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POLYMERSIONS WITH NONTRIVIAL TARGETS

BY

GEORGE K. FRANCIS

In this note we treat the following problem. Given a finite familyfof closed,
oriented curves in general position on an oriented surface W, what are the
proper maps F from a surface M to W so that F IcM fand F is locally 1 1
except for polynomial-like branching over a prescribed set of points on W?
Historically, this work is related to Hurwitz’ combinatorial classification [4] of
the meromorphic functions between two closed Riemann surfaces. In his case
there are no curves f, only the set A0 of branchpoints is given. Another early
version of our problem is found on p. 313 in Picard’s Traitb d’Analyse [5],
where he asks: Given a closed plane polygonal curve with selfintersections,
what are the analytic functions of the upper halfplane that map the real line to
the polygon? Titus [6] gave a combinatorial solution to Picard’s problem. A
solution to the general problem, but with trivial W (genus zero)is given in [1].

In Section 1 we review the method of assemblages, as developed in [1], for
classifying polymersions that have target W R2, the complete plane. A trivial
modification allows also for a finite number of punctures in W. In Section 2. we
treat the case that W is a closed, oriented surface of arbitrary genus. Our
strategy is to compose F with a model polymersion G of W to the sphere S2. G
is topologically equivalent to the projection of the Riemann surface of a hyper-
elliptic function. It then suffices to isolate the conditions on a plane assemblage
of a polymersion F’ so that F’ factors through G. We give an example in Section
3. In Section 4 we show how our classification of branched coverings surfaces
reduces to that of Hurwitz [4, pp. 5 lff].
The reader is respectfully referred to [1] for certain details and examples, as

well as for a review of the contributions made by other authors to the present
work. The author gratefully acknowledges helpful conversations with W. Abik-
off, J. Birman, W. Magnus and M. Marx. These results were first presented to
the Riemann Seminar at the University of Illinois, January, 1976.

1. Plane assemblages
Define a polymersion F: M --. W to be a continuous map of surfaces, so that

F is locally topological except at isolated points in W, the branchpoints of F.
Here the map looks like w zn, n > 1. An unbranched polymersion is, of
course, an immersion (local homeomorphism). When W is oriented and M
compact with p border circles, we assume that F is an immersion on a neigh-
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borhood of cM, and that the familyf F IdM of closed curves in W, together
with the set Ao of branchpoints, lie in general position. Thus M is orientable.
Orient M so that F is sense preserving and orientfso that M lies to the left of
dM. Let f denote the collection of mutually noncrossing simple closed
oriented curves obtained by breaking each node off[2]. We call the curves of
f the Gaussian circles offi
Now let W denote the plane and let denote a finite collection of disjoint

rays (topological hairlines) in general position with respect tof. Let X(f, ) be
the set of crossings offand . A crossing x has a sign, sgn(x), which is positive
(negative) if the curvef, in the familyf, that passes through x crosses the ray
(in through x) from the left to the fight side (respectively, vice versa). Let ax
denote the initial point of the ray x and set A {a: x X}. The algebraic
nUmber of crossings on 0 is the circulation co(f, a) offabout a,. It counts the
number of preimages of ax under F, with multiplicity. Each Gaussian circle also
has a sign, positive (negative) if its finite complement lies to its left (right) side.
The algebraic number of Gaussian circles inf is the turning number z(f) off.
A raying 0 is said to be sufficient for the data (f, Ao) if A0 A, and if every
member off and every negative member off* is crossed at least once.

Let (Y) denote the group of permutations on a set Y, and let Qrdenote the
cycle of Q (Y) which contains y Y. Thus Qis the Q-orbit ofy arranged in
cyclic order. The successor permutation $ X(f, ) is a product of p cycles
S X(f, ) taking each crossing into the next in the direction given by the
orientation on f. An assembling permutation P X(f, ) is the product of
cycles P e X(f, ), where one of the following holds:

(1.1) x is a fixed point of P, Px is a singleton.
(1.2) All crossings permuted by Px are positive, and the hinge ax of thefan

P lies in Ao.
(1.3) Px is a transposition (xy) where x is negative, y is positive and x

separates y from ax ay on the common ray. Px is called a pair.

An assembling permutation is transitive if the subgroup (S, P) is transitive in
X; it is effective if each of the v negative crossings in X are paired off as in
(1.3); and it is faithful if the product R SP has cycles, where

(1.4) = v+ z.

