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COMMUTING SUBNORMAL OPERATORS

BY

M. B. ABRAHAMSE

If M and N are commuting normal operators on a Hilbert space g, if is a
subspace of which is invariant for M and N, and if S and T are the restric-
tions to of M and N respectively, then S and T are commuting subnormal
operators with commuting normal extensions. A recent example of Lubin
shows that commuting subnormal operators need not have commuting normal
extensions [6]. However, commuting subnormal operators S and T have com-
muting normal extensions if either S or T is normal [2, Theorem 8], if either S
or T is cyclic [9, Theorem 3], or if either $ or T is an isometry [8, Theorem 1].

In this paper it is shown that two commuting subnormal operators S and T
have commuting normal extensions if the spectrum of T is finitely connected
and the spectrum of the minimal normal extension of T is contained in the
boundary of the spectrum of T. This generalizes a result of Slocinski who
proves the theorem under the additional hypotheses that T is pure and that the
spectrum of T does not divide the plane [8, Theorem 5]. In addition, an
example is presented oftwo commuting subnormal operators without commut-
ing normal extensions. This example is different from the aforementioned
example of Lubin and perhaps more elementary.
The main theorem is proved in Section 1, the example is presented in Section

2, and two problems are stated in Section 3. In this paper, all Hilbert spaces are
complex and separable, all subspaces are closed, and all operators are bounded.

1. A theorem on the existence of commuting normal extensions

The main theorem is a consequence of seven known theorems and two
elementary facts. These nine results are recorded as Lemmas 1 through 9 below
and the main theorem follows. Let X be a compact subset of the complex plane,
let be the function (z) z, let f’,, d#(x) be a direct integral over X, and let
Mx on g, d#(x) be the operator defined by the equation Mx(f) zf. An
operator A on ,, d#(x) is said to be decomposable if for each x in X
there is an operator A,, on such that the function x---, IIa ll is bounded
and Borel measurable on X and

A(f)(x) A,,(f(x)) d#-a.e.
for allfin g,, d#(x). The operator A is denoted A,, d#(x). The first two
lemmas are proved in Dixmier [3, p. 208 and p. 164] and the third lemma is due
to Bastian [1, Theorem 4.4].
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LEMMA 1. A normal operator with spectrum X is unitarily equivalent to MX

on a direct inteoral space ) x dl(x) over X.

LEMMA 2.
decomposable.

An operator on I ( dlt(x) commutes with Mx ifand only if it is

LEMMA 3. A decomposable operator A I 9 A dlt(x) on I Jct dl(x) is
subnormal if and only if Ax is subnormal d/-a.e.

Let C(X) be the Banach space of continuous complex functions on X and let
C + (X) be the cone of nonnegative functions in C(X). For a subset F of C+ (X),
the positive linear span of F is the set of linear combinations of the form
,lfl + -+ 2nfn with 2k 0 andfk in F. Let R(X) be the closure in C(X) ofthe
rational functions with poles off X, let dX denote the boundary of X, and let
R(X)lcX be the space of functions {blcX: b in R(X)}. The following two
lemmas are due to Mlak [7].

LEMMA 4. If X is a finitely connected compact subset of the plane, then the
positive linear span of the set

in g(x) dx}
is dense in C +(dX).

LMMA 5. If T is a subnormal operator with minimal normal extension N, if
the spectrum of T isfinitely connected, and ifthe spectrum ofN is contained in the
boundary of the spectrum of T, then every operator in the commutant of T is the
restriction of an operator in the commutant of N.

Lemma 6 below is due to Halmos [4, Theorem 3] and Bram [2, Theorem 1]
and Lemma 7 is due to Bram [2, Theorem 8].

LEMMA 6. If S is a subnormal operator on a Hilbert space :,Y, then

E s ty )) >_ o

for every finite sequence f, f of vectors in o/t. Conversely, if is a dense
subset of ./t and if the inequality above holdsfor everyfinite sequencef, ,f in
K, then S is subnormal.

LEMMA 7. IfS is subnormal, T is normal, and S commutes with T, then S and
T have commutino normal extensions.

LEMMA 8. IfS on . is subnormal with minimal normal extension N and !fX
is the spectrum of S, then .he is invariantJbr ck(N)jbr all k in R(X).

Proof. By standard approximation arguments, it is sufficient to prove the
theorem for ,],(z)= 1/(z 2) with 2 not in X. In this case, each fin . can be
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writtenf= (S 2)(g)with g in A. Thus, r(N)(f) r(N)(N 2)(g) g which
proves the lemma.
An invariant subspace ’ for Mx on f d#(x) is said to be full if the

smallest subspace containing ’ which reduces Mz is the entire space

LEMMA 9. Let x dl(x) be a direct integral over X, let # be a full
invariant subspacefor M, let be a countable dense subset of//[, andfor x in X
let be the closed linear span of {f(x)" f in fC}. Then fCx 9f’x d#-almost-
everywhere.

