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Introduction

In this paper we study the images of sattered spaces under various maps. In
this profess we solve two problems raised by two sets of mathematicians. J. J.
Sch/iffer raised the following problem as problem no. 45 in the problem book of
department of mathematics of Carnegie-Mellon University: Can a regular,
eountably compact, scattered space be mapped by a continuous function onto
[0, 1]?
The same problem was implied in the remark of P. Nyikos and J. J. Sch/iffer

on page 228 in their paper [9]. It was known earlier [8], 10], 12] that if X is a
compact, T2 scattered space then X cannot be mapped continuously onto
[0, 1]. Now if X is a ountably compact, completely regular space andf: X -,

[0, 1] is a continuous function on X then the ranger(X) is dosed in [0, 1]. Thus
the Stone-ech ompaetifieation/X of X canbe mapped continuously onto
[0, 1] if and only if X itself can be done so. So, attacking the above mentioned
problem of Seh/iffer from this approach, S. P. Franklin raised the problem" IfX
is a completely regular, scattered, eountably compact space, then is /X
scattered ?

It was conjectured that the answer to the above problem of Franklin is yes
and hence the answer to Sch[tffer’s problem above is no.

However, we shall construct a completely regular, scattered, ountably com-
pact space X which can be mapped onto [0, 1] by a continuous function. Thus
we disprove the above conjecture. Our space X is even locally compact, T2, first
countable and locally countable and consequently sequentially compact, too.
Thus characterizing completely regular scattered spaces that can be mapped
continuously onto [0, 1] is nontrivial.

In a related way M. E. Rudin [11] included the following problem in the
lecture notes that she gave in a topology conference in Wyoming in August,
1974: Should the image of a scattered space by a dosed continuous map be
scattered ?
The same question was raised by Telgarsky in [14] and [15]. Our space X

obviously solves the above problem ofTelgarsky in the negative. Ifwe drop the
condition that X be completely regular and ountably compact, then we get the
following surprising result" Every topological space, is a dosed continuous
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736 V. KANNAN AND M. RAJAGOPALAN

image of a scattered T space X. We show that T cannot be replaced by T3 in
this last statement. A T sequential space is shown to be a closed continuous
image of a scattered T sequential space.
A part of the results mentioned here was announced by M. Jayachandran

and M. Rajagopalan in [3]. However, their proofs were incorrect and needed
some changes which are given here. Between the time of submission of this
paper and its publication the paper [20] appeared. So some proofs of theorems
in Section 2 of this paper are omitted.

1. The category of scattered spaces

In this section we study the closed continuous images of scattered spaces. We
do not assume that the spaces are even Hausdorff in this section.

DvNmo 1.1. A topological space X is said to be scattered if every subset
A X which is not empty, has an isolated point relative to A. In this case we
say that X has a scattered topology.

DFXION 1.2. Let X be a topological space. We put X X and

X {xlx X and x is not isolated in X}.
If is any ordinal number and if Xa is already defined for all ordinals
then we put

X (Xr) if ct V + 1 and V is an ordinal,,

Xa if is a limit ordinal.
//<at

Note 1.3. X, Xt, X2, is a decreasing transfinite sequence of subsets of
X. Then there is either an ordinal 6 so that X 0 or X* X/ t.

Note 1.4. A topological space X is scattered if and only if there is an
ordinal 6 so that X* 0.
DVNmON 1.5. Let X be a topological space. We say that X has a derived

length if there is an ordinal 6 so that X* . In this case the least ordinal V so
that X 0 is called the derived length of X.

LEMMA 1.6. Let X be a topological space. Then we have the following:

(i) X has a derived lenoth if and only if it is scattered.
(ii) Every topolo[ty which is finer than a scattered topolooy is scattered.
(iii) Every subspace ofa scattered space is scattered and has a smaller derived

lenoth.
(iv) X is closed for each ordinal .
DEFNITOq 1.7. A topological space X is said to be a P-space if any count-

able intersection of open sets in X is again open.
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LEMMA 1.8. Let X be a scattered T2 space, Y a topological space, and let
4): X --, Y be a closed continuous map. Let dp satisfy the following condition:

(A) The set { IX meets c])- l(y)} contains a largest elementfor every y in Y.

Then (X)for every ordinal number . Consequently Y is also scattered
and 6(Y) 6(X).

Proof We use i.duction on 6(X) . When 0 this is obvious.

Now let be any ordinal number. Suppose, as induction hypothesis, that the
assertion is true whenever 6(X) < .

