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MULTIPLIER SEQUENCES FOR FIELDS
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THOMAS CRAVEN AND GEORGE CSORDAS

1. Introduction

Let F be a field and F {Yk}=O be a sequence of elements in F. If for every
polynomial

f(x) ak xk, ak F,
k=O

which splits over F, the polynomial F[f(x)] ]--o kakxk also sph’ts over F,
then F is called a multiplier sequence for F. In the case when F is the field R of
real numbers this concept was first introduced in 1914 by P61ya and Schur in
their celebrated paper [9] entitled Ober zwei Arten yon Faktorenfol#en in der
Theorie der al#ebraischen Gleichun#en. This beautiful paper has been the foun-
tainhead of numerous later investigations. The main result of this work has
been hailed by R. P. Boas [ 1, p. 418] as a "key result on the boundary between
Algebra and Analysis." P61ya and Schur have shown that all the multiplier
sequences for R are generated by entire functions which can be uniformly
approximated in a neighborhood of zero by polynomials with only real (nega-
tive) zeros. (For a precise statement of this result see Section 3.) In subsequent
developments, these entire functions found important applications in other
fields: for example, in the theory of integral transforms [3], approximation
theory [11], the theory of total positivity [4] and probability theory [5].

In this paper, inspired by the work of P61ya and Schur, we investigate and
characterize the multiplier sequences for more general fields. In Section 2 we
describe some of the intrinsic properties of multiplier sequences and establish
the main techniques for analyzing multiplier sequences. Our results primarily
concern the algebraic and arithmetic properties a field must have in order to
possess a multiplier sequence of a prescribed form. in Section 3 we show that
several properties of multiplier sequences for R are also enjoyed by multiplier
sequences of an arbitrary ordered field. Moreover, with the aid ofa theorem of
Tarski, we are able to provide a particularly useful necessary and sufficient
condition for a sequence to be a multiplier sequence for a real closed field (and
for certain somewhat more general fields), in fact, it is shown that F[f(x)] splits
for all polynomials f(x) which split and have degree less than or equalto n if
and only if F[(x + 1)*] splits and has all its roots ofthe same sign. Section 4 is
devoted to the complete characterization of multiplier sequences for all finite
fields. In the final section we provide a list of open questions.
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2. Intrinsic properties of multiplier sequences

We begin by considering properties of multiplier sequences which apply to
any field. In later sections we shall apply these results to more restricted classes
of fields. In this section, F will denote an arbitrary field and F2 will denote the
set of all squares in F (including 0).

DEFiNiTiON 2.1. Let V {?}=o be a sequence of elements of F. By a
of V, we mean a sequence {y, ?+ 1, ?+ 2, ...} for some nonnegative integer s. We
shall refer to a finite sequence {y,, y,+ , y,+}, for some nonnegative integers
r and s, as a segment of F.

We begin with several easy observations concerning multiplier sequences.

PROPOSITION 2.2. Let 1" {3,}__o be a sequence of elements of F.

(a) If F is a multiplier sequence, then any shift off is a multiplier sequence.
(b) If 0 for k n, n + 1 (some fixed n > 0), then F is a multiplier

sequence; if F is a perfect field of characteristic p > 0 and 0 for k n,
n + p’ (n, m fixed nonnegative integers), then F is a multiplier sequence.

(c) If v=cr, k=O, 1, 2 for some c, r F, then F is a multiplier
sequence.

(d) .If l" {Tk}ff=,o and A----{Ak}ff=o are multiplier sequences, then
FA {)’k 2}ff=O is also a multiplier sequence.

DFIIrIOr. Sequences as in (c) above will be called exponential sequences.
These, together with sequences as in (b), will be called trivial multiplier
sequences.

PROPOSITION 2.3. Let F {V}-_ o be a multiplier sequencefor F. Thenfor all
k >_ O, we have ?k ?k + 2 F2"

Proof Apply F to the polynomial x(x + 1)(x 1).

PROPOSITION 2.4. Let F {),}o= o be a multiplier sequencefor F and suppose
the characteristic of F is not 2. Thenfor all k > O, we have 37 ?- + F2.

Proof Apply F to the polynomial x- (x + 1)2.
The next proposition says that any segment of a multiplier sequence, if

written in reverse order, will still act as a multiplier sequence for polynomials of
appropriately small degree. Combined with Proposition 2.2 (d), this provides a
powerful tool for analyzing multiplier sequences, as will be seen in Section 4.

