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ON FORMAL SPACES AND THEIR LOOP SPACE

BY

RENI RUCHTI

1. Introduction

In this paper we describe a method of fibering a simply connected CW-
complex X over a certain product B of Eilenberg-MacLane-spaces K(Q, n). B
is determined, essentially, by the rational Hurewicz morphism. The construc-
tion of this fibration uses the theory of minimal differential graded algebras, as
outlined in Section 2. Our main result is Theorem 4.1 in Section 4" For a
particular class of formal CW-complexes--including skeletons in pro-ducts of
Eilenberg-MacLane-spaces--we prove that the fiber F of our fibration has the
rational homotopy type of a wedge of spheres. Since the projection of our
fibration is surjective in rational homotopy it follows that the Poincar6 series of
the loop space fX for X in this class is rational, thus proving Serre’s conjecture
for this class of spaces.

In Sections 5 and 6 we construct -free minimal resolutions of certain
algebras of type /o, where is a free graded-commutative algebra. We
iterate our method of fibering, i.e., we fibre F over a product B of Eilenberg-
MacLane-spaces etc. It turns out that the minimal model of the P.L.-De Rham
complex of X, X in our particular class, is the direct limit of the minimal
models of the P.L.-De Rham complex of spaces constructed by successively
twisting together the spaces B, B, (Theorem 6.2). We also outline how
actually to compute the twistings in the corresponding twisted tensor products.

2. Algebraic preliminaries

Let be a differential graded-commutative algebra (DGA) over a field k. In
other words"

(1) ,>_ 0 " is a graded vectorspace over k together with a derivation
d: /"--."+ 1, d d 0.

(2) Ifa6", a’ 6"’, thena’a’=(-a)""’a"a6/"+"’.

All DGA’s will be connected and simply connected, i.e., o k and 1 0.
The cohomology groups of /are denoted by H"(/).

Let f: be a morphism of DGA’s. There are defined relative cohomo-
logy groups H"(/, ) by taking the cohomology of the relative cochain com-
plex {C"(/, ), d}, where C"(/, ) /" "+ with differential d given by
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d(a, b)= (da +f(b), -db). There is a long exact sequence

(2.1) ---- H"() H"() H"(, ) S"* ()----* "",

j and 6 being defined by j(a)= (a, 0) and 6(a, b)= b.
A DGA ’ is called minimal if it is free as an algebra, i.e., the only relations in

// are those imposed by associativity and graded-commutativity, and if the
differential of every element in // is decomposable, i.e., d/_ ’+" //’+,
where #+= .>_ ’". If V .>_ V" denotes the graded vectorspace
spanned by the generators of ’ and if P P[vl V2p] is the symmetric
algebra generated by all even-degree elements and E E(p>_l V2- 1) the
exterior algebra of all odd-degree elements, then ’ can be written as

(2.2) #/g S*(V)= P (R) E.

Let /be minimal and denote by /(n 1)
_
’ the subalgebra generated

by all elements of degree < n- 1. According to (2.1) there is a long exact
sequence (with respect to the inclusion i: ’(n- 1)---,’)
(2.3) , H" # n 1)) H"(,///l H" l, ,///l n 1))

H"(’, ’(n- 1))is isomorphic to the vectorspace //l"(n)/l"(n- 1)spanned
by all generators of ’ of dimension n [2].
With this identification in mind, let M __. //be the subalgebra generated by

,>_ o j,(H"(I)). It follows that each element in is closed and that the genera-
tors of ’ can be chosen in such a way that is generated precisely by all
closed generators. Let

_
// be the subalgebra generated by k and all

nonclosed generators, o is isomorphic to k (R) /and the differential d in //
induces a differential do in such that ff is a minimal DGA. It follows that ’can be written as twisted tensor product (over k) with base ’ and fibre :
(2.4)
where the twisting is given by d do + t. We shall call (2.4) the natural
decomposition of ’. A geometric interpretation of (2.4) will be given in the next
section.

Remark 2.1. Let f: //Jg’ be a morphism. In general, there is no mor-
phism , homotopic to f, which induces a morphism of the corresponding
natural decompositions, so that, in general, 9() ’.

Let be a DGA. Up to isomorphism, there exists a unique minimal DGA

’ ’(’) and a morphism f: ’ , unique up to homotopy, such that
f*: H*(/)--,H*() is an isomorphism. //() is called the minimal model of

[2].
Let ’() ’ (R) be the natural decomposition of the minimal model of.f induces a morphism

(2.5) f*l: H*() ---’H*().
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In general, this morphism is not surjective. If is formal, i.e., if there exists a
morphism of DGA’s H*() inducing an isomorphism in cohomology, it
follows that (2.5) is surjective and() //(/o), where o ker f* 1 and

Remark 2.2. The definition of formality raises the following question: Sup-
pose is formal and let - be the fibre in the natural decomposition of’().
Is formal too ? I conjecture that the answer is affirmative. A special case will
be discussed in Sections 4, 5, and 6.