Case 1. fl + 1 for some ft. To show Y (X), let y . Consider the
set F X (y). If X+ -(y)is empty, then no point of -(y)is a
limit point of X and hence F is closed. Since is a closed map, (F) is closed
in Y. But it follows from our induction hypothesis that (F) Y{y}. is
implies that y is not in . is contradiction implies that (X).

Case 2. Let be a limit ordinal and let y e Y. Consider the set - (y). Lt
o Sup {fl[X meets -(y)}. By condition (A) assumed, we have that X
meets - X(y). If ao , it follows that X meets - (y), i.e., y (X).

If go < , then the complement of-t(X*+ ) is an open neiborhood W
of the set -l(y) in X. tfbe the restriction of to W. Sin W is the full
inverse of some subset,fis also a closed map. Now W is a scattered Hausdorff
space ofderived length Uo + 1 andfis a closed continuous map from W onto
Y(X+ ). Hence by our induction hypothesis, Z Y(X+)is scattered
and 6(Z) 6(W) o + 1. But sce Z is a neighborho ofy in Y, we have for
every ordinal number fl, that y e Z iff y Y. It follows that y o+ t. is
contradiction shows that o nnot be strictly less than . us (X).

THEOREM 1.9. Let " X --, Y be a closed continuous surjectionfiom a Haus-
dorff scattered space X to a topological space Y. Then each of the following
conditions implies that Y is also scattered and 6(Y) <_ 6(X):

(a)
(b)
).
(c)

6(X) is finite.
is perfect (i.e., in addition to beino closed )- l(y) is compactfor all y

X is compact and Y is

Proof We show that any one of the above three conditions implies condi-
tion (A) of Lemma 1.8.

(a) If 6(X) < to, then the set A { ]X meets -l(y)} is finite and hence
contains a largest element for all y Y.

(b) If is a perfect map and if y Y, then - X(y) is compact. Hence as
increases in A, the sets X c - l(y) form a well-ordered decreasing family of
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nonempty closed subsets in the compact space -(y). Hence they all have a
common point x. If o is the supremum of the set

A {0 X meets f- (Y)},
it follows that x O-(y) c ([,.) a X)= O-(Y) c X and hence that o
belongs to A.

(c) If X is compact and Y is T, then has to be perfect and hence the
result follows from (b).

Remark 1.10. Neither condition (a)nor condition (b)can be weakened in
the above theorem. It will follow from the next proposition that for each
infinite ordinal number , there is a Hausdorffscattered space X with 6(X)
and a closed continuous surjection from X onto a nonscattered space.

Secondly, to see how far condition (b) can be weakened, we split the
definition of perfectness of into two parts:

(i) is closed
(ii) -(y) is compact for every y in Y.

We have shown that (i) and (ii) together imply that preserves scatteredness. A
later proposition shows that (i) above is no good. To see that (ii) alone is also
not sufficient, refer to [4], where an example of a perfect T2 space is given and
exhibited as a finite-to-one quotient of a well-ordered space.

Thirdly, some natural weakenings of condition (c) also affect the conclusion.
In the example just cited, the domain space is locally compact, tr-compact and
metrizable.

PROPOSITION 1.11. Let Y be a space constructed by the c-process described in
[6]. Let each base space of Y be a scattered T2 P-space with a nonisolated base
point. Then Y is a perfect Hausdorff P-space, obtainable as a closed continuous

imaoe of a scattered space.

Proof For each positive integer n let

Y {y g lthe level of y _< n}.
Let X be the topological sum --1 Yn. Let : X --, Y be the map defined so
that ]r, is the inclusion of Y, in Y. Then it can be shown that X is scattered
Hausdorff. Clearly the map is continuous and onto. We shall prove that is
closed.

Let F X be closed. To show that O(F) is closed, it suffices to show that
O(F) c Y is closed in Y for every n 1, 2, Now O(f)c Yn Yn c= O(F c Ym)) is a countable union of closed subsets of Yn so it is a closed
set, since Y must be a P-space.

Remark 1.12. (a) Let R denote the set of all real numbers with discrete
topology. Take any free filter on R, stable under the formation of countable
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intersections. Declare this, adding { 1} to each of its members, as the neighbor-
hood filter at 1 and declare all the other points to be isolated. Call this space
R. Then R is a T2 P-space with a unique accumulation point. Ifwe take each
base space to be a copy of this R with the unique accumulation point as base
point, then the e-process gives us a space Y satisfying the hypothesis of the
above proposition.