PROPOSITION 2.5 (Reversing segments). Let F {y}_- o be a multiplier seq-
uence for F. Then any segment {,, ,+, ,+} has the property that if

x alsof(x) ’=o ai xi splits and n <_ s, then the polynomial ,’--o aiYr+s-i
splits.
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Proof By Proposition 2.2 (a), we may assume r 0. For any polynomial
f(x) E-o ax, let

n

f*(x) xf(1/x)= E
i--O

and note that f(x) splits if and only iff*(x) splits. Thus ill(x) splits, so does

Xs_n+ia._,,_+,
i=0

Xs-n an_is_n+X
i=0

. x also splitsx. Therefore g*(x) ’=o a
_

where g(x) _,=o a. 7- +,

as desired.
We next obtain a strong theorem regarding the occurrence of "embedded"

zeros in a multiplier sequence, where by an embedded zero we mean y 0 for
some k and y y, 0 for some s, such that s < k < t.

THEOREM 2.6. Let F {}=o be a multiplier sequencefor F. lfyYm 0 and
0for all k, < k < m, then F is closed under the operation oftaking (m l)th

roots and F contains all 2(m- l)th roots of unity.

Proof Apply F to the polynomial x(x + a)(x + 1)m-- , where a is an
arbitrary element of F.

Finally, we shall obtain a necessary condition for a field to have nonzero
multiplier sequences which are not exponential sequences.

LEMMA 2.7. If a is a nonzero element ofafield F and z + a is a square in F
for all z F, then F is a pythagoreanfield that is, every sum ofsquares is already
a square.

Proof If z 0, the hypothesis implies that a is a square, say a c2. Let x,
y F, y 4: 0. Then

X2 + y2 (yc-1)2((cxy-l)2 + a)= (yc-1)2(Z2 -- a)
where z cxy- . Since z2 + a is a square by hypothesis, the element x2 / y is
a square, and thus F is pythagorean.

Tn.OR.t 2.8. Assume {k, )k+ 1, ))k + 2} iS a segment of a multiplier sequence
for some field F, where kk+ k+ 2 4:0 and + k Yk+ 2 :: O.

(a) If the field F has characteristic different from 2, then F is a pythagorean
field.

(b) If F has characteristic 2, then the additive subgroup S {y2 + Y lY F}
is equal to F.
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Proofi Replace the multiplier sequence by a shift if necessary in order to
assume that k 0, and apply the sequence to the polynomial (x + l)(x + b),
where b is an arbitrary element of F. Then bVo + (b + 1)V x + V2 x2 must split
for all b in F.

First we consider case (a). Then the discriminant

D 2(b + 1)2 4oY2b
must be a square in F for all b F. Completing the square in terms of b, we
obtain

D (yxb + y- 1(y2 2YoY2))2 + 40Y2( 1 02-2) Z2 @ a,

where z )’1 b + ),-1(),x2 2yo Y2) ranges through all the elements of F as b
does, and a 4yoY2(1 oY2 2) is nonzero by hypothesis. By Lemma 2.7, F
is pythagorean.

In case (b), the characteristic of F is 2, and so the polynomial
bo + (b + 1)1 x + 2 x2 splits if and only if

),-22(b + 1)-2(bo + (b + 1)),ix + ),2 x2)
-1 1)-1splits for any b = 1. Replacing 1 2(b + x by x, we see that the above

polynomial splits if and only if b(b 4-1)-2d S for all b 1, where
d--’ 02"2 is nOt equal to 0 or 1 by hypothesis. Now b(b + 1)-2 ranges
through all elements of S since b(b + 1)-2 s2 4- s where s-- (1 + b)-1 if
b 0 and s 0 if b 0. Therefore Sd

_
S, and so Sd2

_
S. Now let s F be

arbitrary and set t=sd. Then (s2+s)d2=t2+tdS and hence
t2 4- td r2 4- r for some r. But then

(t + r)2 t2 + r2 r 4- td (t + r)+ t(i + d),
or equivalently, t(1 + d) (t + r)2 + (t + r), which is an element of S. Since s,
and hence t, was arbitrary, and d : 1, the element t(1 + d) ranges over all of F
as t does. Therefore F S and the theorem is proved.

LEMMA 2.9. Assume {0, c, cr, cr} or {c, cr, cr20} is a seffment ofa multiplier
sequence for a field F, where c and r are nonzero elements of F.

(a) If the characteristic of F is not 2, the field F is quadratically closed.
(b) If the characteristic of F equals 2, then F is contained in the additive

subffroup S {),2 4- y ly F}.

Proofi By Propositions 2.2 (a) and 2.5, it will suffice to consider a multiplier
sequence 1" with o c, 1 cr, 2 cr2, and 0. Since r" is a multiplier
sequence,

r[(x + + b)] cr2(2 + b)x2 + cr(2b + 1)x + cb

must split for all b in F. If F has characteristic other than 2, then the discrimin-
ant c2r2(1 4b) F2 for all b F; that is, every element ofF is a square. Ifthe



MULTIPLIER SEQUENCES FOR FIELDS 805

characteristic of F is 2, the polynomial becomes c(r2bx2 -k rx -k b). Multiplying
by b and making the change of variables z rbx, we see that this splits if and
only if z2 + z + b2 splits; that is, if and only if the element bz is in S for all b
in F.

