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1. Introduction

A finite group G is of characteristic 2 type if F*(M) 02(M) for each 2-local
subgroup M of G. It seems probable that in the near future the problem of
classifying the finite simple groups will be reduced to the classification of
groups of characteristic 2 type. With the exception of certain sporadic groups,
the simple groups of characteristic 2 type are the Chevalley groups over fields
of even order. The structure of these groups is determined by the maximal
parobolics, that is the maximal 2 locals containing a Sylow 2-subgroup. Hence
given a simple group G of characteristic 2 type it appears advisable to study the
set ’ of maximal 2-local subgroups of G and attempt to force g to resemble
the collection of maximal parobolics in some Chevalley group.

Let M s /g and T Syl2 (M). If G is indeed a Chevalley group then
N(T) <_ M. Ideally one would like to show this holds in general, modulo a set
ofknown exceptions. In practice M N(L) for some subgroup L of G with the
property that M is the unique maximal 2olocal containing LT. Hence
N(B) < M for each nontrivial normal subgroup B of LT. In particular neither
J(T) nor Z(T) is normal in LT. In many interesting cases L/O2(L is simple, so
that the Thompson factorization fails. This seems to force L/O2(L to be a
Chevalley group of even characteristic. Perhaps the most troublesome case
occurs when L/O2(L is isomorphic to L2(2e). The main result of this paper
deals with that case.

THEOREM 1. Let G be a finite group of characteristic 2 type, H <_ G,
M N(OZ(H))and T e Sylz (H). Assume H* OZ(H/O(H)) - Z3 or Lz(2"),
02(H) Syl2 (C(H*)), and M is the unique maximal 2-local subgroup of G
containing H. Then either

(1)

(2)

N(T) <_ M,

G has sectional 2-rank at most 4.

The largest Janko group is an example where N(T) is not contained in M. G.
Mason called this to the author’s attention.
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Theorems 2 and 3 in Sections 3 and 4 are also of independent interest. For
example Theorem 2 figures in the proof of [1].
Many of the ideas used here are due to Glauberman and Sims. The author

would like to thank Professor Glauberman in particular for generously sharing
some of these ideas. A recent result of Harada [4] is also quite useful.
Most of the notation used here is reasonable standard. In addition given a

group G, denote by /(G) the set of elementary abelian 2-subgroups of G of
maximal order and J(G)= (/(G). (G)=f(Z(J(G)))in case G is a
2-group. t’ is the set of maximal 2-local subgroups of G and for X _< G, ///(X)
is the set of members of containing X.

2. Preliminary lemmas

(2.1) Let G be a group with F*(G)= O2(G)= Q and G/Q- S3. Let
T Syl2 (G). Then either

(1) there is a nontrivial characteristic subgroup of T normal in G,
or

(2) there is a unique noncentral chieffactor of G contained in Q.

Proof. See [3].

T6 Syl2 (G), S Cr(,(T)) and H=S. Then S Syl2 (H), or
fl(Z(T)) <_ Z(G).

Proo See 2.11.1.4 in [7].

G  ro, p F*(G) O (G)
V-- ,(Z(O:,(6))), T Syl (G), Z-- ,(Z(T)), Y-- O(C(Z)), nd X th
preimage in G of the centralizer in G/Q of a transposition in T/Q. Assume some
element of T induces a transvection on V. Then:

(1) IV, G] is the natural module for 02(2).
(2) TY/O2(YT)- $3 and J(O2(YT))= J(Q).
(3) J(T c X)= J(T) and X/O2(X)- S3.

Proof. This is an easy calculation. See [1] for example.

(2.4) Let G be a group with F*(G)= O2(G)= . Let TSyl2(G),
L O2(G), and V fl(Z(Q)). Assume L/O2(L) - L2(2e) or Za, IV, L] 4 1, and
M(G) Q. Then either

(1) G/Q - Ss and some involution induces a transvection on V,
or

(2) V/Cv(L) is the natural module for L2(2e) and if G is not solvable and
A (G)- (Q)then AQ T c LQ.
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Proof. This follows easily from some elementary facts about the 2-modular
representations of Lz(2). See [1] for example for details.

(2.5) Let G O-(2), V a GF(2) modulefor G, and U a submodule of V with
IV: U] 2 and U the natural module for G. Then V Cv(G) U.

Proof. Assume not. Then there exists v 6 V U with Iv 6. Hence V is
a homomorphic image of the permutation module for G on 6 letters. But then
U IV, G] is the natural module for Lz(4).

3. L3(2e)
In this section we assume G to be a finite group of characteristic 2 type. L,

1, 2, are distinct subgroups of G such that V Oz(L) is the natural module
for L/V- L(q), q 2> 2, with Va V J Sylow in L and Lz. Assume
M Nz() is a maximal 2-local of G, T Sylz (M ) and
O2(<T, L,, L2>)= 1.

