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FROBENIUS RECIPROCITY FOR SQUARE-INTEGRABLE
FACTOR REPRESENTATIONS

BY

JONATHAN ROSENBERG

Suppose G is a locally compact group and H is a closed subgroup of G. When
G and H are compact, the classical Frobenius reciprocity theorem provides a
nice duality (or more accurately, an adjoint pairing of functors) between the
operations of restricting representations from G to H and inducing representa-
tions from H to G. However this duality breaks down for more general G and
H, and an important problem in the theory of group representations has been
to find an effective substitute for the classical result. One approach, not relevant
to the present paper, has been to abandon unitary representations on Hilbert
spaces and work with group representations on more general locally convex
spaces. A second approach has been to look for Frobenius reciprocity theorems
applying to unitary representations under additional hypotheses. The nicest
results in this direction are the theorems of Mackey 14], Mautner [6], and Anh
[ ], all of which use direct integral decomposition of the regular representations
of G and H and require at least that G be separable and (for the Mackey and
Anh theorems) that G and H have type I regular representations or (for the
Mautner theorem) that H be compact and that G be unimodular. Since the
conclusions of the three theorems are "almost everywhere" statements (with
respect to the measure classes defined by the central decompositions of the
regular representations of G and H), one suspects that stronger "local" theorems
should be valid for square-integrable factor representations (which correspond
to atoms in these measure classes--cf. [10, Proposition 2.3]). The purpose of
this note is to show that this is indeed the case. When H is compact, G is uni-
modular, and one considers irreducible representations of G, our results have,

already been obtained by Wawrzyficzyk [131, Szmidt [12-1, Kunze [3], and
K. and L. Maurin [5-1 in slightly stronger form. However, the present results
apply much more generally.
Throughout this paper, G and Hare as above, and A and 6 denote the modular

functions of G and H, respectively. "Square-integrable" means S.I.S.S. in the
notation of [10, 2.2]. We write y for 6-/2A1/2 (this is a real-valued character
on H), gC(G) for the continuous functions of compact support on G. Haar
measures are always left Haar measures. Induced representations are to be
formed in the sense of Mackey and Blattner--the reader may consult [8] for
references. The author thanks Prof. Marc A. Rieffel for a number of valuable
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suggestions, which led in particular to a significant improvement in the formula-
tion and proof of Lemma 1.

1. The theorems

We begin with the case where H is open in G, since the proofs are easier and
the results are somewhat more precise than in the general case.

THEOREM 1. Suppose H is open in G, and let rc and tr be square-integrable
factor representations of G and H, respectively. Then"

(a) rc is quasiequivalent to a subrepresentation of Ind tr (the representation of
G induced by tr) if and only if tr is quasiequivalent to a subrepresentation of rtln
(the restriction of to H).

(b) Ifn and tr are irreducible, then ifeither Hom (Ind , n) or Homn (a, nln)
isfinite dimensional, so is the other, and there is a natural linear bijection between
them. In particular, the intertwinint7 numbers I (Ind tr, rr) and In(a, rein) are
always the same (ifwe do not distin#uish between infinite cardinals).

Proof. We view L2(H) as a closed subspace of L2(G). Replacing n and tr by
quasiequivalent representations if necessary, we may assume that they are con-
tained in the respective left regular representations (both denoted by 2) of G and
H, with n realized on a subspace V of L2(G) and tr realized on a subspace I4’ of
L2(H). Then Ind tr is the restriction of 2 to the closed linear span Uw in L2(G)
of {2(x)f: f W, x G}. If S" Uw V is a bounded G-intertwining operator,
then SIw is H-intertwining and []Slwll < IISi[, so restriction defines a norm-
decreasing linear map r" Homo (Ind t, n) Homn (, [n). This map is
injective since S[w clearly determines S (we have S(2(x)f) 2(x)Sf for fe W,
x G). On the other hand, if T" W V is a bounded H-intertwining operator
and if Pw is the orthogonal projection of L2(G) onto W, then TPw" L2(G)
L2(G) commutes with left translations by elements of H on L2(G). By the
Takesaki-Nielsen-Rieffel Theorem ([7] and [9, Theorem 2.6]), TPw
W*(G, H\G), the von Neumann algebra on L2(G) generated by the right regular
representation of G and by multiplications by functions in :(H\G) (viewed as
functions on G constant on cosets of H). Therefore we can choose a net of
functions tI), :;ff(G,.H\G) (viewed as functions on G x G) such that p(,)
TPw strongly, where for O a continuous L2 function on G,