COROLLARY 2.10. Assume F is not pythaoorean and has characteristic differ-
ent from 2. IfF is a multiplier sequencefor F without embedded zeros, then I is a
trivial multiplier sequence.

Remark 2.11. The above results show that many common fields such as
number fields and function fields (finite extensions of the field of fractions of a
polynomial ring over a field) have only trivial multiplier sequences. Indeed,
Theorem 2.6 implies that their multiplier sequences cannot contain any em-
bedded zeros, and so the above corollary implies they must all be trivial.

3. Ordered tields

We shall begin this section with a brief review of the known algebraic and
transcendental characterizations of multiplier sequences for the field R of real
numbers. In order to facilitate our discussion we shall present here a definition
which was first introduced by P61ya and Schur [9].

DEFINITION. A sequenc F {k}=0 of real numbers is called a multiplier
sequence of the first kind if r takes every polynomial f(x), f(x) R[x], which
has only real zeros into a polynomial, F[f(x)], of the same class. A sequence
F {Yk}%0 of real numbers is called a multiplier sequence ofthe second kind ifF
takes every polynomialf(x),f(x) R[x], all of whose zeros are real and of the
same sign into a polynomial all of whose zeros are real.

With the aid of theorems on the composition of polynomials, P61ya and
Schur [9, p. 100] proved the following algebraic characterization of these
sequences.

THEOREM 3.1. A real sequence 1" {k}=O iS a multiplier sequence ofthefirst
kind if and only if the zeros of the polynomials

r[(1 + x)"] E n 1, 2, 3,...,

are all real and of the same sion.

Mutatis mutandis an analogous result holds for multiplier sequences of the
second kind. The difference between the two kinds of multiplier sequences is
brought into sharper focus by P61ya and Sehur’s transcendental criteria.

THEOREM 3.2. Let 1" {),}=o, )’o 0, be a sequence ofreal numbers. Then
in order that [" be a multiplier sequence of the first kind it is necessary and
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sufficient that the series

converge in the whole plane, and that the entirefunctionf(z) can be represented in
the form f(z) cez l-I=l l + z/zn), where tr >_ O, zn>0, cR, and

We shall present here an observation regard to the proof ofeorem 3.2.
t F {}=o be a multiplier sequence ofthe first kd. For n 1, 2, 3, let
0.(z) F[(1 + z)"] and set G.(z) O(z/n).e standard proofs (see, for exam-
ple, Levin [6, p. 346]) which show that the function

zkf(z)=

is entire, apply nodal family arguments to the sequence {G.(z)} of polyno-
mials. se proofs can be simplified as sho by the followg elementary
considerations. Sin the sequen F {?}o satisfies the Turn inequalities,
that is,

-_+0, k=1,2,3,...,

it follows that the power series o z has a positive radius ofconvergent.
Hence the function f(z) is an entire function, and thus the sequence {G(z)}
converges uniformly on compact subsets, to f(z).
e analogue of eorem 3.2 for multiplier sequences of the second kind is

the following theorem of P61ya and Schur [9, p. 105].

THEOREM 3.3. Let 1" {),k}=O, 0 =/= 0, be a sequence ofreal numbers. Then
in order that F be a multiplier sequence of the second kind it is necessary and
sufficient that the series

0
k zkftz)

k=O

converoe in the whole plane, and that the entirefunctionf(z) can be represented in
the form

f(z) e-az2 +z H (1 z/z.)ez/z",
tt=l

where ot > O, , and z. are real and

A comprehensive treatment of multiplier sequences ofR may be found in the
original paper on the subject by P61ya and Schur [9] (see also Levin [6, pp.
340-347] and Obreschkoff [7, Chapter 2]). For the significance of the Tur/m

inequality mentioned above we refer the reader to a recent paper by Csordas
and Williamson [2] and to the references contained therein..
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In the sequel we shall be dealing with multiplier sequences of arbitrary
ordered fields. While even in this general setting it is possible to introduce the
notion of a multiplier sequence of the second kind, we shall not do so. Thus the
term "multiplier sequence" will be used in the sense of the definition introduced
in Section 1. Our next result shows that several properties of multiplier seq-
uences of R are also enjoyed by multiplier sequences of an arbitrary ordered
field.

THEOREM 3.4. Let F be an arbitrary orderedfield. Let F {/k}=O, 7k F, be
a multiplier sequence for F.

