ON A PROBLEM OF STOLZENBERG IN POLYNOMIAL CONVEXITY

BY

H. Alexander

1. Introduction

The following problem has been posed by G. Stolzenberg [3, p. 350, Problem 9]: Let \mathscr{A} be a uniform algebra on the unit circle T which is generated by a finite number of functions of constant unit modulus. Show that $\sigma(\mathscr{A}) \backslash T$ has the structure of a (possibly empty) one-dimensional analytic space, where $\sigma(\mathscr{A})$ is the spectrum of the Banach algebra \mathscr{A}. By using the finite set of n, say, unimodular generators to imbed T into the torus T^{n}, one can reformulate the problem in a more geometric setting as that of showing, for a Jordan curve Γ contained in T^{n}, that $\hat{\Gamma} \backslash \Gamma$ is a (possibly empty) one-dimensional analytic subset of $\mathbf{C}^{n} \backslash \Gamma$, where ${ }^{\wedge}$ denotes the polynomially convex hull. Our first result includes a solution to this problem as a special case.

We will say that a compact subset Z of T^{n} is an AC set (a union of a set of Arcs with a polynomially Convex set) provided that there is a compact polynomially convex set $K \subseteq Z$ such that $Z \backslash K$ has the structure of an arc at each of its points. By the latter we mean that for each $p \in Z \backslash K$ there exists a homeomorphism of a neighborhood of p in $Z \backslash K$ with some open interval on the real axis.

Theorem 1. Let X be a compact subset of T^{n} which is contained in an $A C$ set Z. Then $\hat{X} \backslash X$ is a (possibly empty) analytic subset of pure dimension one in $\mathbf{C}^{n} \backslash X$. Moreover, $\hat{X} \backslash X$ is algebraic, in the sense that there exists a global algebraic subvariety B of \mathbf{C}^{n} such that $\hat{X} \backslash X=B \cap\left(\overline{U^{n}} \backslash T^{n}\right)$, and $(\hat{X} \backslash X)^{-} \cap T^{n}$ is a union of real analytic curves contained in X.

Results of this type were first obtained by Wermer [10], Bishop [4], and Stolzenberg [8], under smoothness restrictions, for real curves. In Theorem 1, no smoothness is assumed, but rather there is the geometric hypothesis that X lies in the torus. It is interesting to note, however, that the boundary curves of the hull are shown, a posteriori, by the application of a reflection principle, to be in fact real analytic.

For X a Jordan curve, we can, for the theorem, take $Z=X$ with K empty. When X is a Jordan arc, take $Z=X$ with K the set of two endpoints, to conclude that $\hat{X} \backslash X$ is either analytic or empty. From the argument principle (cf. [8], [11]), it follows that the latter must be the case; i.e., X is polynomially convex. Thus we recover the following result of Stolzenberg [7].

Corollary 1. Every Jordan arc Γ in T^{n} is polynomially convex and satisfies $P(\Gamma)=C(\Gamma)$.

The last assertion, as Stolzenberg observes, follows from the polynomial convexity because it implies that each z_{k} is invertible in $P(\Gamma)$ (cf. Lemma 1b below).

Since every compact totally disconnected subset E of T^{n} is contained in a Jordan arc, Corollary 1 implies that such E is polynomially convex. From this we get:

Corollary 2. If J is a finite union of (not necessarily disjoint) Jordan curves and Jordan arcs contained in $T^{\boldsymbol{n}}$, then J is an $A C$ set and so the conclusion of Theorem 1 applies to J.

To see this, note that if $J=\bigcup\left\{J_{k}: 1 \leq k \leq s\right\}$ where each J_{k} is a Jordan curve or arc in T^{n}, then defining $E_{i k}$ to be the relative boundary of $J_{i} \cap J_{k}$ in J_{k} for $i \neq k$ and $E_{i i}$ to be the set of endpoints (if any) of J_{i} and putting $K=\bigcup E_{i k}$, a totally disconnected (cf. [2]) and hence polynomially convex set, we conclude, since $J \backslash K$ clearly has the structure of an arc at each point, that J is an AC set.

Theorem 1 and its corollaries suggest the following:
Problem. If $X \subseteq T^{n}$ and $0 \in \hat{X}$, show that there exists a subvariety V of $\mathbf{C}^{n} \backslash X$ such that $0 \in V \subseteq \hat{X}$.

A first step might be to show, say for $n=2$, that a minimal set $X \subseteq T^{2}$ such that $0 \in \hat{X}$ (adduced from Zorn's lemma) has no interior in T^{2}.

After giving the proof of Theorem 1 in Section 2, we shall return to the original problem of Stolzenberg in Section 3, where we derive a necessary and sufficient condition that the algebra \mathscr{A} on the circle be a proper subalgebra of $C(T)$.

2. Proof of Theorem 1

We shall employ the theory of uniform algebras, convenient references being the books of Stout [9] and Wermer [11]. Rossi's local maximum modulus principle will be referred to as LMMP. The open unit disc will be denoted by U; and the unit circle by T. Thus U^{n} is the unit polydisc and T^{n} the torus in \mathbf{C}^{n}. For X a compact set in \mathbf{C}^{n}, the polynomially convex hull, denoted \hat{X}, is $\left\{z \in \mathbf{C}^{n}\right.$: $|p(z)| \leq\|p\|_{X}$ for all polynomials in $\left.z=\left(z_{1}, \ldots, z_{n}\right)\right\}$. The maximal ideal space of $P(X)$, the uniform closure in $C(X)$ of the polynomials in z, is (identified with) \hat{X}.

Lemma 1. (a) If $X \subseteq T^{n}$ is not polynomially convex, then \hat{X} meets the compact set $C=\left\{z \in \bar{U}^{n}: z_{1} z_{2} \cdots z_{n}=0\right\}$.
(b) If $X \subseteq T^{n}$ is polynomially convex, then there exists a compact neighborhood Y of X in T^{n} such that Y is polynomially convex.