THEOREM 2. Under the hypothesis above either

(1) G has sectional 2-rank 4,
or

(2) F*(G)- L3(q).

Throughout this section take G to be a counter example to Theorem 2. Let
M M, L L, V V, Z V Vz, and X a Hall 2’-group of N.(J).

(3.1) (1) zC’(J)= {V, V2}.
(2) L splits over V.
(3) J is of type L3(q).

Proof. Straightforward.

(3.2) V O(tW).

Proof Let Q 02{LT). Then QJ C r(J/Z) and as L acts irreducibly on V,
Q= Co(V). Hence QJ= V2Q= vco(v). By 3.1.1, T Syl2 (M2), so by
symmetry QJ vce(v2). Therefore QJ JCe(J). By a Frattini argument
QJ JCe(XJ). Let be an involution in L inverting X. Then L (J, t acts
on Ce(XJ)= Co(X so that LQ L x Ce(L) with Co(L Ce(XJ). By 3.1.1,
X < N(V2)< M2 so X acts on Ce(L2) and centralizes QJ/J. Therefore
Co(L Co(L2), so as 02((LT, L2)= 1 we conclude Ce(L)= 1.

(3.3) (1) T is the split extension of J by cyclic #roup F Nr(X) inducin#
field automorphisms on L/V.

(2) lff is an involution in F then all involutions in fJ are fused to f in T.
Moreover C(f) is the split extension of Cv(f) by L2(2/2) actin9 naturally on
Cv(f).

(3) J= J(T).
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Proof. Part (1) follows from 3.2 and a Frattini argument on X. An easy
calculation supplies the remaining parts.

Let S Syl2 (G) with T < S.

(3.4) (1) IS: T _< 2 and if s S T then V V2.
(2) If s is an involution in S T then Cj(s) is of type L2(q)or Va(q/2).
(3) (s).

Proof. Let R Ns(T). As T is Sylow in M N(V), 3.3.3 and 3.1.1 imply
R T(s) where W V2. Assume s is an involution, s either inverts or central-
izes a cyclic subgroup of Auto (Z) acting irreducibly on Z, so Cz(s)l-- q or
ql/2. Moreover (, J)/Z is wreathed. Hence either Z Ca(s)is of type L2(q)or
Cz(s) f(Cj(s)) with IC(s)l q3/2, and we refer to this latter group as of
type U3(ql/2).
From this information we conclude J J(R). Hence R S.

(3.5) q>4.

Proof. If q 4 then by Theorem 3 in [4], G has sectional 2-rank 4.

(3.6) ZG V=ZM.

Proof. By 3.4.3 and 3.1.1, N(Z) is transitive on V C(Z), so N(V) is
transitive on Z C(V).

(3.7) ZS_Vw V2.

Proof. Let A=ZgZ6cS. By 3.3 and 3.4, m(S/J)<2, so as q>4,
A J =/: 1. As each involution in J is in V w V2 we may take A c J A V.
Moreover m(A V) > e- 2.

Suppose a s A induces a field automorphism on L/V. Set B (a)(A V).
Cv(a) [V, a] so Nv(B)is of index at most A: A V[ < 4 in V. Let

Nv(B) < R Syl2 (N(B)).

As q > 4 and a induces a field automorphism on L/V, e > 4. Hence by 3.3.2 and
3.4.2 every abelian subgroup of S of rank 2e 2 is contained in J. Therefore
Nv(B) < J(R) < C(B), a contradiction.

Therefore either A < J or A: A V[ 2 and a s A V induces a graph
or graph-field automorphism on J. In the first case A < V and we are done. So
take a s A V. As m(A V)= e- 1 and A V centralizes a, 3.4.2 implies
Z Cs(a). Then A V < Ca(a)= Z. Set D [J, a]. a inverts D so that
z--[O, a] and as Z: Z a 2,

m(Noa(A)/Coa(a)) e- 1.
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Let No,(A) <_ R Sylz (N(A)). Then

e 1 m(No(A)/Co(A)) <_ m(Cn(A)/A) < 1,

a contradiction.

(3.8) Z is a TI-set in G.

Proof. Let z s Z* and Q 02(C(z)). Without loss we take z Z(S). As G is
of characteristic 2 type Cs(Q) <_ Q. Of course Q

_
S. These two facts and the

structure of S force Z < Q.
Suppose z s z zg. As Z < Q, (z, Zg) is a 2-group. But then as Z is a

TI-set in M, 3.6 and 3.7 imply Z Zg. Hence Z is a TI-set in G.

(3.9) If a is an involution in S and a J, then a J.