(a) The relations 0 and O,for any 1, k < < m, cannot hold at the
same time.

(b) 7k 6 F2 whenever k =- (mod 2).
(c) For all k > 1, 2

_
+ > O.

Proof Since no ordered field can contain all the nth roots of 1 if n > 2, part
(a) of the theorem follows immediately from Theorem 2.6.
We now turn to the proof of the second part of the theorem. Suppose k =-

(mod 2) and / :p 0. Since F contains no embedded zeros by part (a), the
result follows from Proposition 2.3.
To prove the third assertion we make use of Proposition 2.4. Thus

)k
2

k- )’k+ 6 F2, k >_ 1, and a fortiori the Turin inequality
k
2

k- k+ >-- 0 holds for all k _> 1. This completes the proof of the theorem.

Remarks. We note that part (b) ofTheorem 3.4 asserts in particular that the
elements in the sequence o, ,... either all have the same sign or they have
alternating signs. Part (c) is of special interest when it is applied to fields with
many square classes. Also we observe that the Turin inequality imposes a
strong growth condition on the sequence {?k}" Indeed, if Iw.I > Iw.+ I, then
the sequence { is strictly decreasing, where the absolute value is defined
relative to the given ordering.

It follows from Corollary 2.10 that the multiplier sequences of nonpythagor-
can formally real fields are the trivial sequences. Thus we have the following
theorem.

THEOREM 3.5. Let F be a nonpythaoorean formally real field. Then F is a
multiplier sequence for F if and only if 1"’ is trivial.

In view of the above result we shall next consider real closed fields, which
possess an abundance of nontrivial multiplier sequences. We shall characterize
the multiplier sequences of arbitrary real closed fields by making use of a
theorem of Tarski [12], [10, p. 55 and p. 105]. This theorem implies that any
two real closed fields satisfy precisely the same elementary sentences involving
only elements common to the two fields. Thus it is easily seen that the following
well known theorem [6, p. 336] is valid for every real closed field.
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THEOREM 3.6 (Schur Composition Theorem). Let

be two polynomials in R[x]. Ifbothf(x) andfz(x) split over R and if the zeros of
fz(x) all have the same sion, then the polynomial

also splts over R.

We need one more observation before we can state an analogue ofTheorem
3.1 for an arbitrary real closed field. For a fixed positive integer n, let ,denote
the set of all polynomials of degree less than or equal to n in Fix] which split
over F. Let F {’k}=O be a sequence of elements in F. Then the following
natural question arises. What condition must the sequence F satisfy in order
that Fir(x)] , for every f(x) in ,? The remarkable fact is that we need
only to examine the action of F on a single polynomial. Indeed, let us assume
that F {Yk}%o, Y e F, is a sequence with the property that the polynomial
F[(1 + x)"] splits over F and all its zeros are of the same sign. Let
f(x) .=o ak xk be an arbitrary polynomial in ,. Then by Theorem 3.6 the
polynomial

Yk akxk Ykakxk
k=O k--O

is also in ’,. Conversely, suppose that F[f(x)] is in for allf(x) in ,. Then,
in particular, F[(1 + x)"] splits over F. Moreover, if we apply the techniques
used in the proofs of Theorem 2.6 and Proposition 2.3 we see that the zeros of
F[(1 + x)"] all have the same sign. Thus we have proved the following.

TEORE 3.7. Let F be a real closed field and let F {)’o be a sequence
with elements in F. Then the polynomial F[(1 + x)"] splits over F and all its zeros
have the same sign if and only if r’[f(x)] ,for att f(x) in ,.
As an immediate consequence of Theorem 3.7 we have the following charac-

terization of multiplier sequences for a real closed field.

COROLLARY 3.8. Let F be a real closedfield and let F {}__o be a sequence
with elements in F. Then F is a multiplier sequence for F ifand only iffor every
positive inte[ter n the polynomial F[(1 + x)"] splits over F and all its zeros have
the same sion.

4. Finite fields

Equipped with the techniques and results which we have established in
Section 2, we shall now proceed to describe the multiplier sequences for all
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finite fields. At a first glance our task seems intractable even in the simplest case
when the field F under consideration is F 2; the field with only two elements, 0
and 1. If F {}Tffio, F2, is a multiplier sequence for F2, what is the
distribution of zeros and ones in F? Are there any restrictions as to the number
of zeros that can lie between two nonzero entries of F? We have formulated
these questions in this manner for, as we shall see below, in the absence of
embedded zeros the multiplier sequences are in fact all trivial. Thus our pro-
gram will center around the characterization of the zero-one multiplier seq-
uences for finite fields.
Our endeavor is further simplified by the remarkable fact (Theorem 4.4) that

finite fields with at least five elements possess only trivial zero-one multiplier
sequences. In contrast, we shall show in Theorem 4.11 that the finite fields
where q 2, 3, or 4, have many nontrivial, periodic, zero-one multiplier seq-
uences. The complete characterization of the multiplier sequences for F, (q 2,
3, or 4) will be accomplished by means of a representation theorem (Theorem
4.12).
The lack of nontrivial multiplier sequences for finite fields with at least five

elements raises the following question. Why should the number five mark the
line of demarcation in these considerations? We, have been unable to provide a
precise explanation of this phenomenon.