Proof. (a) If $\hat{X} \cap C$ were empty, then each z_{k} would be invertible in $P(X)$. Consequently $\bar{z}_{k}=1 / z_{k} \in P(X)$ and the Stone-Weierstrass theorem implies $P(X)=C(X)$ and hence that X is polynomially convex.
(b) Let $Y_{k}=\left\{z \in T^{n}\right.$: dist $\left.(z, X) \leq 1 / k\right\}$. Then $Y_{k} \downarrow X$ implies $\hat{Y}_{k} \downarrow \hat{X}=X$. Thus $Y_{k} \cap C$ is empty for large enough k and then Y_{k} is polynomially convex by (a), Q.E.D.

At this point we state a useful consequence of Theorem 1.
Corollary 3. Let $X \subseteq T^{n}$ be such that there is a compact polynomially convex set $K \subseteq X$ with $X \backslash K$ totally disconnected. Then X is polynomially convex.

Proof. By Lemma 1(b), we can choose a polynomially convex set $L \subseteq T^{n}$ such that $L^{0} \supseteq K$, where the interior is taken in T^{n}. Then $E \equiv X \backslash L^{0}$ is a compact totally disconnected set and therefore there exists a Jordan arc α such that $E \subseteq \alpha \subseteq T^{n}$. Set $Z=L \cup \alpha$. Then Z is clearly an AC set containing X and so by Theorem $1, V=\hat{X} \backslash X$ is an analytic variety and $\partial V \equiv \bar{V} \backslash V$ is either empty or a union of real analytic curves with $\partial V \subseteq X$ but $\partial V \nsubseteq K$, as K is polynomially convex. Since $X \backslash K$ is totally disconnected, the later possibility gives a contradiction, unless ∂V is empty and, consequently, so is V; i.e., $\hat{X}=X$, Q.E.D.

In the next lemma, we identify \mathbf{C}^{n-1} with the hyperplane in \mathbf{C}^{n} obtained by holding one of the coordinate projections fixed.

Lemma 2. If F is polynomially convex in \mathbf{C}^{n}, then $L=F \cap \mathbf{C}^{n-1}$ is polynomially convex in \mathbf{C}^{n-1}.

Proof. Say $\mathbf{C}^{n-1} \subseteq \mathbf{C}^{n}$ is (identified with) $\left\{z \in \mathbf{C}^{n}: z_{n}=\alpha\right\}$. Take

$$
p=\left(p_{1}, p_{2}, \ldots, p_{n-1}\right) \in \mathbf{C}^{n-1} \quad \text { with } p \notin L
$$

Then $\quad q=\left(p_{1}, p_{2}, \ldots, p_{n-1}, \alpha\right) \notin F$. Hence there is a polynomial $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ such that $|f(q)|>|f|_{F}$. Then, putting $g\left(z_{1}, z_{2}, \ldots, z_{n-1}\right)=$ $f\left(z_{1}, \ldots, z_{n-1}, \alpha\right)$, we have $|g(p)|=|f(q)|>|f|_{F} \geq|g|_{L}$, Q.E.D.

We now begin the proof of Theorem 1 by induction on n, the case $n=1$ being obvious. Recall, in what will be our fixed notation, that X is contained in the AC set Z with a polynomially convex set $K \subseteq Z$ such that $Z \backslash K=\gamma$ has the structure of an arc at each of its points. Let $\gamma_{0}=\{p \in X$: there exists an open subarc ω of γ such that (i) $p \in \omega \subseteq X$ and (ii) some coordinate function z_{k} is constant on $\omega\}$. Note that γ_{0} is a relatively open subset of X and define the compact set $X_{1} \equiv X \backslash \gamma_{0}$.

Lemma 3. (a) $\hat{X} \cap U^{n} \subseteq \hat{X}_{1}$.
(b) $z_{k}^{-1}\{\alpha\} \cap\left(X_{1} \backslash K\right)$ is totally disconnected for $\alpha \in T$ and for each k.
(c) $\hat{X}_{1} \cap \partial\left(U^{n}\right)=X_{1}$.

Proof. (a) Let $p \in \hat{X} \cap U^{n}$ and let σ be a (positive) representing measure on X for p for the algebra $P(X)$. Then, for each $k, z_{k *}(\sigma)$ represents $z_{k}(p) \in U$ for the disc algebra. Since $z_{k}{ }^{*}(\sigma)$ lives on T, it is harmonic measure and, in particular, it is absolutely continuous with respect to Lebesgue measure on T.

We claim that σ is supported on X_{1} (this implies $p \in X_{1}$, as desired). To see this, let $q \in X \backslash X_{1}$. Then $q \in \gamma_{0}$ and so there is an $\omega \subseteq X$ such that $z_{k} \mid \omega \equiv \alpha \in T$ for some k. As indicated above, $z_{k *}(\sigma)\{\alpha\}=0$ and hence $\sigma\left(z_{k}^{-1}\{\alpha\} \cap X\right)=0$. Thus $\sigma(\omega)=0$ and so $q \notin \operatorname{spt} \sigma$.
(b) By construction, $z_{k}^{-1}\{\alpha\} \cap \gamma \cap X_{1}$ contains no subarc; i.e., this set is totally disconnected.
(c) As each point of T^{n} is a peak point for $P\left(T^{n}\right)$, it follows that $\hat{X}_{1} \cap T^{n}=X_{1}$. To show that $\hat{X}_{1} \cap\left(\partial U^{n} \backslash T^{n}\right)$ is empty, we argue by contradiction and suppose that there is a point $p \in \hat{X}_{1}$ such that $z_{k}(p)=\alpha \in T$ for some k and $p \notin T^{n}$. Let $F=z_{k}^{-1}\{\alpha\} \cap X_{1}$. Since $p \in \hat{X}_{1} \cap z_{k}^{-1}\{\alpha\}$, which is a peak set for $P\left(X_{1}\right)$ (with peaking function $f(z)=\left(1+\bar{\alpha} z_{k}\right) / 2$), it follows that $p \in \hat{F}$. On the other hand, $F \cap K$ is polynomially convex in $\mathbf{C}^{n-1}\left(=z_{k}^{-1}\{\alpha\}\right)$ by Lemma 2 and $F \backslash(F \cap K)$ is totally disconnected by part (b). Using the induction hypothesis, we can invoke Corollary 3 (in \mathbf{C}^{n-1}) to conclude that F is polynomially convex. This is a contradiction, Q.E.D.