THEOREM 1 [1]. The polymersions F: M- R2 with given set A o of branch-
points andfamilyf= F It3M ofborder curves in general position, are classified, up
to a topological automorphism on M, by the transitive, effective, faithful assem-
bling permutations on the crossings off and a sufficient raying .
Moreover, there is a cell decomposition of M associated with P so that F is

1 1 on each (open) cell. The (faces (2-cells) are in 1 1 correspondence with
the cycles of R SP. One can decipher the map F from the assemblaffe
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(S, P, R) on X(f, g) as follows. For

(1.5) x6X(f,g), y=xS, z=yP=xR,
let [x, y]f denote the oriented section offx running from x to y. (This need not
be a simple arc. For example [x, x]f=fx.) Let [y, z]a denote the seoment of ,
oriented from y to z. (This is a simple arc, but it may be oriented towards either
ar or .) Now letf’ denote the family of closed curves obtained by concatena-
tion (denoted by + of sections and segments as follows. With x, y, z as in (1.5),
the section [x, z]f’ is

(1.6) [x, y]f if Pr is a singleton;

(1.7) [x, y]f + [y, ar] + [ar, z] if Pr is a fan;

(1.8) [x, y]f+ [y, z] if P is a pair.

Thus fe has ( members, one for each cycle of R, each bordering a simply
connected but possibly slit region in R2. These are the F-images of the faces on
M. Each fan of P that permutes n crossings corresponds to a critical point of F
of the type w z. The multiplicity of such a fan is defined to equal n 1, and
the sum of the multiplicities is the branchin# number l of F. The #enus ofM
then satisfies the analog of the Hurwitz-Riemann relation"

(1.9) 2 +/ 2/+ p + z.

Remark 1. If M is a closed orientable surface of genus y and W is the
sphere, then a polymersion of M to W is just a branched covering. Let fl be its
degree. We produce a bordered surface M by choosing a regular value of F as
the reference point on S2 and remove fl discs about the poles F- () on V.
Assuming that the discs are so small as to be embedded by F, we have that
z p fl and (1.9) becomes the classical formula [4, p. 17], written as

(1.10) 2 + k 2fl + 27.
Remark 2. Suppose now that W= S2- {eo, e, es} is the finitely

punctured sphere. Let eo serve as . A raying forfis deemed sufficient here if in
addition to the properties in the second paragraph in this section there is also
one ray from each of the m punctures e. Let e denote these exceptional rays.
Theorem 1 still holds if we add the condition:

(1.11) P has no fixed points in X(f, e).

Since none of the e are branch points, we have from (1.3) that co(f, e) O. So
F(M) W, since the circulations counts the number of preimages with multi-
plicity. We shall not consider noncompact targets further.

2. Assemblages of higher genus

For W a closed, oriented surface of genus p we use a model polymersion
G" W--. S2 which is two sheeted with m 2p + 2 simple branchpoints e. So
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(W, G) corresponds, topologically speaking, to the Riemann surface of a hyper-
elliptic function, and the e to its Weierstrass points, when p > 1.

Let 9 {91, 92} be a pair of concentric, positively oriented circles around
m 2p + 2 points e in R2. Draw a set e of m rays, one from each e, to oz. Let
Xl+j, Y2+j (indices mod m) be where e crosses 91 and Oz. The successor
permutation

S (x1x2""Xm)(YlY2""Ym)

on X(#, e) admits only one assembling permutation with m simple fans,

P (xly2)(xay4)"’" (XmYl).

The product R SP has the ( 2 cycles required by Theorem 1:

g (Yl xlyax3"" ")(y2x2y4x’" ").

Let Go be the associated polymersion to R2 of Wo W (D + D2), where the
Di are two disjoint discs. (We use set theoretic addition to denote disjoint
union.) Extend Go over W so as to embed Di onto the polar cap outside / to
give the model G. Note that R decomposes W into two faces, conveniently
called the odd and the even sheet of G.
Now suppose we are given the data (f, Ao) on W. Choose a pair of disjoint

discs D in the complement of the data and assign to them two nonnegative
integers fli. (D will have fl preimages under the polymersion F we are about to
assemble.) We may adjust the model G so that the curve familyf* G(f), the
pointset A) G(Ao) and the exceptional rays e lie in general position in R2.
Now split 7i into fl nearby concentric circles to obtain the family #* of
fl fll + f12 concentric circles enclosing the data (f*, A) on R2. Draw rays
so that together with e, ’= a + e is sufficient for f’ =f* + 7" and A).