In Section 2 we saw that certain segments of multiplier sequences for fields,
F, of characteristic 2 provided important information about the additive sub-
group S {y2 + y Y F} of F. In the sequel we shall make use of the following
fact. If F is a finite field of characteristic 2, that is, F F2,, then S has 2
elements. To see this, consider the additive homomorphism F2.--* S, where
yl-- y2 q_ y. Let K {0, 1} denote the kernel of this homomorphism. Then the
sequence 0 -, K --, F2, --’ S --, 0 is exact. Hence F/K - S and S has 2
elements.

Preliminaries aside, we shall now show that for arbitrary finite fields the
multiplier sequences without embedded zeros are the trivial multiplier
sequences.

PROPOSITION 4.1. Let F be afinite field, lfF {y}_- o, y, . F, is a multiplier
sequence for F without embedded zeros, then F is a trivial multiplier sequence.

Proof Suppose F is a multiplier sequence without embedded zeros. If the
characteristic of F is different from 2, then, by Corollary 2.10, F is a trivial
multiplier sequence. Next we consider the case when the characteristic ofF is 2.
If F has at most two nonzero terms we are done. Thus using the assumption
concerning the absence of embedded zeros we can suppose that F contains at
least three consecutive nonzero terms. Let the first such triple be denoted by ,
y+ , and y+ 2. Now if y2+ kk+ 2 :# 0, then by Theorem 2.7 the additive
subgroup S {y2 -I- Y lY 6 F} of F is equal to F. Since this is impossible, we
conclude that 2+ +2 0. Let us set c, + cr, where c, r F.
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Then +2 cr2. If k 0, then F contains a segment of the form {0, c, cr, cr2}.
But by part (b) of Lemma 2.8 this is impossible. Hence, o c, = cr and
2 cr2. Another application of Lemma 2.8 together with an easy induction
argument shows that Yk = cr, k O, 1, 2, Thus F is a trivial multiplier
sequence.

Let F be a multiplier sequence for a finite field F. How many embedded zeros
can there be between two consecutive nonzero entries of F? The answer to this
question is contained in the following result.

PROPOSITION 4.2. Let F F be the finite field with p" elements. Let
F {V}__ o be a multiplier sequence for F. if 0 and 0 for all i,
k < < m, then rn k is a power of p.

Proof Let m k qp, where (q, p) = 1. By Theorem 2.6, F contains all
qpth roots of 1 and thus we know that q[(p"- 1). Let a be an arbitrary
element of F and let fl p. Then Theorem 2.6 implies that the polynomial

x*p + ap (xa + a)a

splits. This shows that F contains all qth roots of --a.
Now if we choose u to be a generator of the cyclic group F* of nonzero

elements of F, then the order of u will be p 1. Since F contains a qth root b of
u, we have b u. But this implies that

u(,- t).a- b- 1.

Therefore q 1 and m- k p.
Our next result, when combined with Proposition 4.2, shows that finite fields

with at least five elements possess only the trivial zero-one multiplier
sequences.

THEOREM 4.3. Let F Fpn be a finite field with at least five elements. If
F {}__o, i F, is a multiplier sequencefor F, thenfor any positive inteoer r, F
has no subsequence of the form

1
0

if i= k, k + p’, k + 2p’,
/fk <i <k + 2p’, i k + p’.

Proof Suppose 1" is a multiplier sequence for F containing the specified
subsequence. Without loss ofgenerality we may assume that k 0. By Proposi-
tion 2.5 we may also assume that 0 for 2p’ < < 3p’.
We shall first consider the case when p > 3. For a in F, consider the

polynomial
f(x) (X + 1)2(X + a)(x-1 1)2.