Proof. Assume a e S J. Then we may take a for a S T. Moreover
we may take b a Z(Cj(a)). Set h g-1.
Assume first that [a, Z] 1. Then by 3.3 and 3.4, C j(a) is of type La(q 1/2) or

Ua(ql/2). Let Cs(a)< R Syl2 (C(a)). The structure of S and C(a) forces
b Z(J(R)). But by 3.8, Z(J(R))= Zh so b Z c Zh, contradicting 3.8.
Hence C(a)= Z. As Z is a TI-set, [Z, ZhI 1. Set Q 02(C(Z)).

B (a)J Syl2 (C(Z))
and as G is of characteristic 2 type, Ca(Q) <_ Q. This forces Q B, J, or
Thus either J C(Z) or fl(J c Q)= Z and a Q. But as Zh <_ C(Z), 3.7
implies a Zhx < J for some x C(Z), a contradiction.

(3.10) J T.

Proof. If not then by 3.3 there is an involution f F. By 3.9, 3.3, and 3.4,

R Cs(f) Syl2 (C(f)).
As G is of characteristic 2 type, Z(R) < Q 02(C(f)). Then by 3.3, Cv(f)=
[Z(R), CL(f)] <_ Q. But Cv(f) O2(L2 C(f)), a contradiction.

(3.11) J=S.

Proof. Assume S J. By 3.10 and 3.4, IS" J[ 2. An easy argument shows
S- J contains an involution. Now 3.9 and Thompson transfer implies
G O2(G). As J _< L _< O2(G), we get a contradiction by induction.

(3.12) J N(Z).

Proof. J/Z is abclian
N(Z).

so as G is of characteristic 2 type

(3.13) F*(G)- L3(q).
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Proof. By 3.8 and 3.12, C(z)is 2-closed for each involution z in G. Now
appeal to the main theorem of [6].

This completes the proof of Theorem 2.

4.

In this section we assume G to be a finite group of characteristic 2 type L,
1, 2, are distinct subgroups of G, M, No(L,), T Syl2 (M,), V O2(L, T),

(V) 1, L, V//V/ L2(q), q 2 > 2, V/(V C(L,))is the natural module for
L2(q), J V V2 Syl2 (L V) and {M,} #(L, T).

THEOREM 3. Under the hypothesis above either

(2)
F*(G) - L3(q)or Spg(q), or
G has sectional 2-rank 4.

Throughout this section take G to be a counter example to Theorem 3. Let
M M1, L LI, V V, Z Cv(L) and Y a Hall 2’-group of L c N(J).
Z2 V2 C(L2).

(4.1) (1) (J)= {V, V2}.
(2) LsplitsoverV.
(3) zl -q and Ya is transitive on Z2.
(4) Z2 _< [L, V].

Proof Z(J)= Cv(V2)= V V2 with IVy: V c V2I q. So vl v l.
Moreover all involutions in J are in V w V2, so (1) holds. There is a comple-
ment in V2 to V, so (2) holds. By (1), Y < N(V2) < M2. Hence Yx acts on Z2.
Also LT and L2 act on Z c Z2 so as /(LT)= {M}, Z Z2 1. Finally
Z2 C(V) V2 V V2. Hence as Yx is transitive on ((V V2)/Z)#, Ya is
transitive on Z, Z2 [Z2, Yt] < [L, V] and Z21 q or 1. Now Theorem 2
completes part (3).

(4.2) (1) V IV, L].
(2) [V, Vz] V V2 ZZz.

Proof Let U [V, V2]. By 4.1.3 either Z < U or Z m U 1. Assume the
latter. Then uI q I[v2/z2, v] so that U Z2 1. Let h e L- M2.
Then [V,L]=Ux Uh so that [V,L] V2=U. But by 4.1.4, Z2 <I/2m
[V, L], a contradiction.
So Z < U. By symmetry Z2 < U. As zz2l= q2= iv v2l, (2)holds.

Also Z < [V, L] so as V/Z [L, V/Z], (1) holds.
By 4.1, Y2 < M so we may choose Y2 to normalize Yx. By symmetry, Ya

normalizes Y2. Y2 is regular on Z* while Y < L < C(Z), so Yx Y 1. Hence
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for this choice of Y we have"

(4.3) Y=YIY2-Yl X Y2-Zq_l X Zq_l.

(4.4) g YI x Cr(L/V) and YL/V acts naturally as GL2(q) on V/Z.

Proof. Y acts on L/V and centralizes Y1, so YL/V GL2(q). As L/V acts
irreducibly on V/Z, the ring D of endomorphisms of V/Z commuting with L/V
is a division ring and then Cr(L/V) is a subfield isomorphic to GF(q). Hence
YL/V acts naturally on V/Z.

Set F Nr(Y) and let S be a Sylow 2-subgroup of G containing T.

(4.5) (1) T is the split extension of J by F and F induces a group offield
automorphisms on L/V.

(2) Iff is an involution in F then all involutions infJfuse tofin T. Moreover
CLr(f) is the split extension of Cv(f) by GL2(q/2) actin# naturally on
Cv(f)/Cz(f ). Cz(f)l q/2.