In addition to a sign, each crossing in X(f’, t’) also carries a parity as
follows. For x X(#’, e), set par (x)= + j (mod 2)in accordance with the
second paragraph in this section. A crossing in X(7*, ) inherits the parity of
the last previous exceptional crossing. For x X(f*, a), we have guaranteed,
by general position, that only one of the two points in G- l(x) lies on f. Assign
to x the parity of the sheet of G this point lies in. Note that the parity alongf*
changes each time a curve crosses an exceptional ray, because here f changes
sheets. Hence we choose to assign to x X(f*, e) the parity of the succeeding
section, Ix, xS’]f*. (S’ is the successor permutation in X(f’, t’) and it changes
parity at the exceptional crossings.) To a’ G(a) A’o assign the parity of the
sheet containing a on W.
We now isolate a number of necessary conditions on the assembling permu-

tation P’ which also turn out to be sufficient.

PROPOSITION 1. If P’ is the assembling permutation associated with the data
(f’, A’o) by Theorem 1, where f= F[OM, F is a polymersion M W and
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F’= Go F[M- F-I(D1 + D2), then

(2.1)
/2.2)
(2.3)

P’ is parity preserving on X(f’, a);
P’ is parity reversing on X(f’, e); and
allfans on X(f’, e) have multiplicity one.

If X(f*, a’) has v* negative crossings, f* has turning number z*,

card (Go F)- 1(o)

and R’= S’P’ has cycles, then

(2.4) (= v* + z* + ft.

Proof. Since z(f’)= z(f*) + z(g*)= z* + fl, (1.4) becomes (2.4). Set

P) P’IX(f’, ej) and j card (Go F)-

Since G is simply branched over e, G- (e) consists in a single point. This is not
a branchpoint of F, by construction of G. So G F has di simple branchpoints
at e, reflected by di fans of multiplicity one in P. Hence (2.3) follows. Since P’
is effective, all negative crossings are paired off as in (1.3). Thus co(f’, e)=
26j + r, where r counts the number of fixed points of P/, all of which are
positive. But the circulation also counts the preimages with multiplicity. Hence
r 0. This means that each of the faces in the cell decomposition of M
described by R’ is embedded in either the even or odd face of W.

Each nontrivial cycle of P’ corresponds to a connected set of arcs on M
which projects to an arc on W under F. No arc in G-1()crosses from one
sheet to another. Whence (2.1) holds. Each exceptional pair corresponds to an
arc in M that embeds into just one of two pieces of G-(e#). Thus it does not
pass through G- (e#). Since the crossings have opposite sign they have opposite
parity as well. An exceptional fan corresponds to an arc in M that also embeds
under F into G- (e#) but passes through G- (e#). Since the crossings have like
sign, they have opposite parity. Hence we have (2.2).

We now retrace our steps. In addition to the circulation

co’ co(f*, ej)= L sign (c)" c

we use the index

gy (--1) (--1)par(c)" C Xtf*, e),
which is just the difference of the "even" and "odd" circulations.

LEMMA 1. IfP is a permutation on X(f’, e) satisfying (1.1-3) and (2.2), then

(2.5) xy, and
(2.6) coy + fl 2for some nonnegative integer
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Proof. No element is fixed, by (2.2). Each negative crossing is paired to a
positive crossing of opposite parity, by (1.3). The fans permute the remaining,
even number 26 of positive crossings, half of which are odd, half even, by (1.2)
and (2.2). The/3 crossings in X(#*, e) are all positive. Say there are ndo positive

/o.dd positive odd crossingsodd crossings in X(f*, e#). Then each of the
in X(f’, e#) is either paired to one of the v negative even crossings or is one
of the 6# positive odd crossings in the fans. Thus we have

(2.7 odd) ndd d" odd
Trade "odd" for "even", subtract and add the two relations to get (2.5, 6). [:]

LEMMA 2. If an assembling permutation P’ satisfies both parity conditions
(2.1, 2) then R’= S’P’ is parity preserving.

Proof. Let y xS’ and assume that y is an exceptional crossing. Then
par (y)4: par (x) by definition and par (y)4: par (yP’) by (2.2). So par (x)=
par (xR’). If y is ordinary, then from (2.1) we have

par (x)= par (y)= par (yP’)= par (xR’).
Condition (2.3) keeps F from being branched over the G-X(e) and (2.4)is

(1.4), as remarked above.