(b) When Y is constructed as above, and X is constructed as in the proof of
Proposition 1.11, we can show that 6(X) o. Thus a closed continuous image
of a T2 scattered space X with 6(X) o, need not be scattered.

(e) Note that the above space X satisfies all the separation axioms. It is
zero dimensional and completely normal.

Next we consider the question" What are all the closed continuous images of
scattered spaces (in the presence or absence of Hausdorffness condition)? Sur-
prisingly, we prove:

THEOREM 1.13.
scattered space.

Every topolooical space is a closed continuous imaTe ,of a

Discussion. Let X be any topological space. Our job is to construct a
scattered space Y and a closed continuous map from Y onto X. To motivate
the steps of our proof, first we consider a big set Y and a map : Y --, X. We
shall show that a scattered topology on Y can be given, making to be closed
and continuous, provided some mild conditions are satisfied.
For this, we first observe that on any set provided with a well-ordering, the

left rays (i.e., the subsets which contain with each of its elements all elements
smaller than it) form a scattered topology. Hence we shall give a topology to Y,
bigger than one such topology so that scatteredness is assured. (Every subset
has its least element relatively isolated.) Secondly, there is the smallest topology
on Y making continuous. We have to choose our topology bigger than this
also.

Thirdly, the finer the topology on Y, the less is the chance for to be closed.
Hence we take the smallest topology with the above two properties.
There is some hope that when this topology is given for Y, we have the

required properties. We show that this indeed is the case when the set Y, the
well-order on Y and the map are suitably chosen.

Proof of Theorem 1.13. We take a well-ordered set P, of the order type of
the initial ordinal of an infinite cardinal whose cofinality type is bigger than
IX]. We let the set Y be the cartesian product P X. We fix some well-order
in the set X and give the lexicographical order to Y. We take p to be the
projection map from Y onto X. The topology z on Y is the join z v z2 of the
two topologies

T, {-I(V)I V is open in X}, T2 {LIL is a left ray in Y}.
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The proof of the theorem will be complete, ifwe show that is a closed map.
Further, let A Y be closed and be such that X (A). Then for each point of
(A), choose exactly one preimage in A and thus form a subset B ofA such that
BI -< XI and (B) (A). Clearly, B is not ofinal in Y. But for each x in X,

the subset P {x} is ofinal in Y. Therefore there exists an element y of Y such
that y is greater than every element of B and such that (y) x. We claim that
y belongs to the closure of B. If W is any basic neighborhood of y, then
W - (V) L where V is a neighborhood of x in X and L is some left ray
containing y. Since x is in the closure of O(B), the set V O(B) is nonempty.
Therefore there is an element b in B -(V). Since y belongs to L and b < y
(because b is in B), b belongs to L also. Thus b is common to W and B. This
proves that y is in the closure of B and hence in the closure of the bigger set A.
But A is closed. Therefore y belongs to A and hence x (which is same as O(y))
belongs to O(A). Thus O(A) is closed.

Remark 1.14. The above topological space Y is necessarily non-Hausdorff,
whatever X may be (so long as X is infinite).

In the light of the above theory, it is natural to ask: Is every space, a closed
continuous image of a scattered space satisfying stronger separation axioms ?
We can give a negative answer to this question as follows"

LEMMA 1.15. N is not a closed continuous image of any regular scattered
T2-space.

Proof If possible,, let X be a regular scattered T2 space and W: X --,/N a
continuous closed map from X onto/N. Let W- ({n}) A. and let a. A.for
all n N. Let

Y {Ol, d2, an, ...}

in X. Then W maps Y onto/N and a. is isolated in Y for all n N and W Y is a
closed continuous map. Y is also a regular T2 scattered space. Moreover

W- x({n}) c Y {a.}
for all n N since A. is open and closed in X for all n N. Let b be an isolated
point of Y {a , a2, a., ...}. Then, by the regularity of Y, we have that there
is a closed neighborhood V of b relative to Y so that

V = {} , (V {x, a, .,...}).

Since V is closed in Y, F(V) is closed in/N. Since F(V) is further countable it
follows that W(V) is finite. Since F is 1-1 on V it follows that V is finite. Then b
has to be isolated in Y which is not true. Thus N cannot be a closed contin-
uous image of a T2 regular scattered space.

In the case of sequential Hausdorff spaces we have a positive result:
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THEOREM 1.16. Let X be a Hausdorff sequential space. Then there exists a
Hausdorff sequential scattered space Y and a closed continuous map from Y
onto X.