Let s p’-1. Then, since p > 3,

F[(f(x))’] [(a + 2)x2’ 2(2a + 1)x + a]s.
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This polynomial splits if and only if the disriminant

D 4(2a + 1) 4a(a + 2)= 4(3a + 2a + 1)
is a square in F for all values a in F. We consider two cases. First, suppose 3 is a
square in F. Then by Lemma 2.7 the discriminant

D(a) (2.3/.a + 2.3-/) + 8/3
cannot always be a square. Second, suppose 3 is not a square in F. Then
D(1) 24 and D(- 1) 8 cannot both be squares in F since their quotient is
not a square.
We next consider the case p 3. For a, b in F, consider the polynomial

f(x) (x + 1)2(x- 1)2(x + a)(x + b),
and let s 3’-. Then the polynomial

r[(/(x))"] [(2a + b)x6 + (2ab + a: + 1)x + a2b]"
splits if and only if the discriminant

D (2ab + a + 1) ab(2a + b)= b(a- a) + (a2 + 1)
is a square in F for all a, b in F. Since F 4: F, we can find some fixed a in F
such that a a3 4: 0. Then D ranges over all of F as b does. But F 4: F, so we
have arrived at a contradiction.

Finally, we examine the case when p 2 and n _> 3. Consider the polynomial

f(x) (x + 1)(x + a)(x + a + 1)(x + b)(x + b + 1),
where a, b F, and let s 2"-. Then the polynomial

F[(f(x))] [x’ + x2 + (a2 + a)(b2 + b)]
splits if and only if (a2 +a)(b +b) is in the additive subgroup
S {y2 + Y lY F} of F for all a and b in F; that is, S is multiplicatively closed.
Since F is finite, S must be a subfield of F of order 2"- . But there is only one
field with 2"- elements, and it is contained in F only if n- 1 divides n. Since
n _> 3, this cannot happen. Thus the proof of the theorem is complete.

Combining Proposition 4.2 and Theorem 4.3 we obtain the following result.

THEOREM 4.4. Let F F. be a finite field with at least five elements. Then
the zero-one multiplier sequences of F are the trivial zero-one multiplier
sequences.

As an immediate consequence of the previous results and the fact that for any
multiplier sequence F for F., the sequence F- is a zero-one multiplier
sequence, we obtain the following.

COROLLARY 4.5. Let F F. be afinite field with at leastfive elements. Then
the multiplier sequences of F are the trivial multiplier sequences.
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In the sequel F will always denote the finite field F, where q 2, 3, or 4.
Thus the characteristic, p, ofF will be 2 or 3. The elements ofF, will be denoted
by 0, 1, p, and p / 1, where p p / 1. Also, for the sake of convenience we
shall introduce here the following definition.

DEFINITION. For each nonnegative integer m we define I to be the seqo
uence --o, where

1 if k O (mod p’)
otherwise.

The action of the sequence F, on certain polynomials is particularly simple.
It is an easy exercise to show that if r p and a e F, then

r,[ta + )’] (a + x)" and r.[(a + )f(x)] (a + x)’r.[f(x)],
where f(x) is in F[x]. This elementary observation simplifies the proof of the
following

POPOSITION 4.6. F is a multiplier sequence for F.

Proof By the above observation we need only to consider the action of F
on polynomials of the form l-I (x + i)’; where 0ti ranges over the elements ofF
and where each r < p. Let f(x)= F[I-I (x + )"]. We shall consider three
cses.

(a) If q 2, then f(x) is either a constant, xz or xz + I. Hencef(x) splits.
(b) If q--3 and f() is not a constant, then either all v--2, so that

f(x) x6, or some r < 2. In the latter case f(x) has the form x/ b
(x + b) for some a, b F. Thus, once again we conclude that f(x) splits.

(c) Finally, suppose that q 4. Since in this case all vi _< I and since F has
only 4 elements, we have degf(x) 4. If degf() < 4, thenf(x) has the form
axz + b which always splits in F. On the other hand, the polynomialf(x) can
have degree 4 only if it equals

r,[x(x + l)(x + p)(x + p + I)] x’.

sinccf(x) splits in all cases, wc conclude that rz is a multiplier sequence for F.

Next, by means of an induction argument wc shall show that rm, m 0, 1,
2, is a multiplier sequence for F.

IROPOSITION 4.7.
for F.

For any nonneoative inteoer m, Fm is a multiplier sequence

Proof The sequence Fo is constantly one, so this case is trivial. Proposition
4.6 shows that F is also a multiplier sequence. Now suppose that F is a
multiplier sequence for some m > 1. We shall demonstrate that F,+ is then
also a multiplier sequence for F. Letf(x) ax, a F, be any polynomial
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which splits over F. Then the polynomial

() r.[f()] , p-I k,

also splits over F. Let y x’, where s p’. Then g(x) becomes 0 (Y) aY.
Now it is not difficult to show that 0 (Y) splits over F. Hen, it follows that the
polynomial

O2(Y) r,[o(y)] a,, plk,
also splits over F. Replacing y by x’, where s p=, we obtain

Xks,

axk,

Hen F+ [f(x)] also splits over F and we are done by duction.