PROPOSITION 2. To each abstract transitive, effective assembling permutation
P’ on X(f’, ’) satisfying (2.1-4) there is a polymersion F: M- W with
F IOM =f, branched only over Ao F is unique, up to a homeomorphism on M.
The relation between the genus y of M, the number of"poles"

card (Go F)-x(),
the number of curves p in f, and the branching number I of F, is given by

(2.8) 2 + u + 1/2 Z co’ (1 p)fl + 2, + p + z*,

where z* is the turning number off* and co is the circulation off* about e.
Proof Under the hypotheses, P’ is also faithful since z(f’) * +/3. So the

Theorem 1 gives a polymersion f’: M’ R2 spanning f’. By Lemma 2, F’
embeds each of the ( faces of M’ into the Go-image of the W-sheet that has the
same parity as its cycle in R’. Since Go is 1 1 there, we can lift F’ cell by cell to
Wo. That is, F’ factors through a polymersion F0: M’ ---, W0. Complete Mo to
M by attaching /3 discs to t3M’ along the borders belonging to (F’)-(g*).
Extend Fo over M so that F is a fli 1 covering over the discs Di, 1, 2. Since
(2.6) counts the F’-preimages with multiplicify, and this equals 6 by (2.3), F
cannot be branched over the G- (e). At the other branchpoints F’, G is locally

1, so F is branched exactly like F’ over the points in Ao. From (1.9) and (2.6)
we get (2.8). IS]

There is an obvious cell decomposition on M induced by that on M’ such
that F is 1 on each (open) cell of dimension 0, or 2. Hence two polymer-
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sions defining identical assembling permutations on the data (G, e, , #*)differ
by a cell-preserving homeomorphism in the source. However, by virtue of
certain choices made in splitting # to #*, which in effect label the poles
(G F)-t() in a certain way, different assembling permutations may
assemble equivalent polymersions. The obvious action of (fl) on ’, 1, 2,
defines a representation of the group (flt) x (f12) among the inner auto-
morphism of X(f’, z’). We define an assembla#e for the data (f, A0) on W to
consist in a class 1-I of transitive, effective assembling permutations satisfying
(2.1-4), which are equivalent under the action of (flt) x (f12). Thus we have
the generalization of Theorem 1.

THEOREM 2. The polymersions F: M - W with given set A o ofbranchpoints
and family f F IteM of border curves in leneral position on a closed (oriented,
connected) surface W ofgenus p, are classified, up to a topological automorphism
on the (compact, connected) surface M, by their assemblages, as defined above.

3. Example

Consider the surface W of genus 2 symmetrically embedded in R3 as shown
in Figure (a). The model "hyperelliptic" map G may be visualized as the quo-
tient projection of W modulo the involution on W obtained by a 180 rotation
about the axes passing through the six "Weierstrass" points e. That the given
family of closed curves f= {ft, f2,f3} on W, (b), bound some polymersion is
demonstrated in (c). The mapping of a surface M of genus 1 and 3 borders
into R3 has one Whitney umbrella (arrow) at the end of the doublepoint arc.
Projecting normally to W, via H produces F with a simple branchpoint under
the umbrella point. In (d) we have drawn the G imagef* off and the excep-
tional rays e. From this alone we see that * 3, v* 1 and fl fl 1
xy, all j. Furthermore, o9’ o 3, to to to 1 and to’ 1.
Substituting this into (2.8) we obtain / 2(V- fl)- 1. Thus there areno
immersions among the polymersions extending f, nor are any of their sources
planar (genus 0). Indeed / , fl 1 is the simplest possible solution.
However, the solution is not unique. For this we shall have to compute the
assembling permutations.
For fl 0 and f12 1, we need only one circle in /*, which we have drawn.

For p 1, there can be only one simple branchpoint, which we have located at
the initial point a of a ray g (dashed arc), and chosen to have odd parity. The
crossings have been labeled so that the subscripts have the proper parity. Note
that r, is the only negative crossing. Curve family f has three selfintersections
while f* has four. The extra one is due to the identification under the involu-
tion. The successor permutation off’ {2, f, f2, f3} is

S’= (Yy2b,y3 Y6)(rl r)(bss2)(tb3t2t3bt,).
The parity rules on an assembling permutation require that P’ have the factor

Po (rty,)(r2ys)(r3Y6)(r, yt)(bt ba).
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(b) ’

(c)

However we have a choice for the partner for s 2. Say we take t3; then (y2t) is
required. Indeed, some computations reveal that the remaining fans are deter-
mined, if R’= S’P’ is to have the five cycles stipulated by (2.4). Thus if

P, (s2t3)(y2t,)(s, t)(y3t4),
then P’-- Po P is a suitable assembling permutation and R’-- Ro R where

Ro (r2Y6r4y4) and R (ytby3rysr3)(y2b4t4)(Stsb3)(s2b2t2).