Proofi Part (1) follows by a Frattini argument on Y. Then an easy calcula-
tion supplies (2).

(4.6) (1) J J(S).
(2) Is" TI _<Z
(3) If s is an involution in S- T then Cj(s) is of type Sz(q).

Proof. From 4.5 we conclude J J(T). Let R Ns(T). Then IR: T < 2
with V V2 for s e R T. Assume s is an involution. Z Z2 so (s)(V c V2)
and R/(V c V2) are wreathed. Hence and v c v2 C(s)=
z(Cj(s)) f(Cj(s))is of order q. We say such a 2-group is of type Sz(q).

It follows that J(R)4: J and hence $ R.

(4.7) Let z Z#, z2 Z, and u zz2. Then"

(1) All involutions in J are fused to z, z2, or u in G.
(2) uCzwz.
Proofi All involutions in V are fused to z, Z 2 or u in LY. As all involutions in

J are in V u V2, (1) follows with the symmetry between V and I/2.
By 4.6.1, {V, V2} is weakly closed in S, so S w M controls fusion in V,

yielding (2).

(4.8) Z is a TI-set.

Proofi {M} t’(LT), so C(z) <_ M for each z Z Z(T). As Y is trans-
itive on Z* and Z M we conclude Z is a Tl-set.

(4.9) ZG cS_J.
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Proof. Let Za_<S. Then 14:Zc T=ZcN(Z), so as (Z,Za) is a
2-group and Z is a T/-set, Za <_ Cs(Z)= J.

(4.10) JC(u).

Proof We may assume u Z(S). Let Q 02(C(u)). As J J(S)it suffices
to show J < Q. As G is of characteristic 2 type Cs(Q) < Q. Of course Q. s.
These two facts force V V2 < Q. Set w ((z w Z2) c Ct2(Z Z)). By
4.9, W=V, V2 or Vc V2. If W=V then C(u)=CM(u)<N(J), so take
I4/" V V2. By 4.7, Z W {Z} or {Z, Z2}, so C(u)= Cvt(u)S < N(J).

(4.11) If a is an involution in S and a J then a J.

Proof. Assume a e S- J. Then we may take a f or a S T. Thus by
4.5 and 4.6, C(a) is of type Sp,(q/2) or Sz(q). Now we may take

b a Z(Ca(a)) and Ca(a) < R Syl2 (C(a)).
Next the structure of S and Ca(a) force b Z(J(R)). But b is fused to z, z2 or u,
so J e Syl2 ((jctb)) and hence is strongly closed in S with respect to C(b). As
a S- J while a J(R), this is a contradiction.

Proof If not then by 4.5 there is an involutionfin F. By 4.5, 4.6, and 4.11,

R Cs(f) Syl2 (C(f)).
As G is of characteristic 2 type, Z(R) < Q 02(C(f)). Then by 4.5,

Cv(f) [Z(R), CL(f)] < Q.

As Cv(f)

_
O2(L2 c C(f)), this is a contradiction.

(4.13) J=S.

Proof Assume not. By 4.12 and 4.6, IS: J 2. Let s e S- J. V V2 so
(S/(V V2))is wreathed and we may take s2 e V c V2. Next (s)(V V2)is
wreathed so we may take s to be an involution. Now 4.11 and Thompson
transfer imply G q: O2(G). As J < L < O2(G) we get a contradiction by
induction.

At this point the 2-local structure of G is determined, so that any of a number
of methods show F*(G) to be isomorphic to Sp,(q). For completeness we
sketch a geometric proof of this fact.

As V is weakly closed in S T J we get"

(4.14) Z c V/= ZM’ for i= 1 and 2.
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In particular:

(4.15) Z is weakly closed in V so Z2 ZG"

Let X=Cr(L/O2(L)), W= Y1, K=CL(X) and A= TK. By 4.4,
Cv(X) 1, so by a Frattini argument:

(4.16) K L2(q).

Next X acts on Z2 A < V2 and hence on Z Z2 A {A 1}. Thus Z2 and A
are the only X-invariant subgroups of Z2 A of order q, so that:

(4.17) A Z.
(4.18) ZM={Z} wAt.

Proof By 4.14, Zc T=Zc V2={Z}wAv.
Set Z A {Z} w AV. Then

(4.19) (Z A)= V2 is abelian.

(4.20) For h 6 M either ah e Z , a or (a, ah) K.
Proof IAUI IL: V2 W q(q + 1) so there are qa(q + 1)pairs (A’, A)

with r, seM and AZ,A’. Also Ltl M’LZ =q2, so there are
qa(q + 1)pairs (A’, A) with (a’, a) Kt.

Set I 02’(C(AW)).

(4.21) I K and W X.
Proof Let A Z. W < N(A) < M. Also W centralizes Z, so [W,/2] _< Va.