Define $X_{2}=X_{1} \cap\left(\hat{X} \cap U^{n}\right)^{-}$. It follows from the LMMP and Lemma 3 that $\hat{X}_{2} \backslash T^{n}=\hat{X} \cap U^{n}$.

Lemma 4. The mapping $z_{n}: X_{2} \backslash K \rightarrow T$ is an open mapping.
Proof. Fix $p=\left(p^{\prime}, \alpha\right) \in X_{2} \backslash K$ where $p^{\prime} \in T^{n-1}$ and $\alpha \in T$. We shall identify \mathbf{C}^{n-1} with $\left\{z \in \mathbf{C}^{n}: z_{n}=\alpha\right\}$. Let \mathscr{U} be a neighborhood of p in \mathbf{C}^{n} which is disjoint from K. We shall show that $z_{n}\left(\mathscr{U} \cap X_{2}\right)$ contains a neighborhood of α in T. From Lemma 3(b) and (c),

$$
z_{n}^{-1}\{\alpha\} \cap\left(\hat{X}_{2} \backslash K\right)=z_{n}^{-1}\{\alpha\} \cap\left(X_{2} \backslash K\right)
$$

is a totally disconnected set; call it A and view it as a subset of \mathbf{C}^{n-1}. Take a neighborhood V of $p^{\prime} \in A$ in \mathbf{C}^{n-1} such that $\partial V \cap A=\emptyset$ and $\bar{V} \subseteq \mathscr{U} \cap \mathbf{C}^{n-1}$ with \bar{V} compact. Hence $\partial V \cap \hat{X}_{2}=\emptyset$. Therefore, there is a $\delta>0$ such that
(i) $\partial V \times\{\lambda \in \mathbf{C}:|\lambda-\alpha|<\delta\}$ is disjoint from \hat{X}_{2} and
(ii) $W \equiv V \times\{\lambda \in \mathbf{C}:|\lambda-\alpha|<\delta\}$ is a relatively compact subset of \mathscr{U}.

Let $Y=\hat{X}_{2} \cap \bar{W}$ and observe that the topological boundary of Y in X_{2} is contained in $\left\{z \in X_{2}:\left|z_{n}-\alpha\right|=\delta\right\}$. Let $Q=z_{n}(Y)$ and note that Q is contained in the intersection S of $\{\lambda \in \mathbf{C}:|\lambda-\alpha| \leq \delta\}$ with $\bar{U} ; S$ is a closed planar set bounded by two circular arcs, one of which, Γ, is a neighborhood of α in T. By definitio of X_{2}, p is a limit of points in $\hat{X} \cap U^{n}$ and so there is $q \in Y$ such that $z_{n}(q)$ lies in the interior of S. Apply the LMMP to $P(Y)$ to see that the Shilov boundary of Y is contained in $z_{n}^{-1}(\partial S) \cap Y$. Let σ be a representing measure for $P(Y)$ supported on the Shilov boundary of Y. It follows that $z_{n *}(\sigma)$
has support contained in ∂S and represents $z_{n}(q)$ for $P(Q)$. We conclude that $z_{n *}(\sigma)$ is harmonic measure on ∂S and, in particular, its support is all of ∂S and so contains Γ. Therefore $z_{n}\left(Y \cap X_{2}\right) \supseteq \Gamma$ and so $z_{n}\left(\mathscr{U} \cap X_{2}\right) \supseteq$ $z_{n}\left(\bar{W} \cap X_{2}\right) \supseteq \Gamma$, Q.E.D.

Lemma 5. The mapping $z_{n}: X_{2} \backslash K \rightarrow T$ is locally one-to-one and $X_{2} \backslash K$ is a relatively open subset of γ.

Proof. To verify the first statement we argue by contradiction and suppose that there is some $p \in X_{2} \backslash K$ such that $z_{n} \mid X_{2}$ is not locally 1-1 in any neighborhood of p. Fix a small neighborhood \mathscr{U} of p in \mathbf{C}^{n} such that (i) $Z \cap \mathscr{U}$ is an open Jordan arc $\gamma_{1} \subseteq \gamma$ and (ii) z_{n} maps γ_{1} into a subarc of T of arclength less than π. By our assumption, there are $q_{1} \neq q_{2}$ in $\gamma_{1} \cap X_{2}$ such that $z_{n}\left(q_{1}\right)=$ $z_{n}\left(q_{2}\right)=\alpha$. By the construction of $X_{1} \supseteq X_{2}, \gamma_{1} \cap z_{n}^{-1}\{\alpha\} \cap X_{2}$ is totally disconnected and, since it contains at least the two points q_{1} and q_{2}, there is a nonempty open subarc γ_{2} of γ_{1} such that z_{n} takes the endpoints of γ_{2} to α and $z_{n} \neq \alpha$ on $\gamma_{2} \cap X_{2}$. This implies that the map

$$
z_{n}: \gamma_{2} \cap X_{2} \rightarrow T \backslash\{\alpha\}
$$

is a proper mapping. As a consequence, the image is closed in $T \backslash\{\alpha\}$. By Lemma 4, the map is also open. Thus, by connectedness, $z_{n}\left(\gamma_{2} \cap X_{2}\right)$ is either all of $T \backslash\{\alpha\}$ or is empty. Because of (ii) above, the former possibility is ruled out and we conclude that $\gamma_{2} \cap X_{2}$ is empty.