By Proposition 4.2 the number of embedded zeros a multiplier sequence
for F is of the form p= 1 (m 0). Now ifa zero-one multiplier sequen for F
contains three ones, then the consecutive ones are separated by the same
number of zeros. is is the content of the next proposition.

PROSlTION 4.8 (Periodicity). t F be a multiplier sequencefor F.
a seoment containing three ones, the first two separated by p" 1 zeros a the
seco two separated by p" 1 zeros (m, n 0), then m n.

Proo Suppose m n. t A denote the scified snt and let A* denote
the reverse of A. By considering a shift of F, ifnssary, we may assume that
begs with the seent A. Let s p% t p" and set

f(x) (x + 1)’+’- (x + a), = f.

n by Proposition 2.5 the polynomial V(x)= A*[f(x)] splits and a fortiori
Fly(x)] x"+ + a splits over F for all a e F. But s + t p + p" is not a
power of p, since m n. us we have arrived at the desired contradiction.

formation of new multiplier sequences from old ones is one of the
leitmotifs that has permeated our discussions. Under somewhat restrictive
assumptions, our next result elaborates on this theme and provides us with an
important additional devi that we shall need in the proofs ofLemma 4.10 and
orem 4.12.

LEuuA 4.9. t K be a perfect field ofcharacteristic pa let F
a multiplier sequence for K, where, for so fixed y, 0 for all k 0
(mod p=). Then the sequence r. {y, lP" dioides k} is a multiplier sequence
for r.
Proo t f(x)= ax any polynomial which splits over K and let

s p. Sin K is rfect, there exist elements b e K such that b a.S
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f(x) splits and K is perfect the polynomial aix
is ( bixi) also splits over

K. Now

splits over K since F is a multiplier sequence for K by assumption. But this
implies that the polynomial ax F,[f(x)] also splits over K, and thus
F, is a multiplier sequence for K.

The purpose of the next lemma is to show that a zero-one multiplier seq-
uence for F with at least three ones cannot begin with too many zeros or
terminate in zeros.

LEMMA 4.10. Let m be a nonnegative integer. Then no zero-one multiplier
sequence for F has a segment of theform

k otherwise, k O, 1,..., 3pm,
or

1 /f k p, 2p", 3p’,
Y’k 0 otherwise, k O, 1,..., 3pm.

Proof Suppose that a zero-one multiplier sequence F contains one of the
above segments as its initial segment. Then by Proposition 4.8, k 0 for any
k 0 (mod p’). Hence by Lcmma 4.9 the sequence

r, { k o, pro, 2p% .}
is a multiplier sequence. But then F. begins with the segment { 1, 1, 1, 0} or the
segment {0, 1, 1, 1}. Since this contradicts Lmma 2.8 our proof is complete.

We are now in a position to state the main result of this section; the complete
characterization of zero-one multiplier sequences for F F, where q 2, 3,
or 4.

THEOREM 4.11 (Main Theorem). Let F be a zero-one sequence. Then F is a
multiplier sequence for F if and only if one of the following conditions holds:

(a) 1" has at most two ones, and ifthere are two ones they have p" 1 (m >_ O)
zeros between them.

(b) F is F’, or a shift of F,for some nonnegative integer m.

Proof Sequences of the form (b) are multiplier sequences by Proposition
4.7. Since F is a perfect field, it follows from Proposition 2.2 (b) that sequences
of the form (a) are also multiplier sequences.

Conversely, suppose that F is a zero-one multiplier sequence not ofthe form
(a). Then F has at least three ones. By Proposition 4.8 any two consecutive ones
are separated by the same number of zeros. In view of Proposition 4.2 this
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number is of the form pm_ 1. Lemma 4.10 then implies that 1" has the form (b),
since F cannot begin with too many zeros or terminate in zeros.

The description ofarbitrary multiplier sequences for F is given by the follow-
ing representation theorem.

THEOREM 4.12 (Representation Theorem). Let F be a multiplier sequencefor
F Fq, where q 2, 3, or 4. Then F can be written as a product FoFb, where Fo
is a zero-one multiplier sequence and Fb is an exponential sequence, lfF has more
than one nonzero entry, then the representation is unique.

Proof Let Fo Fq- t. Then by Theorem 4.11, Fo has either at most two
ones or else is a shift of Fro. If Fo has only one 1, the result is trivial. If Fo
contains exactly two ones, they are separated by pro._ 1 zeros, say

r {o, o, o, ,, o, o, ,+, o,...}.
In this case we take I"b to be the exponential sequence {crlt}=o, where
c + t-+, and r ,+p,- t. Thus it follows that F Fo Fb.
Now suppose that Fo is a shift of F=. Without loss of generality we can

assume that Fo F=. If m 0, then by Proposition 4.1 we know that F is an
exponential sequence so that in this case we are done. Ifm > 1, we let F, denote
the subsequence of F obtained by deleting the zero elements from 1". Then by
Lemma 4.9, F, is a multiplier sequence for F. Since F, has no zeros, it follows
from Proposition 4.1 that F, is an exponential sequence, say, 1", {c }t=o,
that is, kp. Cr for k 0, 1, 2, Let p-m, s r’ and let Fb {cs}0
Then cs" cr k-and hence we see that F Fo F.