Hence W X and 1 K.
(4.22) I 02’(C(W)).

Proof. Z Syl2 (C(W(z)) for each z Z*, so the result follows from [6].

(4.23) [I, K] 1.

Proof. Let B Ar- {A}. By 4.22, 02’(C(BW))= 02’(C(W))= I, so
K <A, B> <_ C(I).

Set Z(Z) Z c M {Z} and let be the graph with vertex set Z and
Z joined to the vertices in Z(Z).

(4.24) is connected.

Proof Let F be the connected component of containing Z. With 4.7 and
4.10, Co(t) < N(I") for each t T*, so if F 4= Z then N(F) is strongly em-
bedded in G. As G has more than one class of involutions, this is impossible.
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(4.25) (1) has diameter 2.
(2) If [Z,Zg] 4= l then (Z,Zg)KG and [Z(K*)Z,A =lforeach
x(z).

Proof. If (Z, Z) KG then by 4.23, E(Zg) Z A for each
A E(Z). Suppose ZABZ is a chain in from Z to Z. By 4.20, (A, Zg) Ka,
so Z A E(Z) {C} and hence Z is of distance 2 from Z in . This yields
(1). Now 4.20 completes the proof.

(4.26) F*(G)- Sp,(q).

Proof. For B Za set B+/-= {B} w E(B). Let M be the block design with
point set Za, block set {B+/-: B Za}, and incidence defined by inclusion. From
4.18 and 4.25 an easy calculation shows : is a symmetric block design with
k=q(q+l)+l and l=q+l. For CZa-Bx define B.C=Za
(B, C). Then B C is defined for each pair ofdistinct points B and C, and one
checks that B C is the line

0
D B-L Cx

through B and C in . Hence [2] implies is 3-dimensional projective space
over GF(q). Moreover for z Z#, z is the set of elations of commuting with
the symplectic polarity B,--, B of M. Therefore F*(G)= (Z) Sp,(q).

This completes the proof of Theorem 3.

5. Theorem 4

In this section we assume the hypothesis of Theorem 1. Set

V In, (Z(O(n)))]
and assume some element of T induces a transvection on V. Assume
H/O2(H - S5.

THEOREM 4. Under the hypothesis of this section either

or"

(1) N(T) <_ M,

(2) G is of sectional 2-rank 4.

Throughout this section G is a counterexample to Theorem 4. Set

Z flx(Z(T)), Y 02(Cit(Z)),
and let X be the preimage of the centralizer in H/O2(H) of a transposition in
T/O2(H). L O2(H). From 2.3 we conclude:

(5.1) (1) V is the natural module for O(2).
(2) TY/O2(YT) $3 and J(O2(YT))= J(O2(H)).
(3) J(T X)= J(T) and X/O2(X) $3.
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(5.2) (1) If 1 BH then N(B) <_ M.
(2) If 1 B is characteristic in T then B is not normal in H.

Proofi N(T) . M while {M)= ’(H).
The next lemma is the key to Theorem 4 and is essentially due to G.

Glauberman.

(5.3) V--- [o2(n), q.
Proof Set R T c X. By 5.1, IT: R 2 and J(R) J(T). By 2.2 there is

a normal subgroup A ofX with R A Cs(,(R)). Hence R A is character-
istic in T, since Cr((T))= Cs((R)). Moreover if B is a characteristic sub-
group of R A normal in A then B is characteristic in T and
B (T, X)= H. Hence by 5.2, B 1. We conclude from 2.1 that A has a
unique noncentral chief factor in O2(A). As A < X the same holds for X. Thus
if x is an element of order 3 in X then [x, O 2(n)] [x, O2(X)] [x, V]. Hence
V [02(H), L].

(5.4) N(T) N(Y) < M.

Proof N(T) N(Y) < N(YT) < N(J(O2(YT))= N(J(O2(H)) < M by 5.1
and 5.2.

Set Q O2(H), O Co(L), F C,(L), E Cv(Z), and g e N(T)- M.

(5.5) v o.

Proof Let P H with [P, L] 1, and subject to these conditions choose P
maximal. Set H HIP and assume Q 4= 1. Let U/V be a subgroup of order 2 in
Z(/) rn Q/V. By 5.3, U H. As H acts irreducibly on V, (/.7)= 1. Now by
2.5, 0 I7 x Cv(FI), contradicting the maximality of P.
So Q VCe(L) and as Cv(L)= 1, the product is direct.

(5.6) O 1.

Proofi If D 1 then by Theorem 3 in [4], G has sectional 2-rank 4.

02(CG(Z)) (T c L)O2(E).