Let the endpoints of γ_{2} be p_{1} and p_{2}. Choose any $q \in \gamma_{1} \cap X_{2}$ such that $z_{n}(q) \neq \alpha\left(=z_{n}\left(p_{i}\right)\right)$. Then for one of the points p_{1} and p_{2}, say p_{1}, the open subarc γ_{3} of γ_{1} joining q to $p_{i}(i=1,2)$ is disjoint from γ_{2}. By the last paragraph, $\left(X_{2} \cap \gamma_{3}\right) \cup\left\{p_{1}\right\}$ is a neighborhood of p_{1} in X_{2} and therefore its image under z_{n} is a neighborhood of α in T. Let $\beta=z_{n}(q)(\neq \alpha)$ and put $E=X_{2} \cap$ $\gamma_{3} \mid z_{n}^{-1}(\beta)$. Consider the map $z_{n}: E \cup\left\{p_{1}\right\} \rightarrow T \backslash\{\beta\}$ and note that $E \cup\left\{p_{1}\right\}$ contains, at least, the point p_{1}. By the argument of the last paragraph, since this map is proper, we conclude, this time, that $E \cup\left\{p_{1}\right\}$ is empty. This is a contradiction.

Now we know that $z_{n}: X_{2} \cap \gamma \rightarrow T$ is an open, continuous map which is locally 1-1. It follows that this map is a local homeomorphism. Therefore $X_{2} \cap \gamma$ has the structure of an arc at each of its points. It follows that $X_{2} \cap \gamma$ is relatively open in γ, Q.E.D.

Lemma 6. For each point $p \in X_{2} \backslash K$ there is a neighborhood W of p in \mathbf{C}^{n} such that $W \cap \hat{X}_{2} \cap U^{n}$ is a pure one-dimensional analytic subvariety of $W \backslash T^{n}$.

Proof. We shall employ the notation and information contained in the proof of Lemma 4. By Lemma 5, we first choose a neighborhood \mathscr{U} of p such that z_{n} is 1-1 on $\nVdash \cap X_{2} \subseteq \gamma$. Repeating the construction of Lemma 4, we get W, Y, Q, S and Γ. By an argument of Bishop [4, p. 496], the topological boundary of Q is contained in the Shilov boundary of $P(Q)$ which is ∂S. This
implies that $Q=S$. Also, because z_{n} is a homeomorphism of $Y \cap z_{n}^{-1}(T)$ to $\Gamma \subseteq T$, by a further argument of Bishop [4, p. 497], $W \cap \hat{X}_{2}=Y \cap z_{n}^{-1}\left(S^{0}\right)$ is an analytic subvariety of $z_{n}^{-1}\left(S^{0}\right)$ of dimension one, Q.E.D.

Lemma 7. The set $X_{2} \backslash K$ is locally a real analytic arc.
Proof. For $p \in X_{2} \backslash K$ choose a neighborhood W given by Lemma 6 with $W=\rho(W)$ where $\rho\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(1 / \bar{z}_{1}, 1 / \bar{z}_{2}, \ldots, 1 / \bar{z}_{n}\right)$. Let $V=W \cap$ $\hat{X}_{2} \cap U^{n}$ and observe that $V_{1} \equiv V \cup \rho(V)$ is a subvariety of pure dimension one of $W \backslash T^{n}$ satisfying $\rho\left(V_{1}\right)=V_{1}$. By the extension result of [1], $W \cap \bar{V}_{1}$ is an analytic subvariety V_{2} of W. Hence $X_{2} \cap W=T^{n} \cap V_{2}$ is a real analytic arc, Q.E.D.

Remark 1. The result of [1] actually extends varieties through \mathbf{R}^{n}. To apply it in Lemma 7, use, locally, the map

$$
\left(z_{1}, z_{2}, \ldots, z_{n}\right) \rightarrow\left(e^{i z_{1}}, e^{i z_{2}}, \ldots, e^{i z_{n}}\right)
$$

which takes \mathbf{R}^{n} to T^{n}. The global version of this was obtained by Shiffman [5], [6] who applied it to prove the following result of Tornehave. If A is a subvariety of U^{n} of pure dimension one, such that $\bar{A} \backslash A \subseteq T^{n}$, then there is an algebraic subvariety B in \mathbf{C}^{n} of pure dimension one with $A=B \cap U^{n}$. We shall use this below.

Remark 2. An alternate proof of Lemma 7 can be obtained from the Schwarz reflection principle. In the notation of Lemma 6, Bishop's argument shows that $z_{n}: W \cap X_{2} \rightarrow S^{0}$ is a homeomorphism and

$$
f_{k}=z_{k} \circ\left(z_{n} \mid W \cap \hat{X}_{2}\right)^{-1}
$$

is analytic on S^{0} with $\left|f_{k}(\lambda)\right| \rightarrow 1$ as $\lambda \rightarrow \partial S \cap T$ for $1 \leq k \leq n$. Thus f_{k} reflects to be analytic across $\partial S \cap T$ and then

$$
\partial S \cap T \ni \lambda \rightarrow\left(f_{1}(\lambda), \ldots, f_{n}(\lambda)\right)
$$

gives a real analytic parameterization of a neighborhood of p in X_{2}.
Lemma 8. Let V be an analytic subvariety of $\mathbf{C}^{n} \backslash T^{n}$ of pure dimension one which is contained in $\overline{U^{n}}$. Put $\partial V \equiv \bar{V} \backslash V\left(\subseteq T^{n}\right)$.
(a) The variety V has a finite number of irreducible analytic components.
(b) Each analytic component lies either in U^{n} or in a polydisc U^{k} contained in ∂U^{n}.
(c) If $\omega \subseteq T^{n}$ is an open Jordan arc such that $\omega \cap \partial V$ is nonempty and relatively open in ∂V, then ω is a real analytic subarc of ∂V.