Proof The set Y and the map t# are chosen as in the proof ofTheorem 1.13,
but the topology on Y is changed (to a finer one). Also in choosing Y, we shall
insist that [YI [Y
We shall now define a suitable topology on Y and show that it satisfies our

requirements. IfX is discrete, we allow Y also to be discrete and we are through
in this trivial case. Hence we assume that X is not discrete. In that case there is
at least one convergent sequence in X with distinct terms that are distinct from
its limit. If we choose one preimage under ofeach of its terms, they constitute
a subset A of Y with the following conditions:

(a) A is countably infinite.
(b) is one-to-one on A.
(c) O(A) is the set of a convergent sequence in X, without its limit.

Let F be the family of all those subsets A of Y satisfying the above three
conditions. We have just now seen that F is nonempty. As an easy application
of Zorn’s lemma, we choose a maximal subfamily F ofF such that whenever A
and B are distinct members of F t, we have that A c B is finite. We observe the
following for later use. If A is a member of F then there is a member B of F
such that A c B is infinite.
The topology that we are going to define on Y, is in terms of this F t. For each

member of Ft, we shall first associate an element of Y as follows: well-order the
members of Ft in the form A t, A 2, A, to the order type of the initial
ordinal of ]Ft [. Observe that [Ft [does not exceed Y[.
Suppose we have defined yp in Y for Ap for each fl < 0t. To define y, we look

at O(A). Since A e F, O(A) is the set of a convergent sequence in X. This
convergent sequence has a unique limit in X, say x. Consider the set - t(x).
This is cofinal in Y. On the other hand, the set {ya: < 0t} u A has a smaller
cardinality than that of Y. Hence there are points y in Y with the following
properties:

(i) (y)= x.
(ii) Y
(iii) y is greater than all but a finite number of elements of A.

Among such elements y, we take the least element and call it y.
Just to make it convenient in writing, we put A if I >- F I.
Now we define a topology on Y as follows: A subset V Y is open if and

only if for each ordinal , either y is not in V, or A\V is finite. We prove that
this topology has all the required properties.

Claim 1. is continuous.
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Let W X be open. To show that b-(W) is open in Y, we show that if
y e tp- t(W), then A\tp- t(W) is finite. If y e tp- t(W), then tp(y) e W. Also,
by the choice of y, we have that tp(A) is the set of a sequence in X converging
to y. Since W is open, this sequence must be eventually in W. Therefore
ck(A)\W is finite. Since b is one-to-one on A it follows that A\tp-t(W) is
finite.

Claim 2. $ is closed.

Let F c Y be closed and let (xn) be a sequence in $(F) with distinct terms
and converging to x. We claim that x e tp(F). For each positive integer n
choose an element y, in F such that tp(y)= x and let A {y e Y lY Y,, for
some n}. Then by the observation made just before defining the topology of Y,
it follows that A c Ao is infinite for some ordinainumber o. Now the element
Yo has to be in F. For if it is in the set Y\F, then since Y\F is. open, we have
Ao\(Y\F finite. But Ao\(Y\F is the same as F c A0 which contains the
infinite set A c Ao. This contradiction proves that Yo F. Therefore tp(yo
b(F). Now, tp(yo is the unique limit Of the sequence $(Ao). But the sequence
p(Ao is a subsequence of (x) and hence must converge to x. Thus x b(y0)
tp(F). Thus tp(F) is closed under limits of sequences with distinct terms. Since
X is a T2-space, it follows that tp(F) is sequentially closed. Since X is sequential,
tp(F) is closed in X.

Claim 3. Y is scattered.

It suffices to show that every left ray L is open. Let y e L. Then by the
definition of y we have that y is larger than all but a finitenumber of elements
of A. This implies that A\L is finite. Thus L is open.

Claim 4. Y is sequential.

First we observe that for every ordinal , the set A when arranged as a
sequence with distinct terms in any manner, converges to y. For, if V is any
neighborhood of y, by the definition of the topology, V contains all but a finite
number of elements of A.
Now let W be any sequentially open subset of Y. Let y e W. Then by the

above observation, the sequence A is eventually in W. That is, A\W is finite.
This shows that W is open,

Claim 5. Y is Hausdorff.

The proof of this is somewhat complicated; the idea underlying this proof is
given at the end as a separate remark.
For each y in Y, we define a set Sr by the rule

A if y y
Sr {y} if there is no such that y y.
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Note that a set V is open if and only if Sr\V is finite for each y in V.
Now let p and q be any two distinct elements of Y. To separate them by

disjoint neighborhoods, we proceed as follows"
Let FS be the set of all finite sequences of natural numbers, We shall now

define two functions p* and q* from FS to Y and later prove the following four
assertions.