Uniqueness is clear because Fo is determined by the positions ofthe nonzero
entries in F and because any exponential sequence is uniquely determined by
two consecutive entries.

Example. The theory of multiplier sequences provides a technique for
determining whether or not certain polynomials split. For example, let F F,
and consider the polynomialf(x) p + ax + x2 + bx + x for any a, b e F.
This polynomial does not split over F for any values of a and b in F, since

r2[f(x)] (p + 1 + x + x2)2

and p + 1 + x + x2 is irreducible over F4.
We conclude this section with a result which is an analogue of Theorem 3.2.

The periodic nature of the zero-one multiplier sequences ofF = F, q 2, 3, or
4, makes the transcendental characterization of these sequences particularly
simple. In order to expedite our presentation we shall make use of the Mittag-
Leftter functions E(z), namely

E(z)= anz", where a-t=f e-’tn dt, > 0,
n----O 0
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that is, a is the value of the Gamma function evaluated at n + 1. Thus, as an
immediate consequence of Theorem 4.11, we have the following theorem.

THEOREM 4.13. Let F {’}=o be a zero-one sequence. Let

zk"f(z)= E
k=0

Then F is a nontriial zero-one multiplier sequence for F,, q 2, 3, or 4, ifand
only iff(z)= zrEp.(zP’), where m 1, 2,..., and r is a nonnegative integer less
than or equal to p’- 1.

Remark 4.14 (A geometric interpretation of our result). First we recall that
Wiman [13] has shown that if a >_ 2, then E(z) has only real and negative zeros.
An elegant proof of this fact using the theory ofmultiplier sequences for R may
be found in [1, p. 229]. We also note that ifa is an integer (a 2, 3, ...), then the
zeros of

1
[e* + e’= e’-+"" +

where w exp {2hi/a}, all lie on the a half-rays given by

n + 2nk
(4.15) s=(t) cos

where k 0, 1,..., - 1 and > 0.
Now let

+/sin
n -t--a-2nk),

oo zk
f(z)= ’, k.., 0 =1.

k=O

If F {}F=o is a nonnegative multiplier sequence for R, then by the Pblya-
Schur Theorem (Theorem 3.2) all the zeros off(z) lie on the negative real axis.
If, on the other hand, F F, {}__. o is a zero-one multiplier sequence for F
(p 2, 3) with m 1, then by Theorem 4.13,f(z) is E2(z2) if p 2, andf(z) is
E3(z3) if p 3. Thus, when m 1 the zeros off(z) lie on the a p (p 2 or 3)
half-rays given by (4.15).

5. Open questions

We conclude this paper with a list of open questions.
1. By Proposition 2.2, the set $(F) of all multiplier sequences for a field F is

a commutative semigroup containing 0 and 1. Let H(F) be the group of inver-
tible elements of S(F). The group H(F) is isomorphic to E(F) N(F), where
E(F) is the subgroup of all exponential sequences and N(F) {F H(F) l,o
T 1}. Are there any fields F, not algebraically closed, for which N(F) is
nontrivial?
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2. Is there a correspondence between some set of subfields of an alge-
braically closed field and the subgroups of N(F) or the subsemigroups ofS(F)?

3. What conditions are necessary and sufficient for a finite sequence to be
extensible to a multiplier sequence ?

4. When is a multiplier sequence for a field F also a multiplier sequence for
an extension of F or for a subfield of F?

5. Let {k}_-O be a nontrivial multiplier sequence for a field F. Under what
conditions on F is the sequence {CYk + k’k-l}k=O, C 6 F, again a multiplier
sequence for F? If F is the field of real numbers and if {yk}--_o, ’k > 0, is a
multiplier sequence for R, then for any c >_ 0,

{Cy + k_ 1}-- 0
is again a multiplier sequence for R. (This observation is an immediate con-
sequence of the results of Section 3.)

6. Let {A}, R, be a multiplier sequence of the second kind (see Section 3
for the definition). Is the sequence

((k + m)(k + m- 1)Tk+.- + 7k+,.}’=O,
for m sufficiently large, again a multiplier sequence of the second kind ? This
question is a reformulation of a famous open problem (see, for example, [8,
p. 182]) in the theory of entire functions.
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