Proof. (a) Apply Lemma 1(a) to conclude that each component of V meets the compact set C defined there.
(b) Let W be a component of V. For each coordinate function z_{j}, either $\left|z_{j}\right|<1$ on W or $\left|z_{j}\right|$ attains the value 1 on W and so, by the maximum principle, $z_{j} \mid W$ is a constant of modulus one. The first alternative must occur for at least one j; say for $j_{1}, j_{2}, \ldots, j_{k}$. Then

$$
V \subseteq U^{k} \equiv \prod\left\{\left|z_{j}\right|<1: j=j_{1}, j_{2}, \ldots, j_{n}\right\}
$$

with a certain abuse of notation.
(c) We claim that $\omega \cap \partial V$ is relatively open in ω. In fact, if $x \in \omega \cap \partial V$, since $\omega \cap \partial V$ is relatively open in ∂V which is a real analytic curve by the reflection argument of Lemma 7, it follows that the germs at x of the sets ω and ∂V are identical. Consequently, $\omega \cap \partial V$ is relatively open in ω. As $\omega \cap \partial V$ is relatively closed in ω, it follows by connectedness that $\omega \subseteq \partial V$. Thus ω is an open subarc of ∂V and hence is real analytic, Q.E.D.

Lemma 9. Let $q \in(\hat{X} \backslash X) \cap \partial U^{n}$. Then there exists an analytic subvariety V of $\mathbf{C}^{n} \backslash T^{n}$ of pure dimension one such that $q \in V \subseteq \hat{X}$ and $\partial V \equiv \bar{V} \backslash V$ is a real analytic curve contained in X.

Proof. One of the coordinates of q, say the n th, has unit modulus; i.e., $z_{n}(q)=\alpha \in T$. Then $q \in \hat{L}$ where $L=X \cap z_{n}^{-1}\{\alpha\}$ (because $\hat{X} \cap z_{n}^{-1}\{\alpha\}$ is a peak set; cf. the proof of Lemma 3(c)). Let σ be the relative interior of $L \cap \gamma$ in γ. Let $K_{1}=K \cap z_{n}^{-1}\{\alpha\}$, a polynomially convex set by Lemma 2 . Then $L \mid \sigma$ is the union of K_{1} and a totally disconnected set and so is polynomially convex by Corollary 3 and induction. This shows that L is an AC set in \mathbf{C}^{n-1} ($=z_{n}^{-1}\{\alpha\}$). By induction, $\hat{L} \backslash L$ is an analytic subvariety of $\mathbf{C}^{n} \backslash L$. We can take V to be this set. The reflection argument of Lemma 7 implies that ∂V is a real analytic curve, Q.E.D.

Now put $X_{3}=(\hat{X} \backslash X)^{-} \cap X$. Then $X_{3} \supseteq X_{2}$ and X_{3} locally has the structure of a real analytic arc at points of $X_{2} \backslash K$ from Lemma 7. Also $\hat{X}_{3} \supseteq \hat{X} \backslash X$ by the LMMP.

Lemma 10. The set X_{3} locally has the structure of a real analytic arc at points of $X_{3} \backslash K$.

Proof. By what we have just observed, we need to verify this only for points $p \in X_{3} \backslash\left(X_{2} \cup K\right)$. Such a point p is in the closure of $(\hat{X} \backslash X) \cap \partial U^{n}$. Let f be a polynomial which peaks on \bar{U}^{n} at p. Hence there is an open Jordan subarc ω of γ containing p and $0<b<1$ such that $|f|<b$ on $X \mid \omega$. Choose $q \in(\hat{X} \backslash X) \cap \partial U^{n}$ so close to p that $|f(q)|>b$. Let V be the variety produced in Lemma 9 for this point q. Since $|f(q)| \leq|f|_{\hat{c} V}$ and $|f|_{X \backslash \omega}<|f(q)|$, it follows that $\partial V \cap \omega$ is nonempty. Also since $\partial V \subseteq X$ and ω is relatively open in $X, \omega \cap \partial V$ is relatively open in ∂V. By Lemma 8(c), ω is real analytic, Q.E.D.

Proof of Theorem 1. We know that $\hat{X} \backslash X=\hat{X}_{3} \backslash X_{3}$ and that $X_{3} \backslash K$ is locally a real analytic arc. By a basic theorem of Stolzenberg [8], $\hat{X}_{3} \backslash X_{3} \equiv A$ is an
analytic subvariety of $\mathbf{C}^{n} \backslash X_{3}$ of pure dimension one. By Lemma 8, $A\left(\subseteq \overline{U^{n}}\right)$ has a finite number of components, each contained in some U^{k}. Applying the Tornehave-Shiffman result (see Remark 1 after Lemma 7) to each analytic component, we conclude that A extends to be a global algebraic subvariety B in \mathbf{C}^{n}. This implies that $\bar{A} \cap T^{n}=B \cap T^{n}$ is a set of real analytic curves, Q.E.D.

3. Stolzenberg's problem

We shall now return to the original problem of Stolzenberg. Let $\phi_{1}, \phi_{2}, \ldots$, ϕ_{n} be continuous, unimodular, nonconstant functions on T which separate the points. Let $\Gamma=\left\{\left(\phi_{1}(z), \phi_{2}(z), \ldots, \phi_{n}(z)\right): z \in T\right\} \subseteq T^{n}$. We know that either Γ is polynomially convex or $\hat{\Gamma}$ is a nonempty algebraic variety. Assuming that the latter is the case, we shall derive some necessary conditions on the ϕ_{i}.