(1) p is in the range of p*.
(2) q is in the range of q*.
(3) p* and q* have disjoint ranges.
(4) The ranges of p* and q* are open.

We observe first that the set FS is countable. We write its elements in the
form of a sequence 0 w , w where 0 is the empty sequence (of length 0).
This is to be done in a particular way so as to satisfy a condition that we shall
soon prescribe.

If w and w’ are two elements of FS, we say that w just extends w’ if the
following are true"

(i) For some nonnegative integer Y it is true that w’ has exactly y terms and
w has exactly y + 1 terms.

(ii) w and w’ have the same nth term if n is a positive integer < y.

If w just extends w’, then we want w to come later than w’ in the above
sequence. In other words, if n and m are two positive integers with n < m, then
w. cannot just extend w.,. It is possible to arrange the elements of FS in a
sequence satisfying this condition. For example, after putting 0 as the first term,
we may first write those elements (a, a z, at)= w of FS whose sum
a + az +’" + ar is 1, then those whose sum is 2, and so on.
We define p* and q* recursively by induction. For each positive integer n, we

let A. {w FSI either w w. or w just extends w.}. We observe that
FS = A.). We can easily prove that for each n, the set A.+ \{w.+ } is
disjoint with ’= A. Our inductive method is to define p* and q* on A. at
.the nth stage,
We describe the first stage now. We let p*(0) p and q*(0) q. We look at

the set S. If S is a singleton, then we let p* be constant on all sequences of
length < 1 (taking the value p). If S is not a singleton, then we fix a bijection
from N to Sp\{p, q} and map the sequence at (of length 1) to that element of
S,\{p, q} that corresponds to the integer at in this bijection. Now we 10ok at the
set S’ (S,\S,)\{p, q}. If S is a singleton, we let q* be constant (with value q)
on all sequences of length < 1. If S’ is not a singleton,, then we observe that S
is countably infinite. We fix a bijection from N to $’ and map, the sequence a
of length 1, under q*, to that point ofS’ which corresponds to the integer a in
this bijection. Thus p* and q* have been,defined on A so that p*(A 1) c Spand
q*(A 1) Sq. Also p* and q* are 1-1 on, A 1.

Suppose now as induction hypothesis that we have defined p*(Ar) and q*(Ar)
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for every ), _< n such that

(i) p*(A)c i<_ Sp,t, for ), _< n,
(ii) q*(Av) (..)i<_r S,t, for V <_ n,
(iii) p* and q* are one-to-one in the part hitherto defined, and
(iv) no point is hitherto in the range of both these functions.

Then we define p* and q* on A+ as follows. First we observe that w+ e A
for some , _< n and hence p*(w+ ) and q*(w,,+ ) have already been defined.
Suppose w A,+ \{w.+ a}. Then w just extends w,+ a. Look at the set Sp,w.+ 1).

If it is a singleton, define p*(w)= p*(w,+ ). If it is not a singleton, let

The set inside the bracket in the right side is, by our induction hypothesis,
contained in

(S,,, S**.,).
i-1

On the other hand Sp,t,./,) meets S,,o,i) S,,t, in a finite set for each i.

(Because these are distinct members of F or finite.) Hence S+, S,t.+,k a
finite set. We fix any bijection from N to this set and define p*(w) as that
element of S+, which corresponds to the positive integer s in this bijection,
where s is the last term of w.
Now we look at S**t.,,. If it is a singleton, we define q*(w) q*(w.+ ).

Otherwise, we let

i=1 i=1

S,,+ t),a finite set.

We fix a bijection from N to this set and define q*(w) as that element of S+
which corresponds to the positive integer s in this bijection, where s is the last
term of w.
Now we observe that

+

(iii) p* and q* are one-to-one on A.
is defines, by induction, p* and q* on the whole of FS. When defined in

this way, p* and q* have disjoint ranges. Suppose p*() q*() for some
N . Let l and be the least positive integers such that p*(,) = p*(w) and
q*{,) q*(). If l N , this contradicts the definition of q*(w,).
l > , this contradicts the definition of p*{). Hen these two functions
must have disjoint ranges.
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Let Vp and vq be respectively the ranges of p* and q*. Suppose y Vp. Then
y p*(wz) for some I. If S is a singleton, then certainly S c vp. If S is not a
singleton, then a look at the definition ofp* on A z, that is, on the set ofelements
just extending w, gives at once that all but a finite number of points ofSare in
the range of p*. That is, S\vp is finite. Thus y e Vp implies that S\vp is finite.
This implies that vp is open, by the fact mentioned just after the definition of
in this proof. Similarly vq is also open. Thus p and q are separated by their
disjoint neighborhoods Vp and
The proof of the theorem is now complete.