(1) (P((I))’O)(X) -"def .It; O(xY--) A(y-x)tI)(y, xy-) dy.

Let b(.) ,(., He). Then p(,,) coincides on L2(H) with right convolution
p(b,) by b,, since for t7 L2(H), the integrand in (1) vanishes except when
xy- H. So if Pv is the orthogonal projection of L2(G) onto V, (Pvp(dp,)Pw}
is a net in Homn (tr, nln) converging strongly to T. But if Pv is the orthogonal
projection of LE(G) onto Uw, Pvp(dP)Pv Hom (Ind tr, n) and Pvp(dp)Pw
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r(Pvp()Pv). Thus the image of r is strongly dense in Hom (’, ais) and the
theorem follows. When Hom (a, [) is finite dimensional, r must be surjec-
tive, and when Hom (a, [) is infinite dimensional, so must be the image of r.)
Now we drop the assumption that H is open in G.

LEMMA 1. Let a be the restriction of the left rettular representation ofH to an
invariant subspace W of L2(H). Then for f :(G) and tt W, f, yg L2(G),
and the representation Ind a of G induced by a is equivalent to the restriction of
the left retlular representation 2 ofG to the closed linear span Uvr in L2(G) of the
functionsf, Ytl, f af’(G), tt W. (By definition,

(f* 7g)(x) f. f(xt-1) A(t)-7(t)g(t) dt

If(xt)7(t)g(t-) dt.)

Proof We use the realization of Ind a given in [8] on p. 228. Iffe d(G)
and g e W,f. exists as a continuous function andf (R) exists as an element
of (G) (R)r<n)W, the preinner product space on which Ind is constructed.
It is easily checked (cf. [8, Proposition 4.6]) that the map (f, g)f. yy is
(H)-balanced, hence defines a linear map T" (G) @<n)W {continuous
functions on G} takingf @ tof yy. Since this map clearly commutes with
left translations by elements of G, T’will provide the desired intertwining oper-
ator from the Hilbert space of Ind a to Uw once we show that T is isometric
with respect to the preinner product norm on (G) @tn)W and the L2(G)
norm. Letf, f2 (G) and let g, g2 e W. Then

(ft @ al, f2 a2) (P(f *ft)at,

(f * YO, f2 *
Hence T is isometric and the lemma is proved.
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LEMMA 2. Forf L2(H) and aft(G), the functionf , defined by

(f * )(x) [.. f(t)(t ’x) dt,

is in L2(G).

Proof. Letfl(t) f(t -1) 6(t) -t/2, bl(x) b(x-x) A(x) -1/2, for t e H and
x G. Then f L(H) and b 3f’(G), so by Lemma 1, (kx * Tf e L(G).
But an easy calculation shows that

(f * dp)(x) (dp * ?f,)(x- ) A(x)- ,/2,
and thusf, 4) e L2(G).
THEOREM 2. Let and a be square-integrablefactor representations of G and

H, respectively, with a irreducible. Then t is quasiequivalent to a subrepresentation
ofInd a ifand only ifa is contained in tin. Furthermore, if t is also irreducible,
then the intertwining numbers I6 (Ind a, ) and In(a, [n) are the same (again if
we do not distinguish between infinite cardinals).