Because the ϕ_{i} are nonconstant, it follows from our previous work that the coordinate projections restricted to Γ are locally one-to-one maps. This implies that each ϕ_{i} is a covering projection of the circle to itself with winding number $m_{i} \neq 0$.

Lemma 11. The m_{i} are all of the same sign.
Proof. Suppose not; say, without loss of generality, that $m_{1}>0$ and $m_{2}<0$. It follows that $f \equiv z_{1}^{-m_{2}} z_{2}^{m_{1}}$ has a continuous logarithm on Γ. By the argument principle, f has no zeros on $\hat{\Gamma}$ and, in particular, z_{1} is invertible in $P(\hat{\Gamma})$. Therefore $\left|z_{1}\right|_{\hat{\Gamma}} \leq\left|z_{1}\right|_{\Gamma}=1$ and $\left|z_{1}^{-1}\right|_{\hat{\Gamma}} \leq\left|z_{1}^{-1}\right|_{\Gamma}=1$. Consequently, z_{1} is of constant modulus one on $\hat{\Gamma}$ and, as $\hat{\Gamma}\rangle \Gamma$ is analytic, z_{1} is constant on $\hat{\Gamma}$ and so on Γ-a contradiction, Q.E.D.

Because ϕ_{1} is a covering projection, we can make a change of variable on T so that $\phi_{1}(\zeta)$ becomes $\zeta^{m_{1}}$. More precisely, there is a homeomorphism $h: T \rightarrow T$ so that $\phi_{1}(h(\zeta)) \equiv \zeta^{m_{1}}$ for $\zeta \in T$. Now we replace each of the functions ϕ_{i} by $\phi_{i} \circ h$ and refer to this change of variable as "normalizing in the first variable". Define $\Phi: T \rightarrow \mathbf{C}^{n}$ by

$$
\Phi(\zeta)=\left(\phi_{1}(\zeta) \equiv \zeta^{m_{1}}, \phi_{2}(\zeta), \ldots, \phi_{n}(\zeta)\right)
$$

where, here and below, normalization in the first variable is in force.
For any polynomial f in $\mathbf{C}^{n}, \lambda \in T$ and an indeterminant X define

$$
Q_{1}(f, \lambda, X)=\prod_{k=1}^{m_{1}}\left[X-f\left(\Phi\left(\lambda_{k}\right)\right)\right]
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m_{1}}$ are the m_{1} values of $\lambda^{1 / m_{1}}$. The subscript 1 of Q refers to the fact that we have normalized in the first variable. Then $Q_{1}(f, \lambda, X)$ is, for f fixed, a polynomial in X with coefficients in $C(T)$ whose roots, for a given $\lambda \in T$, are the values of f on $\left(z_{1} \mid \Gamma\right)^{-1}(\lambda)$.

Lemma 12. The coefficients of $Q_{1}(f, \lambda, X)$ are the restrictions to T of rational functions having no poles in U.

Proof. We know that $\hat{\Gamma}$ is the intersection of \bar{U}^{n} with an algebraic subvariety B of \mathbf{C}^{n} and that the coordinate projection $z_{1}: B \rightarrow \mathbf{C}$ is m_{1}-to- 1 over T and is a (branched) m_{1}-to- 1 cover over U. Let

$$
\left(z_{1} \mid B\right)^{-1}(\lambda)=\left\{p_{1}, p_{2}, \ldots, p_{m_{1}}\right\} \subseteq \mathbf{C}^{n} \quad \text { for } \lambda \in U
$$

and form

$$
P_{1}(f, \lambda, X)=\prod_{k=1}^{m_{1}}\left[X-f\left(p_{k}\right)\right]
$$

for any polynomial f and $\lambda \in U$. Then P_{1} is a polynomial in the indeterminant X with analytic functions in U as coefficients. Moreover, as $B \cap\left\{z \in \mathbf{C}^{n}:\left|z_{1}\right|>1\right\}$ and the coefficients of P_{1} for $|\lambda|>1$ are obtained by reflection in T^{n} and T respectively (cf. [5]), it follows that (i) $H \equiv \bar{B} \cap \overline{\mathbf{C}}^{n}$, the closure of B in $\overline{\mathbf{C}}^{n}$ (where $\overline{\mathbf{C}}$ is the Riemann sphere), is such that the coordinate projection $z_{1}: H \rightarrow \overline{\mathbf{C}}$ is a branched cover of order m_{1} and (ii) $P_{1}(f, \lambda, X)$ has coefficients which are meromorphic on $\overline{\mathbf{C}}$; i.e., P_{1} has rational coefficients. For $|\lambda|=1, P_{1}(f, \lambda, X)$ and $Q_{1}(f, \lambda, X)$ have the same roots and therefore these monic polynomials have the same coefficients. This shows that $Q_{1}(f, \lambda, X)$ has rational coefficients which are analytic on \bar{U}, Q.E.D.

We shall summarize this state of affairs by saying that "normalizing in the first variable leads to polynomials $Q_{1}(f, \lambda, X)$ with rational coefficients".

Lemma 13. Each $Q_{1}(f, \lambda, X)$ is a power of an irreducible polynomial in $\mathscr{R}[X]$ where \mathscr{R} is the field of rational functions in λ.

Proof. In fact, let $g(\lambda, X)$ and $h(\lambda, X)$ be any two irreducible factors of Q_{1} and let \tilde{g} and \tilde{h} be the polynomials in two variables obtained from g and h, respectively, by rationalizing the denominators of the coefficients in λ.