THEOREM 1.17. The following are equivalent for a topoloTical space X:
(1) X is a sequential space with unique sequential limits.
(2) S is a closed continuous image of a Hausdorff scattered sequential space

Y.

Proof Let X satisfy (1). Then we repeat the proof ofTheorem 1.16 to show
that X satisfies (2) also. We have only to note that in that proof, Hausdorffness
of X was not fully used. We used only the fact that sequential limits are unique,
when they exist.

Conversely, let X satisfy (2). Then X is obviously sequential, since sequen-
tialness is invariant under all quotient maps (and therefore under closed con-
tinuous maps). If possible let (x) be a sequence in X converging to two distinct
points x and x’. If (x) contains a constant subsequence with value Xo, then that
subsequence must converge to both x and x’; this implies that {Xo} is not closed.
But if y is a point of Y which is mapped to Xo by a closed continuous map , {y}
is closed in Y, since Y is Hausdorff; hence {x o} is closed in X, since the map is
closed. This contradiction proves that (x,) cannot contain a constant sub-
sequence (x) whose terms are mutually distinct and distinct from x and x’. For
each n choose one point y. in Y such that (y,,,)= x.,. Let A {y,,,[i
1, 2, ...}. Then we easily see that (A) is not closed in X and therefore A is not
closed in Y. Hence there is a sequence (a.) in A converging to a point (a)
outside A. Since Y is Hausdorff, the compact set

B {a} {y A ly a, for some n}
is closed in Y. Hence (B) is closed in X. But t(B)= {(a)} w C for some
infinite subset C of {x, 1, 2, ...}. Now both x and x’ belong to the closure
of C. But neither x nor x’ belongs to C. Thus on one hand, there are at least two
points in C\C and on the other hand C w {(a)} is closed. This contradiction
proves that (x,)cannot converge to two distinct points.

Remark 1.18. (a) While proving Theorem 1.16, we defined a curious topo-
logy on Y. Apparently it is unnatural and unmotivated. Here we explain how
we are led to consider that topology. Suppose we want to describe it in terms of
its convergent sequences. Since we want the topology to be scattered, we safely
prescribe the condition that if a sequence (y.) converges to y in Y, then even-
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tually y, should be <_ y. (This would imply that each left ray is open and hence
the space is scattered.) At the same time, since we want to be continuous, we
should not allow (y) to converge to y unless (y) converges to (y). Also,
since the chances for to be closed are higher when the class of convergent
sequences in Y is bigger, we shall try to have it as big as possible. Since we want
the topology to be Hausdorff, we should not allow a sequence to converge to
two distinct points. Thus we have a host of conditions and our job now is to
prove their ompactibility by exhibiting a topology with such a convergence
scheme. Instead of working with sequences, we found it more convenient
to work with their underlying sets. Thus in the proof, the members ofF are the
underlying sets of a "generating" class of convergent sequences. The maxima-
lity of F insures that the convergence scheme is going to be big. The method by
which we associated some element of Y to each member of F is now well-
explained by the above remarks. Clearly our topology Y is the strongest one in
which these convergent sequences have these prescribed limits.

(b) It can be shown that our topology on Y is crucial; there is no finer
sequential topology on Y that would allow to be closed; however, there are
coarser sequential Hausdorff topologies on Y allowing to be both continuous
and closed. We may also observe that F is not uniquely specified by Y, , and
X. For various choices of F, we get various such topologies on Y, and all these
are mutually unomparable.
() Consider the class S of all spaces obtainable as closed continuous

images of scattered T2 spaces. Then one can prove without much difficulty that
S is stable under the formation of finer topologies and subspaces. In particular
if X admits a one-to-one continuous map into some T2 sequential space, then
X S, Thus S is quite large. We do not know whether every Hausdorff space
belongs to S.

2. Shaffer’s problem

We assume continuum hypothesis in this section. We use N to denote the set
ofall integers > 0. Let f denote the first uncountable ordinal. In general we use
greek letters like ,/, etc. to denote a countable ordinal. English letters like m,
n, etc. are used to denote members of N. If A, B are subsets of [0, 1] then
dm (A, B) denotes the diameter of A w B.