Proofi By [3, Proposition 9, p. 150], the space / of vectors f in
@x d(x) such thatf(x) is in d-a.e, is a reducing subspace for M. Iff

is in /and ifffwith f, in , then there is a subsequence of the sequence
{f,} converging tof d#-a.e. It follows that g is contained in . Since g is a full
invariant subspace for Mx, the space Ar is j d#(x). It follows from the
definition of the direct integral that contains a countable set such that the
linear span of{f(x):fin } is dense in A for each x [3, p. 141]. Consequently,
A d-almost-everywhere.

THEOREM. If S and T are commuting subnormal operators, if the spectrum of
T is finitely connected, and ifthe spectrum ofthe minimal normal extension of T is
contained in the boundary of the spectrum of T, then S and T have commuting
normal extensions.

Proofi Suppose that S and T act on the Hilbert space vf and let N on be
the minimal normal extension of T. By Lemma 5, there is an operator S on
such that commutes with N and the restriction of to A is $. It is sufficient
by Lemma 7 to prove that is subnormal.

Let X denote the spectrum of N. By Lemma 1, there is a unitary operator U
from A onto a direct integral space f d#(x) over X such that
UNU*= Mz. By Lemma 2, there is a decomposable operator A 03
Ax dl(x) such that UU* A. Let g U(). Since N is the minimal normal
extension of $, the space g is a full invariant subspace for Mz. Observe also
that g is invariant for A and that U[g establishes a unitary equivalence
between S and A I///. Hence, the operator A]g is subnormal. To prove the
theorem it must be shown that A is subnormal.

Let be a countable dense subset of /, let be the set of vectors
21 g +"" + ,,, g,. with each gk in and each ’’k of the form a + ib with a and
b rational, let fl, ,fn be in , and let th be in R(X). By Lemma 8, the vectors
bfl, bfn are in /. Thus, applying Lemma 6 to the subnormal operator

0 _< E (A(bA), Ak(bf))

.] I, X A(f/(x))) d(x).
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It follows from Lemma 4 that there is a Borel subset G(f, f,,) ofX such that
#(X\G(f,..., f)) 0 and

for all x in G(f,... ,f). Thus, the set

G {G(f, ...,f,)’n > O,f, ...,f, in }
is a Borel set, #(X\G) O, and

<A(f(x)), A(f(x))> >_ 0

for all f,..., f in and all x in G. It follows from Lemma 9 that there is a
Borel subset G’ of X such that t(X\G’)= 0 and, for x in G’, the set {f(x):
f in ’} is dense in tx. Thus, by Lemma 6, the operator A is subnormal for
each x in G c G’. Hence, by Lemma 3, the operator A is subnormal and this
completes the proof of the theorem.

2. An example

Let Z+ denote the nonnegative integers and let f# be a Hilbert space with an
orthonormal basis {ek" k in Z / }. For n in Z /, define the operator A, on f9 by
the equations

A.(eo 2-"e,, A,(ek) ek+ for k > 1,

and define the operator D on f9 by the equations

O(eo) 2eo, D(ek) ek for k > 1.

Let (9 f9 (# )... and define S and T on by setting

0
DO
DO
D

0

and T

Ao 0

0

hi
A2

The following facts about S and T are straightforward. (1) The operator Ak is
unitarily equivalent to multiplication by z on

H2(m + (2’-
where m is normalized linear Lebesgue measure on the unit circle and 6 is a unit
point mass at the origin (see [5, Problem 156]). Thus, each A is subnormal and
therefore T is subnormal. (2) The operator S is quasinormal (S commutes with
S’S) and therefore S is .subnormal [5, Problem 154]. (3) For all n in Z +,

DA, A,,+ D and from this it follows that S and T commute. (4) Iffin is
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the vector (et, e0, 0, 0, 0,...)and if C $ + T, then

((C*C CC*)f, f) 11/4.
Thus, S + T is not hyponormal, hence not subnormal [5, p. 103], and so $ and
T do not have commuting normal extensions.

3. Two woblems
The example of Lubin [6] and the example in this paper of commuting

subnormal operators S and T without commuting normal extensions both
involve operators of infinite multi-cyclicity. At the other extreme, if either S or
T is cyclic, then S and T have commuting normal extensions [9, Theorem 3].
This raises the following question.

Problem 1. If S and T are commuting subnormal operators and if either S
or T is n-multi-cyclic for some finite n, must S and T have commuting normal
extensions?

The following proposition is easily proved; one direction is an immediate
consequence of Lemma 7 and the other direction is an application of the
Fuglede theorem.

PROPOSITION. Two commuting subnormal operators S and T have commutino
normal extensions if and only if there is a subnormal extension ofS which com-
mutes with the minimal normal extension of T.

This proposition raises the following question.

Problem 2. If S and T are commuting subnormal operators and ifS extends
to an operator which commutes with the minimal normal extension of T, must
this extension be subnormal?

If the question posed in Problem 2 has an affirmative answer, then two
commuting subnormal operators $ and T have commuting normal extensions
whenever the commutant of S or T lifts to the commutant of its minimal
normal extension. The theorem in this paper and every other known positive
result in this direction would follow as corollaries.

Added in proof. The question posed in Problem 2 has been answered in the
negative by A. Lubin.
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