As D 4: 1, Z D q: 1, so Ca(Z) <_ Ca(Z D) <_ M. M TLF withProof
T <_ C(Z), so

C(Z) C(Z) TLF TCr(Z).
Y(T L)F is a maximal subgroup of LF with C LV/F(Z) < Y(T L)F/F and
Y(T c L)<_ C(Z), so

CLv(Z) Y(T c L)CF(Z)= Y(T c L)E.
Hence Ca(Z)= TYE. Now 02(TYE/E) (T L)E/E and T L < 02(TYE
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SO

(T

(5.7) J(O2(C(Z)))= VJ(O2(E))<a H.

Proofi Let A /(02(C(Z))). If A VE then m(A/A r E)< 4. Hence

m(A) > m(V(A c E))= 4 + m(A c E)> m(A),
a contradiction. Thus A < VE V x E, so AV is elementary abelian. Hence
V < A and then A V x (A c E) with A c E M(O2(E)).

Set J= J(O2(C(Z))). By 5.7, <H, g> < N(J)contradicting {M}--’(H).
This completes the proof of Theorem 4.

6. Graphs

In this section G is a transitive permutation group on a set f, fl, H G
and A A() is an orbit of H on f. c5 a(A) is a directed graph on f with
edges (0’, fl’), ff G,/ A. Set A(’)= Aa.
Most of the results in this section are due to Sims and come from [5].
The connected component of ff containing is the collection of vertices fl for

which there exists a path o, , fl between and/ such that for each
either (, + t) or (+ , )is an edge.

(6.1) Let be the connected component of containinff . Then Y. consists of
those vertices for which there exists a directed path 0 0o, 0, flfrom to

fl with (i, i + ) and edffe for each i.

Proofi See 3.1 in [5].

(6.2) If G (n, 9)for ’ A then aj is connected.

Proof Let E be the connected component of ff containing . Then E is the
equivalence class of a G-invariant equivalence relation, so if ’ Y then
x N(E). As G (H, O) is transitive on fl the lemma follows.

In the remainder of this section assume ff is connected, A, and D G

(6.3) If A < D with A c D
_

Da(t) then A 1.

Proof Let A(]). Then there exists O G with (0,/)s (/, ,). A < Dg so
by hypothesis A <_ D). As aj is connected and G is faithful on we conclude
A=I.
Assume now that F F(,/) is a nontrivial orbit of D on A(/). Let fl be the

set of sequences ot 0., with o fl, 0t A(0o), and for > 1,

0 r(cxi_ 2’ Xi- )"
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fl is the set of s-arcs. A subarc of aogl as fis a t-arc aioi+ ai+t.
A successor or predeccessor of is an s-arc

ala2 asas+l or a_lt2O as-l

respectively. Define the graph with vertex set f and edges (, ) where is a
successor of . Then o and G acts on f.

(6.4) Let and be s-arcs with a common 1-subarc. Then and are in the
same connected component of.

Proof. See 5.9 in [5].

(6.5) Assume is connected. Then is connected for all s >_ O.

Proof. Assume is not connected. Then s > 1. Let E be a connected
component of and 0 the collection of 1-arcs which are subarcs of some s-arc
in 2. Claim 0 f. For if not then as is connected there exists fl 6 0, and
fl f 0 with F. Let o . Then fl fly is a suc-
cessor of and hence in E, a contradiction.
So 0 fl. But now the lemma follows from 6.4.

(6.6) Assume afl f2 and H (D, G). Then (# is connectedfor all s >_ O.

Proofi By 6.5 it suffices to show is connected. Let E be the connected
component off containing aft. Then H (D, G) < N(E). IfE =/= then as
f# is connected we may assume 6 e X;. But as H < N(E) and agi is conju-
gate to fl under H, this is impossible.

(6.7) Let ao a 0t f and K the stabilizer in G of . Assume G is
transitive on t and fai is connected for all > O. Let A < K with A K

_
F(ct_ , ,). Then A 1.

Proof. As G is transitive on f this follows from 6.3 applied to the action of
G on f_ with respect to the orbit of the stabilizer ofo ct_ on its
successors.

7. Theorem 1

In this section we take G to be a counter example to Theorem 1. Most of the
ideas in this section are due to Glauberman and Sims.

(7.1) (1) If 1 B H then N(B) < M.
(2) If I B is characteristic in T then B is not normal in H.

Proofl {m} /(n)while N(T) M.
Set V f, (Z(O2(H))). Let L n if e and L 02(H)O 2(H)otherwise.

Let x N(T)- M and X (x, H>.
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(7.2) Oz(X)= 1.

Proof. {M} #(H).
Represent X on the collection fl of cosets of H in X. By 7.2 this representa-

tion is faithful. Let H, Hx, and A flu. Adopt the notation of Section
6.
T < D G,t < Hx, so as N N(/5 T) H is the unique maximal sub-

group of H" containing T, D < N. T < D, so N is transitive on its subgroups
isomorphic to D. Hence"

(7.3) D is the stabilizer in X of fl and some point ’ s A(fl).
Next IY c T has a complement C in D and C normalizes a second Sylow

E-subgroup (/5 T) of/5 for some y N(C). Set F F(, fl)= ((,}v)o and
define f# with respect to r’. Let q 2. Notice:

H (D, o by 6.6:

(7.5) i is connected for each i.