Proof. Replacing n by a quasiequivalent representation if necessary, we may
assume n is the restriction of the left regular representation of G to an invariant
subspace V of L2(G). Using Lemma 1, we view Ind tr as realized on the space
U’ defined above, where W is an irreducible subspace of L2(H) containing a
coefficient function for a.

First suppose S" U’ --. V is a nonzero bounded G-intertwining operator.
Then SPu (where Po is the orthogonal projection of L2(G) onto U’) may be
viewed as an operator on L(G) commuting with , and so SPy is in the yon

Neumann algebra on L2(G) generated by the right regular representation of G.
Hence we may choose a net of functions , 3f’(G) such that p(,) --, SPy
strongly, where p() denotes right convolution by /,. Letting Alff2 6 -1/2

as usual, we see from [2, Proposition 6] that W c -L2(H) is dense in W.
Define an operator

T,. W c -1L2(H) ..+ L(G)
by T,(f) Tf* ,, where the .convolution product is defined as in Lemma 2.
This makes sense since, by Lemma 2, Tf* , e L2(G) for f y-IL(H). We
show that the densely defined operator T is, closable by showing that its adjoint
is also densely defined. For tk e ocF(G) andfe T-1L2(H) c W, we have

<’ Ta(f)>L2(6) _Ia (Tf* ba)-(X)(X) dx
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ifwe let (x) (x- 1), so that e dom (T*) and T* Pw(Y" ( * )ln),
where Pw is the orthogonal projection of L2(H) onto W. In particular, T is
closable. Furthermore, T is semi-invariant with weight -1 for the left action
of H, since forf as above and e H,

T(a(t)f) (" a(t)f) , O y(t)2(t)(yf , 0) y(t)2(t)(Taf).

So by [2, Theorem 1], polar decomposition of the closure of T produces an H-
intertwining isometry U: W L2(G) with UW (TW)-. Since S is non-
zero, we claim PvU must be nonzero for some a (here Pv is the orthogonal
projection of L2(G) onto V), so that a is contained in nln. To prove this, sup-
pose on the contrary that PvU 0 for all a. Then for all and for all f
W y-IL2(H), T,,fe V "L, the orthogonal complement of V. But Vx is in-
variant under left convolutions, so that for all (G),

T,f ( rf) ,, s v"
and

S(,,f) lim(,ff),,eVc V +/- (o).

However, functions of the form b flare total in Uw by Lemma 1, so S 0,
a contradiction.
Suppose on the other hand that tr is contained by ln. By !"2, Proposition 61,

there exists a positive self-adjoint operator in W semi-invariant with weight
-1; composition with an H-intertwining operator W V then yields a non-
zero closed, densely defined operator T from W to V which is semi-invariant
for the action of H, with weight V-1. Given e ff(G), define an operator
R," W c ),-1L2(H) L2(G) as before by R(f) f, . We have seen that

R is closable and semi-invariant with weight y-1. We can clearly choose so
that R, is nonzero; having done this, we let R be the closure of R. Since R
must be injective (by irreducibility of a), we can factor T as SR, where
S" L2(G) --, L2(G) commutes with left translations by elements of H. By the
Takesaki-Nielsen-Rieffel Theorem ([7] and [9, Theorem 2.6]), S W*(G, H\G),
and we can choose a net of functions e :;f’(G, H\G) such that p(,) --, S
strongly. (p(tl)) is defined as in (1).) Then for f W r -1L2(H),

Tf lim p(dP)Rf lim p()(),f, ) lim ?f,

where

We claim that since T is nonzero, some Pvp()Pv is nonzero and hence rr is
quasiequivalent to a subrepresentation of Ind a. Indeed, if this were false, we
would have for all fe W c y-L(H), for all e zoO’(G), and for all ,
(ff yf) e V +/-, hence ff Tf lim ( if) e V c V (0). This
being true for all , we have Tf 0, andfbeing arbitrary, this forces T 0,
a contradiction.

