \mathbf{Z}_{(p)}\right)$ we have an element Ψ^{k} for each integer k prime to p; and we have $\left\langle\Psi^{k}, w^{r}\right\rangle=k^{r}$. Let r run over the range $n \leq r \leq m$, and let k run over an equal number of distinct integers k_{n}, k_{n+1}, \ldots, k_{m} prime to p; then the matrix with entries k^{n} is nonsingular, for we will show that its determinant Δ is nonzero. In fact, by removing from Δ a factor $\left(k_{n} k_{n+1} \cdots k_{m}\right)^{n}$, we obtain a Vandermonde determinant, which is nonzero because $k_{n}, k_{n+1}, \ldots, k_{m}$ are distinct. We can therefore choose coefficients λ_{k} in $\mathbf{Z}_{(p)}$ such that

$$
\left\langle\sum_{k} \lambda_{k} \Psi^{k}, w^{r}\right\rangle= \begin{cases}0 & \text { if } n \leq r<m \\ \Delta & \text { if } r=m\end{cases}
$$

In particular, for any element $x=\sum_{n \leq r \leq m} c_{r} w^{r}$ in $F(n, m)$ we have

$$
\left\langle\sum_{k} \lambda_{k} \Psi^{k}, x\right\rangle=\Delta c_{m}
$$

But certainly we have $\left\langle\sum_{k} \lambda_{k} \Psi^{k}, x\right\rangle \in \mathbf{Z}_{(p)}$; therefore $c_{m} \in(1 / \Delta) \mathbf{Z}_{(p)}$. Moreover, for $p-1 \geq m-n+1$ we can arrange for Δ to be nonzero $\bmod p$, for we can arrange for $k_{n}, k_{n+1}, \ldots, k_{m}$ to be distinct $\bmod p$. This completes the proof.

Proof of Theorem 2.2. This follows immediately from Lemma 2.3. Suppose, as an inductive hypothesis, that we have found a base for $F(n, m)$; we may also suppose that the base contains $m-n+1$ elements. Then Lemma 2.3 allows one to extend the base to a base for $F(n, m+1)$ or $F(n-1, m)$; we may also assert that this base contains $m-n+2$ elements. The induction does start, because the case $n=m$ of Lemma 2.3 is to be interpreted as saying that $F(n, n)$ is a free abelian group of rank 1. (The proof even shows that $F(n, n)$ has a base consisting of the element w^{n}.) It is natural to arrange the induction so that
alternate steps increase m and decrease n, but the induction may be conducted in any way provided that $m \rightarrow+\infty$ and $n \rightarrow-\infty$. The induction constructs a base for $\bigcup F(n, m)=\mathbf{K}_{0}(\mathbf{K})$. This proves Theorem 2.2, and Theorem 2.1 follows.

3. Maps from K to K

These are described by the following result.
Theorem 3.1. The Kronecker product gives an isomorphism

$$
\mathbf{K}^{*}(\mathbf{K}) \rightarrow \operatorname{Hom}_{\pi_{*}(\mathbf{K})}\left(\mathbf{K}_{*}(\mathbf{K}), \pi_{*}(\mathbf{K})\right)
$$

Proof. This follows immediately from Theorem 2.1, by using the universal coefficient theorem in K-theory. The basic ideas for the proof of such a theorem were given by Atiyah [4], but in the context of the Künneth theorem for spaces. A discussion in the context of the universal coefficient theorem for spectra is given in [1]; it lacks a treatment of the convergence of the spectral sequence, but this may be supplied from the indications given in [2].

Corollary 3.2. $\quad \mathbf{K}^{\mathbf{1}}(\mathbf{K})=0 ; \mathbf{K}^{\mathbf{0}}(\mathbf{K})$ is uncountable.
This follows immediately from Theorems 2.1 and 3.1.
COROLLARY 3.3. $\mathbf{K}^{0}(\mathbf{K})$ contains maps not of the form $\lambda \Psi^{1}+\mu \Psi^{-1}$, where λ, $\mu \in \mathbf{Z}$.

This follows immediately from Corollary 3.2.
We will now show how to construct a map which is not of the form $\lambda \Psi^{1}+\mu \Psi^{-1}$. For a map of the form $\phi=\lambda \Psi^{1}+\mu \Psi^{-1}$ we have

$$
\langle\phi, 1\rangle=\lambda+\mu, \quad\langle\phi, w\rangle=\lambda-\mu
$$

so $\langle\phi, 1\rangle=0$ and $\langle\phi, w\rangle=0$ imply $\phi=0$, and in particular $\left\langle\phi, w^{2}\right\rangle=0$. Let h be the composite

$$
F(0,2) \longrightarrow F(0,2) / F(0,1) \xrightarrow{\cong} \mathbf{Z},
$$

where the isomorphism comes from Lemma 2.3; then we have $h(1)=0$, $h(w)=0$ but $h\left(w^{2}\right) \neq 0$. (In fact calculation shows that $h\left(w^{2}\right)= \pm 24$, but this is irrelevant.) We will now extend h to an element of

$$
\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{K}_{0}(\mathbf{K}), \mathbf{Z}\right)=\operatorname{Hom}_{\pi_{*}(\mathbf{K})}^{0}\left(\mathbf{K}_{*}(\mathbf{K}), \pi_{*}(\mathbf{K})\right) .
$$

In fact, according to the proof of Theorem 2.2, a base of $F(0,2)$ may be extended to a base of $K_{0}(K)$, and so h may be extended over $K_{0}(K)$ by giving it arbitrary values on the remaining basis elements. Applying Theorem 3.1, we obtain a map $\phi \in \mathbf{K}^{0}(\mathbf{K})$ such that $\langle\phi, 1\rangle=0,\langle\phi, w\rangle=0$ but $\left\langle\phi, w^{2}\right\rangle \neq 0$; this map ϕ is not of the form $\lambda \Psi^{1}+\mu \Psi^{-1}$.

References

1. J. F. Adams, Lectures on generalized cohomology, Lecture Notes in Mathematics, no. 99, Springer 1969, especially pp. 1-45.
2. ——, Algebraic topology in the last decade, Proceedings of Symposia in Pure Mathematics, vol. 22, Amer. Math. Soc., 1971, especially p. 11.
3. J. F. Adams, A. S. Harris, and R. M. Switzer, Hopf algebras of cooperations for real and complex K-theory, Proc. London Math. Soc., vol. 23 (1971), pp. 385-408.
4. M. F. Atiyah, Vector bundles and the Künneth formula, Topology, vol. 1 (1962), pp. 245-248.

Cambridge University
Cambridge, England
University College of Swansea
Swansea, Wales