(7.6) If 9 X with then X (H,

Proof Set Y (H, 9) and Y r. A ()n
_

so as Y is transitive on
E is the union of connected components of aj. Therefore by 7.5, f E. That is
Y is transitive on f. Thus X YH Y.
Define

s max {i: X is transitive on f}
Let
_

o t s f+ with o and fl . By definition of s there
exists 9 X with f

_
x, 0 < _< s. Define + - for each integer j. As

r(_, _,), +, r(+,_, +,_,),
so j%+ k is a k j are for each k _> j. Define Hj to be the stabilizer in X
of g,, D H-x c H,, K D c H+ ,, Vj "I(Z(OE(Hj))) and Lj
For j > 0 define G Ho c H. Set K Ko. Define

v max {i: m(Gi)= re(T)}
if this maximum exists and set v otherwise.

(7.7) (1) /(H) L but /(H) 7 O2(H).
(2) /(K)= (O2(H)).
(3) Let A /(D)- s/(K). Then (A K)V /(K)_ (H)ana D AK.
(4) V/Cv(L) is the natural module for L2(q).

Proof By 7.1 neither fx(Z(T)) nor J(T)is normal in H, so as
f(Z(T)) < V, [L, V] 4:1 and (H) O2(H). Therefore by 2.4 and Theorem
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3, V/Cv(L) is the natural module for L2(q) and if A 6 a’(H) ac(O2(H)) then
AO2(H) T c L This yields (1)and (4).
Next as K fixes a_ t, a, and fl, K/Oz(H) is a complement of (T c L)/O2(H) in

D/O2(H). Hence (2)is a consequence of (1)and (3). Finally

(A c K)V (A 02(H))V
as L/O2(L)acts naturally on V/Cv(L). So (K)___ (H)and as AO2(H)=
T L;D=AK.

(7.8) Let l < < v. Then

(1)
(2)
(3)

(G,)- M(G,+ t)is nonempty.
Let A (G,)- ’(G,+ 1). Then G, AG,+ t.
G is transitive on fi + t.

Proof Let be a minimal counter example. As i< v, /(Gi)_ (D). If
/(G,)

_
a’(G,+ ) then by 7.7.1, /(G,)

_
G,+ L,

_
02(H,), and hence fixes

F(_ t, ) pointwise. But by minimality of i, G is transitive on f, so 6.7 yields a
contradiction. So let A .s/(G)-.s/(G,/l). Then A ./(D)-../(K), so
Di AKi by 7.7.3. Thus

Gi Di Gi AKi Gi A(K Gi)= AGi+ 1.

G is transitive on fi and as D AK, A is transitive on F(i_ 1, ). So G is
transitive on t+ t.

(7.9) v<s.

Proof 7.8.3.

(7.10)

(7.11)

for >_ O.

Let 1 < < v and Y Yg Gi+l. Then:

(1) .(K m G,)__ .’(G,).
(2) .(K c G,) 9/;: .qC(G,+ 1).
(3) Y=I.

Proof As < v, ./(Gi+ 1)-./(Gi). Thus part (1)is a consequence of 7.10.
Suppose .q/(K G)= . _

.c(Gi+ 1). Then by 7.10, ..0/= ..o/(Gi+ 1)and hence. .&g. But .&
_
K so .q/= .q’(K c Gi+ 1) and then .q/o ..q/= ./(Gi+2),

contradicting 7.8.1. Finally Y Yo is normal in G+I and K G by 7.10. By
(2) and 7.8, Gi =9K= GI)Gi+ 1, so Y Gi. Now by induction, Y

1
<-- G1. Then

Y Y (G1, (H, 9) G, so as G is faithful on f, Y

(7.12) Let < < v. Then V < 2(K ai) and for A .:/(G,)-
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/(K Gi),

(A c K)V I(K c G,) and A(K c G,)= G,.

Proof By 7.11, (K c G,)
_

/(G,). By 7.7, V < (K), so V < 7(K G,).
By 7.8 and 7.10 there exists A 6 /(Gi)- /(K c Gi). By 7.7,

D= AK and V(A K) /(K).
V(A c K) < K c Gi so V(A c K) e I(K c G,). Also G,= G, c D G, c
AK A(G, K).

(7.13) V,_ K and G_ V_(K c G_) with V_ < a I(G_).

Proof Set P=Go_I, Q=KcP, R=Go, and U=Vo_I. By 7.11there
exists A ’(Q)- /(R). Set B (A c R)U. By 7.7, B 6 /(R). By definition
of v, m(Go+ 1) < re(B), so by 7.12, P BQ U(A c R Q UQ. So U g Q and
hence U ; K.