Finally, suppose n is irreducible. If Io (Ind a, n) < oo, then in the first part
of the proofwe can actually choose a ff with Pvp()Pv SPy (since the space
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of operators PvP(tP)Pv is dense in the finite dimensional space of possible
SPy’s), and the argument shows that In(a, nlH) > Io (Ind tr, rr) (since S = 0
implies that PvT v 0). Similar reasoning in the second half of the proof shows
the reverse inequality (again under the assumption Io (Ind a, rr) < o). And it
is clear that if I6 (Ind tr, ) oo, then the space of closed y-1-semi-invariants
from W to V is infinite dimensional, so that In(a, nln) .
Remark. The requirement in Theorem 2 that tr be irreducible (rather than,

say, primary of type II or III) is probably unnecessary, but to eliminate it while
retaining the framework of the proof above would require some results on semi-
invariant operators for non-type I square-integrable representations, to replace
Proposition 6 of I-2]. Of course, if the regular representation ofH is primary (of
arbitrary type), the theorem is clear, since any subrepresentation of the regular
representation 2o of G must restrict to something quasicontained in the regular
representation 2n of H, while conversely, if tr is quasiequivalent to 2, then
Ind tr is quasiequivalent to Ind 2H

2. An example
The following example does not reflect the full power of Theorem 2 (since

Anh’s theorem would also apply), but it does illustrate the sort of situation in
which the theorem might be useful. Let G SL(2, R), and let

a_ "aR*,bR

be the subgroup of lower triangular matrices in G. Then H is the semidirect
product of the subgroups

N= {( )’bR} and D= {( 0_)’aR*}a

and it is easy to see by the Mackey "little group" method that H has (up to
equivalence) exactly four infinite-dimensional irreducible unitary representa-
tions, all of which are square-integrable. These are parameterized by the two-
element dual of the center of H and by the two-element set of open orbits of D
on N (which, when R is identified with N^, are just the positive and negative
half-lines). We shall apply Theorem 2 to compute the multiplicities of the dis-
crete series representations of G in Ind , where a is one of the square-integrable
irreducible representations of H. To this end we must compute the restrictions
to H of the discrete series representations zn of G. (In keeping with tradition, we
let the index parameter h range over +_ 1/2, +_ 1, 3/2, ) According to [11,
pp. 20-21-l, h is realized on a Hilbert space fn of functions on the upper half-
plane (holomorphic functions for h > 0, antiholomorphic functions for h < 0),
and nn(x), for x H, is given by the formula
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In order to identify the representation rh[n, it is convenient to replace nh by the
equivalent representation r;, of G on the Fourier transforms of the "boundary
values" of the functions in O’h on the real line. As also indicated in [11, pp.
20-21-], it follows from the Paley-Wiener Theorem that the Hilbert space o’;, of
n;, is just

L((O, oo), t -2h+1 dt) for h > 0
and

L2((-oO, 0), Itl 2h+ dt) for h < 0.

Taking Fourier transforms in (2) shows that n,ln is given by the formula

By using the isometry of oe’ onto L2((0, oo), dt/t) given by f-fl, where
fx(t) t-hf(t) for h > 0 andf(t) tt+hf(--t) for h < 0, we may replace
nh by still another equivalent representation nh, this time on L2((0, oo), dt/t).
The formula for hln is

where Fh(a) -- 1 if h is an integer, sgn (a) if h is a half-integer. But (3) is easily
recognized as the standard form of one of the four infinite-dimensional irre-
ducible representations of H--which one we get depends on h and sgn (h).
We conclude that the restriction to H of any discrete series representation of G
is irreducible, and hence that if tr is a square-integrable irreducible representa-
tion of H, then Ind tr contains each discrete series representation of G with
multiplicity 0 or 1. (Of course, Ind tr also contains a direct integral of principal
series representations.) The discrete series representations that do appear in
Ind tr are exactly those restricting to the same character of the center as tr and
having index h of the sign corresponding to the orbit in N associated with trlN.
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