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STABLE OPERATIONS ON COMPLEX K-THEORY

BY

J. F. ADAMS AND F. W. CLARKE

1. Introduction

Let K be the spectrum representing classical (periodic) complex K-theory. A
stable operation (of degree zero) on complex K-theory should then correspond
to an element of the K-cohomology group K(K); equivalently, it should corre-
spond to a map of spectra f: K - K. (It will be convenient if the word "map"
means a homotopy class, and is restricted to maps of degree zero.) Two maps
from K to K are well known: P, the identity map, and P- , the map induced
by complex conjugation. One may then form integral linear combinations
2P + #P- , where 2, g Z. It has been conjectured, and some have tried to
prove, that in this way one obtains all the maps from K to K. Although some of
our colleagues have found it hard to believe, we will show that this conjecture is
false; there are uncountably many maps from K to K. We deduce this from a
result which has other applications in K-theory.

2. Study of K-homology

Let K,(K) be the K-homology of the spectrum K. It has been sufficiently
described by Adams, Harris, and Switzer [3]; but these authors omit the follow-
ing fundamental result.

THEOREM 2.1. K,(K), considered as a left module over %(K), is free on a
countably infinite set of oenerators (of deree zero).

Because of the structure of rr,(K), any graded module M, over n,(K) which
is zero in odd degrees satisfies M, rr,(K) (R) z Mo. So Theorem 2.1 will follow
from the following result.

THEOREM 2.2.
generators.

Ko(K) is a free abelian oroup on a countably infinite set of

In order to prove this, recall that according to [3] we have an embedding
Ko(K) = Ko(K)(R) Q Q[w, w- 1] where w u- v (u and v being as in [3]). Let
F(n, m) be the intersection of Ko(K) with the Q-module generated by w,
Wn + Wm.

LEMMA 2.3. F(n, m)/F(n, m- 1) and F(n, m)/F(n + 1, m) are free abelian
#roups of rank 1.
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Proof We give the proof for F(n,m)/F(n,m-1); the proof for
F(n, m)/F(n + 1, m)is parallel.
An element of F(n, m) may be written in the form Y’,,,s, c,w’, where the

coefficients c, lie in Q. We can define an embedding

F(n, m)/F(n, rn- 1)--} Q
by sending ,, c, w" to the coefficient c of w. We wish to determine the
image I of this embedding. It is a subgroup of Q, and clearly contains Z, since
w’ belongs to F(n, m). The result will follow if we show that there is an integer
M such that the image I is contained in (1/M)Z. We prove this by localization;
it will be sufficient to prove the following.

(i) For each prime p there is a power p such that

I (1/p)Z,p)
(where Zo, means the localization of Z at p, as usual.)

(ii) For all but a finite number of primes p we can take p 1.

So let p be a prime. Then in K(K; Zp)) we have an element q for each
integer k prime to p; and we have (k, W) k. Let r run over the range
n _< r _< m, and let k run over an equal number of distinct integers k.,
k.+ k., prime to p; then the matrix with entries k is nonsingular, for we
will show that its determinant A is nonzero, in fact, by removing from A a
factor (k.k.+ ... k), we obtain a Vandermonde determinant, which is non-
zero because k., k./ , k. are distinct. We can therefore choose coefficients
;t in Zp such that

(k ) { if n<r<m
2k,W"

ifr=m.

In particular, for any element x ,s,s c, w" in F(n, m) we have

( 2F, x) Ac,.

But certainly we have (k 2Fk, X) e Zt; therefore c e (1/A)Zt). Moreover,
for p 1 _> m n + 1 we can arrange for A to be nonzero mod p, for we can
arrange for k,, k+ , k to be distinct mod p. This completes the proof.

Proofof Theorem 2.2. This follows immediately from Lemma 2.3. Suppose,
as an inductive hypothesis, that we have found a base for F(n, m); we may also
suppose that the base contains tn--- n + 1 elements. Then Lemma 2.3 allows
one to extend the base to a base for F( m + 1) or F(n- 1, m); we may also
assert that this base contains m- n + 2 elements. The induction does start,
because the case n = m of Lemma 2.3 is to be interpreted as saying that F(n, n)
is a free abelian group of rank 1, (The proof even shows that F(n, n) has a base
consisting of the element w".) It is natural to arrange the induction so that
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alternate steps increase m and decrease n, but the induction may be conducted
in any way provided that m-, + oo and n-, -oo. The induction constructs a
base for ) F(n, m)--Ko(K). This proves Theorem 2.2, and Theorem 2.1
follows.

3. Maps from K to K

These are described by the following result.

THEOREM 3.1. The Kronecker product gives an isomorphism

K*(K)--, Hom,,m(K,(K), ,(K)).
Proof. This follows immediately from Theorem 2.1, by using the universal

coefficient theorem in K-theory. The basic ideas for the proofofsuch a theorem
were given by Atiyah [4], but in the context ofthe K0nneth theorem for spaces.
A discussion in the context of the universal coefficient theorem for spectra is
given in [1]; it lacks a treatment of the convergence of the spectral sequence,
but this may be supplied from the indications given in [2].

COROLLARY 3.2. KX(K)--0; K(K) is uncountable.

This follows immediately from Theorems 2.1 and 3.1.

COXOLLAXY 3.3. K(K) contains maps not of theform q’t +-, where ,
I Z.

This follows immediately from Corollary 3.2.
We will now show how to construct a map which is not of the form

AF + tF t. For a map of the form ;F + tF we have

1> + <, w>
so ($, 1 ) 0 and ($, w) 0 imply $ O, and in particular ($, w2) O. Let
h be the composite

(0, 2)--, (0, 2)/(0, ) Z,

where the isomorphism comes from Lemma 2.3; then we have h(1)= O,
h(w) 0 but h(w2) :p O. (In fact calculation shows that h(w) +_ 24, but this is
irrelevant.) We will now extend h to an clement of

Homz (Ko(K), Z) oHom,,x (K,(K), t,(K)).
In fact, according to the proof of Theorem 2.2, a base of F(0, 2) may be
extended to a base of Ko(K), and so h may be extended over Ko(K) by giving it
arbitrary values on the remaining basis elements. Applying Theorem 3.1, we
obtain a map # K(K) such that (, 1) 0, (, w) 0 but <, w2) =p 0;
this map is not of the form AF + t-t.
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