(7.14) (1) ,s:C(Go)= {A} and (Go-1)= {A, A} with V < A.
(2) If v 2 then O2(H)= V, (T)= {V, V} and J(T) SyI2 (L).

Proof Let T c Go-1 < S 6 Syl2 (Go-1) and U Vo-1. By 7.13 and 7.7,
S L UCs(V). Let s S L. Then s ut, u U, t Cs(V). By symmetry
S I_,_ 1= VCs(U), so centralizes (S c Lo-1)/Cs(U). Hence 6 Lo-1. Of
courseuU_<Lo_l, SOS cL=S c_1.

Let P UV, Q S L. Then Q UCQ(V)= VCta(U), so

Ce(V) Ce(V) VCe(U)= VCe(P).
Hence Q PCo.(P). Now (Co,(V))= (Co.(P))= (Co.(U)).
Suppose v 2. Then Ce(V)= O2(H) and Co.(U O2(H). Hence

(Ce(P))_ (H, x) G, and therefore (Co.(P))= 1. Thus O2(H)= Co.(V)=
VCo.(P is elementary abelian, so o2(n)= V. Also Q Syl2 (L) and Q UV
with (Q)= {U, v}. Then by 7.7, Q J(T). The proof of (2)is complete.

Let Y J(Go-1). By 7.13, U < A ’(Y) and by symmetry between H and
Ho-1, V < Y. By 7.7, Y < Q. Hence Y PC,(P). Y, so
uJ(cr(P)). Thus (J(Go))= (J(Cr(P))). G K Go-, so a similar argu-
ment shows (J(G))= (J(Cr(P))). Now by 7.11.3, J(Cr(P))is elementary
abelian. Thus J(Go)= A, J(K Go-1)= B. Also if C ’(Y) then
C < UC,(P) < Go or VC,(P) < K Go-1, so (Y)= {A, B}. The proof is
complete.

(7.15) Assume v > 2. Then A -- Go-2.

Proof A 02(Lo- 1) (Go- 1) is normalized by Go- 1. Hence as
(Go- 1) {A, Ag}, Go- normalizes Ag. As v > 2, Go-2 Go- 1G_ by 7.8.2.
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Hence A Gv-2. Also

(G_ ) (G_) o(_)
is Go-2 invariant so as M(Go_ t)= (A, A}, A

_
Go-2.

Set Z t2(Z(T)) and W CF(H). As H (T, T) (Vo_ , Ta) by 7.13,
we conclude"

(7.16) Z < V and Z C(Vo_a)= W.

(7.17) 02(H)= V, sg(T)= {V, V} and J(T) Syl2 (L).

Proof. By 7.14 we may take v > 2. Hence [Z, Vo_ a] < V_ < C(Vo). So

Wo [z, v_,] z <_ c(vo) z w,-’

by 7.16. T CT(V)Y where Y T c To. Let U <_ Vv_a with UCr(V)/C r(V)
Z(T/CT(V)). Then

z. w tsc,(v), c,(v) <_ I[z", u] I.
Also [Y, Z] 1 and [U, Y] < C r(V) < C(Z), so by the 3-subgroup lemma,
[Z, U, Y] 1. Thus [Z, U] < Wo, so Wol >- z" w l. But (n, nx) centra-
lizes W I4, so as {M} ’(H), W m W 1. Hence Z: W[ > wl ->
Wo > ]z: w I. We conclude W-1 W Wo is of order Z: W[.
Assume v > 4. Then Wo < Vo-a < C(Vo+ a). But Z- C(Vo+ a)= W-1,

whereas Wg- Wo < Z- I, a contradiction.
Hence v 3. Then by 7.14, (G2)= {A, A}. But (G2)= (O2(Ha))and

A Ga by 7.15. Therefore, A 02(Ha)Ga Ha. Thus A is also normal in H a.
But now A (H, H) (H, H) a contradiction.

(7.18) q= 2.

Proof If q > 2 apply Theorem 3 to L,/2, using 7.17. We conclude F*(G) -L3(q) or Sp4(q). Now we may choose x to induce an involutory outer automor-
phism on F*(G). But then F*(Ca(x)) 02(C(x)), a contradiction.

(7.19) q> 2.

Proof. Assume q 2. Then Z(H) is a hyperplane of Z(T) such that
g(C(v))

___
/(H)= {M} for each v Z(H)#. Therefore Z(H) Z(H) 1, so

IZ(T)I <_ 4. As Z(T)is a hyperplane of V, ]vI _< 8. of course Co(V)=
Cu(V) V. Hence by Theorem 2 in [4], G has sectional 2-rank at most 4.

Notice 7.18 and 7.19 complete the proof of Theorem 1.
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