Computation again yields that the other choice, namely (s2 ), again deter-
mines the rest, and P2 Q-P Q, where Q (t ta)(t2 t,).

Remark. There is no question here of "relabeling g*", hence the two poly-
mersions are topologically distinct. Note that if we do not specify the branch-
points, the number of inequivalent polymersions extendingfbecomes infinite.
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To see this, attach n concentric copies of W to the surface tl)(M) by means of
slits (= doublepoint arcs joining two umbrellas). This procedure extends F to a
polymersion of M # nW (connected sum) with 1 + 2n simple branchpoints,
and local degree n over D 1. We may keep D out of the image and still achieve
arbitrary genus by putting slits between the two sheets of(M) that H maps to
the same place on W.

4. Branched coverings

If both M and W are closed then p 0 and the degree 6 is constant over each
point. So 26 and (2.8) becomes the classical Hurwitz-Riemann formula [4,
p. 54], written in our symbols as

(4.1) 7 1/2/z + (p- 1)6 + 1.

THEOREM 3 [4, p. 51]. The class of branched coverinos dO: M --. W ofa oiven
closed topolooical Riemann surface W of oenus p by surfaces with 6 sheets and
branchpoints in a 9iven point set A {a, a2, a,} of W, is classified, up to an
automorphism on M, by systems ofw + 2p permutations P, Uk, V in (6), up to
conjuoacy, which 9enerate a transitive suboroup of (6) and satisfy the relation

(4.2) P1P2 P,U1 V1UIV UVUIV 1.

The classical proof is really quite simple. Let us see that our general
classification also reduces to that of Hurwitz in this special case. Choose the
model G and exceptional rays e so that A lies entirely on the odd sheet of W.
Draw the rays so that O crosses the rays in the cyclic order given by

0 02 0we e2 3m, m 2p + 2.

Label the crossings as follows:

ci X(i, 9i), bi X(i, 92), x+l X(e, 91) and Y+2 X(e, 02).
(Subscripts are taken modulo w or m, whichever is appropriate.) Let a super-
script 1 < d < 6 label the 6 copies of each object obtained by splitting O to O*.
Thus the successor permutation becomes

s’= l-l tx",c"l.. "c,x2 Xm)(yyb bwya3
d=l

Now let P’ be an assembling permutation satisfying (2.1-3). For each
1, w, the function d t, where c P’ c], gives a permutation P (6).

Since the points in A have odd parity, each b is fixed by P’. For eachj 1,
P’ Y+ 1, gives a permutation Q_ (6). (Tom, the function d t, where x

conserve printing costs we may write ( for Q- and (z, d)for za. Thus, by (2.3),
(y, d)P’= (x_ 1, dO_z).) Evidently P’ is transitive if and only if the w + rn
permutations P, Q generate a transitive subgroup in (6). (Effectiveness is
vacuous here.)
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Next, the ( cycles of R’= S’P’ have lengths which are positive multiples
t, l; of w + m. So It +’." + l; 2gi. Whence P’ satisfies also condition
(2.4), which here is ( 2gi, if and only if each lk 1. In that case, there are gi

different cycles in R’, each containing a different x. Let us pursue the orbit of
x’"

(xl, d)(Cl, dP1)(c2, dPIP2) (cw, dPx
(Yj, dP1 PwQ1)(x3, dP1 PwQIQ2)
(Xm-l, dPl P,QI2 Q-m-2)(yl, dP PQIQ2 Qm-2Qm-).

Hence this, and a similar calculation (Y2, d), leads to identities

(4.3) PI PQIlff.2 Qm-lQ-m 1 lff.Q23 Qm.

By coupling the di copies of g2 in g* with those of # we may assume that
Qm 1. Eliminating Qm- from (4.3) yields

(4.4) P P,Q12 lff.2p Q2 Q2p 1.

A relabeling of the 6 copies of # in #* merely conjugates these w + 2p permuta-
tions by an element in (di).

Let us call a cyclically reduced word in 2p letters a Dehn word if each letter
appears once to the / 1, and once to the 1 exponent. In [3] it is shown that a
Dehn word may be put into a commutator product form by a Nielsen transfor-
mation. That is, there exists an automorphism# b (g 1, #2) on the free
group (#, ]2p> such that the Dehn word

]1 ]- 1]3]- -pl]- lg2- 14 2p

is the product of successive commutators in the b. Thus we have a canonical
transformation on @(6)

Uj (2j-I(Q1, Q2t,), Vj-- O2j(Ol, O2t,)
taking (4.4)to Hurwitz’ relation (4.2). [2]
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