DFINrrION 2.1. Let At, A2, A3, be a sequence of subsets of [0, 1]. We
say that this sequence converges to an element y in [0, 1] ifdm (A., {y})--, 0 as
n --, . In this case we also write A. --, y or that (A) converges to y.

THEOREM 2.2. Let A, A2,..., A., be a sequence ofsubsets of[O, 1]. Then
the following are equivalent:

(a) The sequence (A,) converges to some y in [0, 1].
(b) There is some y [0, 1] so that x, yfor every sequence x , x 2, x,

x,, so that x A,for all n N.
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(c) dm (A) 0 as n and there is a sequence a, az, a,, so that
a, y and a, A,, n N.

Proof Obvious.

Hereafter we take a fixed function : N Q which is 1-1 and onto the set Q
of all rational numbers in [0,1]. Let fiN be the Stone-Cech compactification of
N with discrete topology. Let’ fiN [0, 1] be the unique continuous exten-
sion of to/N. Of course, 3 is onto.

Let X be a topological space with a partition n. Then X/n denotes the
quotient space. A subset A = X is said to be saturated under n, if A is a union of
members of n.
Whenever a set Y fiN we assume that it is given the subspac topology.

DEFINITION 2.3. A sequence C, Cz, C3,... of subsets of fin is called a
convergent subsequence if q3(C), (C2), q3(C), is a convergent
sequence. In this case we say that (C) is a convergent sequence.

DEFINITION 2.4. Let Y be an open subset of fiN and n a partition of Y by
compact subsets of N. The pair (Y, n) is said to satisfy the condition V if the
following hold:

(i) is constant on each member in n.
(ii) NYand{n}nforallnN.
(iii) Y/ is a countable, locally compact T space.
(iv) Given a member A 6 there is compact open set V of fiN so that

A V Y and V is saturated under .
DEFINITION 2.5. Let A, A2, ...,?, be a sequence of compact subsets

of fiN. The set F __a A, [..)
__ 1"," is called the growth of the sequence

(A.).

LEMMA 2.6. Let A1, A z, A,, be a sequence of compact subsets ofN
and let (A) converge. Let A be the growth of (A). Then is constant on A.

Proof If possible, let u, v be distinct numbers in (A). Let (A,) - y where
y [0, 1]. Then either y :/: u or y =/: v. Let y : u. Let e Y- u1 Let

M=-((y-e,y+e)) and H=-([y-e,y+e]).
Then r H. Now (y- e, y + e) contains (A,) from a certain stage. So
M A, from a certain stage. So r A. Since H we have that
(A) [y e, y + ]. But u (A) and u [y e, y + el. This contradiction
shows that is constant on A

LEMMA 2.7. Let Y be an open set in fiN and t a partition of Y by compact
subsets offiN so that (Y, t) satisfies the condition V. Let F1, Fz, F, be a
sequence of distinct members of t so (F,) convertes and the [trowth F of (F) is
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disjoint with Y and nonempty. Then there is an open set Yo offin and a partition
to of Yo by compact sets so that the followino hold:

(a) (Yo, o) satisfies V.
(b) Yo Y and to t.

(c) Yo c F O.
(In the proof below we will prove that Yo infact contains F though (c) is enough

Proof The condition (iii) of Definition 2.4 gives that Y is tt-compact. Con-
dition (iv) of that definition gives that Y can be expressed as a countable union
K, K2, K., of compact open subsets K, K, of fin so that K is
saturated under t for all n e N. Put M K and M. K. ) - K for all
n N and n > 1. Then Y

__
M and {M , M, M, ...} is a pairwis

disjoint collection of compact open sets of fin each of which is saturated under
t. Now (Y) is countable and (flN) [0, 1] and g is dense in fiN. So Y is not
compact. So M. 0 for an infinity of n belonging to N. By dropping the empty
sets in the collection (M) we can assume without loss of generality that
M. 0 for all n e N. Let T ffi F.. Then T c Mk m Mk for all
k N. So T c Mk is compact for all k N. Now there is a number y 6 [0, 1] so
that dm (&(F.), 0 as n -. . So dm T M 0 k . So
there is a strictly ascending sequence k < k 2 < < k, < of integers k, e N
so that dm ((T c Mk)) < 1/2" if k N and k _> k, for all r N. Then given
n6N and k>k. we can find a compact open set VR of fiN so that
T c Mk Vk Mk and Vk is saturated under t and dm (V)< 1/2. Put
V M if 1 _< <_ k. Let W = V. Let G W. Then, using the fact that
fin is disconnected we get that W is open and closed in fiN. Clearly (V) is a
convergent sequence. So is constant on the growth G W of (V). Clearly
G W = F. Put Yo Y w (G W) and to t {G W}. Then it is easily
seen that (Yo, to)satisfy conditions (a), (b), (c)of the conclusion of the theorem.