Let $\Gamma_{1}(f)=\left\{\left(\phi_{1}(\zeta), f(\Phi(\zeta)): \zeta \in T\right\} \subseteq \mathbf{C}^{2}\right.$. Because we have normalized in the first variable, $\phi_{j}(2 \leq j \leq n)$ is real analytic; indeed, we can write, locally, $\phi_{j}(\lambda)=z_{j} \circ\left(z_{1} \mid \Gamma\right)^{-1} \circ \lambda^{m_{1}}$ which is the composition of real analytic homeomorphisms. Hence $\zeta \rightarrow\left(\phi_{1}(\zeta), f(\Phi(\zeta))\right)$ is real analytic on T. Therefore $\tilde{g}\left(\phi_{1}(\zeta), f(\Phi(\zeta))\right)$ and $\tilde{h}\left(\phi_{1}(\zeta), f(\Phi(\zeta))\right)$ are real analytic for $\zeta \in T$ and, as each vanishes on an open subset of T, it follows that each vanishes identically on T. Thus the irreducible polynomials \tilde{g} and \tilde{h} both vanish on the set $\Gamma_{1}(f)$ which is not a discrete set. Consequently, \tilde{g} and \tilde{h} are, up to a unit, identical; i.e., g and h agree up to a unit, Q.E.D.

Of course, we can also normalize with respect to the k th variable. Then, for a polynomial f in \mathbf{C}^{n}, we will obtain $Q_{k}(f, \lambda, X)$ with the same properties as $Q_{1}(f, \lambda, X)$. Thus we have verified the necessity of the conditions in the following theorem.

Theorem 2. Let $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ be nonconstant continuous unimodular functions which separate the points of T with \mathscr{A} the uniform algebra on T which they generate. If \mathscr{A} is a proper subalgebra of $C(T)$, then:
(a) The ϕ_{i} are covering projections of the circle.
(b) The winding numbers $\left\{m_{i}\right\}$ of the $\left\{\phi_{i}\right\}$ are all of the same sign.
(c) For each $k, 1 \leq k \leq n$, and for any polynomial f in \mathbf{C}^{n}, normalization in the $k t h$ variable leads to polynomials $Q_{k}(f, \lambda, X)$ which have coefficients rational in λ, without poles in \bar{U}, and which are powers of an irreducible polynomial in $\mathscr{R}[X]$, where \mathscr{R} is the field of rational functions in λ.

Conversely, suppose that (a), (b), and (c) hold. Then \mathscr{A} is a proper subalgebra of $C(T)$.

Remark. In order that $Q_{k}(f, \lambda, X)$ in $C(T)[X]$ be defined, it is necessary that normalization in the k th variable be possible; i.e., that (a) holds. The import of (c) is then that the coefficient functions of Q_{k} are restrictions to the circle of rational functions.

Proof of sufficiency. Write $Q_{k j}(\lambda, X)$ for $Q_{k}\left(z_{j}, \lambda, X\right)$, where z_{j} is the j th coordinate polynomial. Let $P_{k j}$ be the polynomial in two variables obtained by rationalizing the λ denominators of $Q_{k j}$. We shall view $P_{k j}\left(z_{k}, z_{j}\right)$ as a polynomial in \mathbf{C}^{n}. Let $V_{1}=\left\{z \in \mathbf{C}^{n}: P_{1 j}(z)=0,2 \leq j \leq n\right\}$. Then V_{1} is a onedimensional algebraic subvariety of \mathbf{C}^{n} containing Γ. Also

$$
V_{1} \cap\left\{z \in \mathbf{C}^{n}:\left|z_{1}\right|=1\right\} \subseteq T^{n}
$$

because, for $\left|z_{1}\right|=1, P_{1 j}\left(z_{1}, X\right)$ has m_{1} roots, all of unit modulus.
Fix $\zeta_{0} \in T$ such that the discriminant of the unique irreducible factor of each $Q_{1, j}\left(\zeta_{0}, X\right)$ is different from zero for $2 \leq j \leq n$. This means that the map $z_{1}: V_{1} \rightarrow \mathbf{C}$ is unbranched over a neighborhood of ζ_{0}. Let

$$
V_{1} \cap z_{1}^{-1}\left\{\zeta_{0}\right\}=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\} \subseteq T^{n}
$$

with $p_{1}, p_{2}, \ldots, p_{m_{1}} \in \Gamma$ and $p_{m_{1}+1}, \ldots, p_{N} \notin \Gamma$. Choose a polynomial f which separates the N points p_{j}. Form $Q_{1}(f, \lambda, X)$ and rationalize the λ denominators to get $R_{1}(f, \lambda, X)$. Define a polynomial h in \mathbf{C}^{n} by

$$
h\left(z_{1}, \ldots, z_{n}\right)=R_{1}\left(f, z_{1}, f\left(z_{1}, \ldots, z_{n}\right)\right)
$$

Define $W_{1}=V_{1} \cap\left\{z \in \mathbf{C}^{n}: h(z)=0\right\}$. Then W_{1} is an algebraic subvariety of \mathbf{C}^{n} for which the map $z_{1}: W_{1} \rightarrow \mathbf{C}$ is a proper branched cover over \bar{U}. As W_{1} is m_{1}-to-1 over a neighborhood of ζ_{0}, it follows that W_{1} is m_{1}-to-1 (with possible branching) over \bar{U}. Since $h \equiv 0$ on Γ, we conclude that $W_{1} \cap \Gamma$ contains, and therefore is equal to, Γ. Also, as $z_{1}: \Gamma \rightarrow T$ is m_{1}-to- 1 , it follows that W_{1} is an unbranched covering of some annulus about T; more precisely, there is a neighborhood \mathscr{U} of T^{n} in \mathbf{C}^{n} and $\delta>0$ such that the map $z_{1}: W_{1} \cap \mathscr{U} \rightarrow\{\lambda$: $1-\delta<|\lambda|<1+\delta\}$ is a covering projection of order m_{1}. Then $\left(\mathscr{U} \cap W_{1}\right) \backslash \Gamma$ is a union of two annular regions Ω_{1} and Ω_{2} with $z_{1}\left(\Omega_{1}\right) \subseteq U$ and $z_{1}\left(\Omega_{2}\right) \subseteq U^{*} \equiv \mathbf{C} \backslash \bar{U}$.

We know that z_{j} for $2 \leq j \leq n$ maps Γ into T in a locally one-to-one way. Therefore, if \mathscr{U} is a sufficiently small neighborhood of $T^{n}, z_{j}\left(\Omega_{s}\right)$, for $s=1$ or 2 ,
is contained in either U or U^{*}. Because $z_{j} \mid \Gamma$ and $z_{1} \mid \Gamma$ have, by (b), winding numbers with the same sign, it follows, from the argument principle, that $z_{j}\left(\Omega_{1}\right) \subseteq U$ and also that $z_{j}\left(\Omega_{2}\right) \subseteq U^{*}$ for $2 \leq j \leq n$. From this we conclude that for some neighborhood \mathscr{U} of T^{n} in \mathbf{C}^{n}, that $W_{1} \cap \mathscr{U}$ is a disjoint union of three nonempty subsets: one in U^{n}, one in $U^{* n}$, and Γ in T^{n}.

In a completely analogous way, for $2 \leq k \leq n$, we obtain varieties W_{2}, W_{3}, \ldots, W_{n} in \mathbf{C}^{n}, containing Γ, and such that (i)

$$
W_{k} \cap\left\{z \in \mathbf{C}^{n}:\left|z_{k}\right|=1\right\}=\Gamma
$$

and (ii) near T^{n}, W_{k} splits into three nonempty subsets: one in U^{n}, one in $U^{* n}$, and Γ in T^{n}. Now consider the algebraic variety

$$
B=W_{1} \cap W_{2} \cap \cdots \cap W_{n}
$$

in \mathbf{C}^{n}. Observe that $\Gamma \subseteq B$. Furthermore, (i) implies that $B \cap \partial\left(U^{n}\right)=\Gamma$. By (ii), there is a neighborhood \mathscr{U} of T^{n} such that $B \cap \mathscr{U} \subseteq U^{n} \cup \Gamma \cup\left(U^{*}\right)^{n}$. It follows that $B \cap U^{n}$ is nonempty, because otherwise $1 / z_{1}$ would be analytic on $B \cap \mathscr{U}$ and would attain its maximum modulus at each point of Γ.

Thus $B \cap U^{n} \equiv A$ is a nonempty subvariety of $\mathbf{C}^{n} \backslash \Gamma$ with $\partial A \equiv \bar{A} \backslash A=\Gamma$. Hence $\bar{A}=\hat{\Gamma}$ is the maximal ideal space of \mathscr{A}, which is consequently a proper subalgebra, Q.E.D.

Remark 1. As the proof shows, a necessary condition that \mathscr{A} be proper is that $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ can be made real analytic by a change of variable on the circle.

Remark 2. In many examples, the variety B is actually equal to one of the V_{k} (in the notation of the proof of Theorem 2). It would be interesting to verify whether B is always equal to $V_{1} \cap V_{2} \cdots \cap V_{n}$.

Remark 3. In the case $n=2$, it is easy to see that

$$
B=\left\{z \in \mathbf{C}^{2}: P_{12}(z)=0\right\} .
$$

Thus, for two generators, (c) can be replaced by the weaker statement that the single polynomial Q_{12} has rational coefficients with poles off \bar{U}.

Example. Consider $\phi_{1}(\lambda) \equiv \lambda$ and $\phi_{2}(\lambda) \equiv \bar{\lambda}$. Clearly (a) holds and also the $Q_{k}(f, \lambda, X)$ have rational coefficients, which may, however, have poles in U. Here Γ lies in an algebraic variety; namely, $\left\{\left(z_{1}, z_{2}\right): z_{1} z_{2}=1\right\}$. However, Γ does not bound a relatively compact subset of this variety.

References

[^0]3. F. Birtel (editor), "Problems in several complex variables," edited by E. Bishop and H. Rossi, pp. 349-350, in Function algebras, Scott, Foresman, and Co., Chicago, 1966.
4. E. Bishop, Holomorphic completions, analytic continuations and the interpolation of semi-norms, Ann. Math., vol. 78 (1963), pp. 468-500.
5. B. Shiffman, On the continuation of analytic curves, Math. Ann., vol. 184 (1970), pp. 268-274.
6. -, Extending analytic subvarieties, Symposium on Several Complex Variables, Park City, Utah, 1970, pp. 208-222, Lecture Notes in Math., No. 184, Springer-Verlag, New York, 1971.
7. G. Stolzenberg, Polynomially and rationally convex sets, Acta Math., vol. 109 (1963), pp. 259-289.
8. - Uniform approximation on smooth curves, Acta Math., vol. 155 (1966), pp. 185-198.
9. E. L. Stout, The theory of uniform algebras, Bogden and Quigley, Tarrytown-on-Hudson, N.Y., 1971.
10. J. Wermer, The hull of a curve in \mathbf{C}^{n}, Ann. Math., vol. 68 (1958), pp. 550-561.
11. -, Banach algebras and several complex variables, second edition, Graduate Texts in Math., vol. 35, Springer-Verlag, New York, 1976.

University of Illinois at Chicago Circle Chicago, Illinois

[^0]: 1. H. Alexander, Continuing 1-dimensional analytic sets, Math. Ann., vol. 191 (1971), pp. 143-144.
 2. -_, Polynomial approximation and analytic structure, Duke Math. J., vol. 38 (1971), pp. 123-135.