LEMMA 2.8. Let Y be an open subset of fiN and t a partition of Y by
compact subsets of fin for all n N. Let the following hold:

(a) (Y, t) satisfies condition Vfor all n N.
(b) Y+ Y and t+ tfor all n N.

Let g

__
Y and t ) -_ t. Then (Y, t)satisfies V.

Proof Obvious.

COROLLARY 2.9. Let Y be an open subset of fiN and t a partition of Y by
compact subsets so that Y, t) satisfies condition V,. Let r be a countablefamily
of subsets of fiN so that if A then there is a convergent sequence (A) of
distinct members of t whose growth is A and A .

Then there is an open set Yo offin and a partition to of Yo by compact sets so
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that the following hold:

(a)
(b)
(c)

(Yo, no) satisfies the condition V.
Yo A :/: O for all A

_ .
Yo Y and no D n.

Proof Follow the proof of Lcmma 1.6 of [20].

Discussion 2.10. We give below a method of constructing a dense open set
Y of fiN and a partition t of Y by compact sets so that the quotient space
X Y/n is a scattered locally compact T2 locally countable, and there is a map
X [0, 1] so that the following diagram commutes:

where " Y X is the quotient map. Further Y will be so constructed that if
(A) is a sequence of distinct members of r with a nonempty growth A then
A r Y will be nonempty. Then X and the map : X [0, 1] will give a
solution to the problem of J. J. Schaffer.
The following method of constructing (Y, n) as above is called the V-process.

That method has been used effectively to construct examples and then to solve
a problem of C. Scarborough and A. H. Stone [18] and a problem of Z.
Semadeni on 0-dimensionality of scattered spaces and scattered
compactifications [17] and also a problem of Telgarsky in [19].

DEFINITION 2.11 (V-process). We use transfinite induction. Put Y N and
[{n} In N]. Let fa be the collection of all closed nonempty sets A fiN

so that A e fat if and only if there is a convergent sequence (A.) of distinct
elements in n whose growth is A. Using (CH) write f#t as a well-ordered
sequence Ate, At2, A., where e [1, f). Now suppose that is a
countable limit ordinal and that we have defined (Yr, nr) and A, for all
ordinals < and all countable ordinals & We put Y < Y and
n < nr and f# to be the collection of all closed sets A :p O where A is the
growth of a distinct convergent sequence (A.) of members ofn. Well order the
set fa as At, A,2, A,, where gi e [1, ). Now suppose that is a
countable successor ordinal and 0 gio + 1 where rio [1, f]. Let (Yo, no)
and A, be defined for all ordinals < rio and gi e [1, f]. Let

" {A[ 1 < < gio and 1 < .<_ o}.
Use Corollary 2.9 and get an open set Y of fin and a partition n of Y by
compact sets so that Y D Yo, n no and (Y, n) satisfies the condition V and
Y A :/: 9 for 1 < o and 1 _< gi < a. Finally let Yn- ] <n Y and
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nn- <n n. This (Yn-, nn-)is the required pair (Y, rt) to be constructed
and the V-process ends here.

THEOREM 2.12. Let Y, n, Yn-, nn- be as in the definition of V-process
above. Let At, A2,..., An,... be a sequence of distinct members of nn_ with
#rowth A. Let A =p 0 be closed. Then A c Yn- =P .

Proof. The proof follows essentially the arguments of Theorem 1.9 of [20]
and hence is omitted.

THEOREM 2.13. Let Yt-, no-, Y, 7 be as in the definition of V-process 2.11,
for all [1, ). Let X Yu_ /Ttt_ and z,: Yt- "-* X the natural quotient map.
Then there exists a unique continuous map q: X -, [0, 1] from X onto [0, 1] so
that W on Yt-. Moreover X is a T2 locally compact scattered locally
countable first-countable sequentially compact separable space. Thus there exists
a countably compact scattered completely re#ular T2 space which can be mapped
continuously onto [0, 1] and also a scattered T2 space whose closed continuous
imaTe need not be scattered.

Proof. The proof follows as in the proofs of Theorems 1.8 and 1.9 of [20]
except for the properties of the function P. However it is clear that P is well
defined on X and that P q. Since X is countably compact and is q’

continuous and P(X) is dense in [0, 1] then q’ maps X onto [0, 1].
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