3. Natural fibrations

Let f: X--, B be a morphism of CW-complexes and let

P(B, X)= {(co, x)]co a path in B such that co(l)=f(x), x e X).
The inclusion x X-- (COx, x) P(B, X) is a homotopy equivalence, co being
the constant path at f(x). The map n: (co, x) P(B, X)-co(0)6 B is the
projection in the fibration

(3.1) F P(B, X)

B

where the fibre F is the total space of the induced fibration

(3.2) F P(B)

X-L ,
P(B)--, B being the path fibration of B with fibre f(B).

Suppose X is simply connected and H*(X, Q) is finite dimensional in each
degree. The P.L.-De Rham complex ’(X)of X (with respect to a triangula-
tion) is defined as follows [2], [7], [8]: Let a be an n-simplex with barycentric
coordinates (to t). A rational p-form to, on a is given by

co,= ai...idti /x /x drip, dto +’" + dt=O,

the a, ’s being polynomials in to, t with Q-coefficients. A rational
p-form 09 on X is a collection 09 {09,}, a ranging over all simplexes of the
triangulation of X, such that the following compatibility condition holds: Let
be a face of cr and i: z cr the inclusion; then i*co equals co as differential
forms. Let (X) be the Q-vectorspace of all such p-forms and put (X)=
)_>0(X). Exterior multiplication and differentiation turns (X)into a
DGA, and there is an algebra isomorphism H*(/(X)) H*(X, Q) [2], [7],
[8].

Let y/ be the minimal model of (X). In the long exact sequence (2.3),
H"(/, y#(n 1)) is isomorphic to the dual of the homotopy group g.(X) and
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j. is the dual of the Hurewicz morphism. Let t’ (R) be the natural
decomposition of /() and let B I-I K(Q, n) be a product of Eilenberg-
MacLane spaces such that H*(B, Q) . B is simply connected. Letf: X B
be a morphism inducingf* 1 (see (2.5)). The corresponding fibration (3.1) we
shall call the natural fibration of X.
Morphism f induces the inclusion ’()= ’--, (R) and therefore a

morphism between the corresponding long exact sequences (see (2.3)). In parti-
cular,fmaps H"(, (n 1))injectively into H"(’, ’(n 1)). It follows that
the projection n in (3.1) is surjeetive in rational homotopy whence n.(X, Q)
.(F, Q) .(B, Q), and therefore

nnfflX, Q) n.(taF, Q) + nn(flB, Q).
Let p(flX) .>_ o (dim H.(X, Q))" t" be the (rational) Poincar6 series of

fiX. By a theorem in [5], the Hurewicz morphism induces an isomorphism of
Hopf algebras U(n,(nX, Q)) n,(nx, Q), where U(n,()X, Q))denotes the
universal enveloping algebra of the Lie algebra n,(flX, Q). This leads to:

PROPOSITION 3.1. Let F--* P(B, X)-+ B be the natural fibration of X. Then
p(flX, Q)= p(nB, Q)" p(flF, Q). In particular, if p(flF, Q)is a rational func-
tion, so is p(fX, Q).

Remark 3.2. Let 9: X X’ be a morphism and let B and B’ be the base
spaces of the natural fibrations of X and X’, respectively, with corresponding
maps f: X--, B and f’:X’ B’. In general, there exists no morphism B B’
making the diagram

B B’

homotopy commutative.

4. Formal spaces

We consider now a particular class of formal spaces (i.e., CW-complexes X
such that (X) is formal). Let X Xtt) be such that H*(X, Q) /J, where
o ot) is the ideal generated by all elements ofdegree larger than M, and the
isomorphism is induced by the mapf in (3.2).

THEOREM 4.1. The fibre F of the natural fibration of XtM) has the rational
homotopy type of a wedge of spheres.

Since, by [1], the Poincar6 series of the loop space of a wedge of spheres is
rational, we get the following corollary from Proposition 3.1.

COROLLARY 4.2. p(fX), Q) is rational.
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Example 4.3. Let B BU(n) be the classifying space of the unitary group
U(n). B is rationally equivalent to I-I7,--1 K(Q, 2k). Let X BU2") be the
2n-skeleton and let F be the fibre of the natural fibration. F has the rational
homotopy type of a wedge of spheres in dimensions between 2n + 1 and
n2 + 2n and H*(F, Q) H*(9.1,), 9.I, being the Lie algebra of formal vector
fields in n variables, [3], [4]. More generally, Theorem 4.1 applies to M-
skeletons XtM) in spaces B which are rationally equivalent to a product of
Eilenberg-MacLane spaces I-I K(Q, ni), ni > 2.

Proof of Theorem 4.1. Let

F----- E---- B
be a fibration, B as usual connected and simply connected. Denote by zC(F),
sO(E) and zC(B) the corresponding P.L.-De Rham complexes. We define a
DGA (E) and a morphism h: (E)---, (E) as follows [9]. Let r be a simplex
in B and co zCr(a) (R) zCS( l(a)), z’r’S(E) is the Q-vectorspace formed by all
collections co {co,}, a ranging over all simplexes of B, such that the following
is satisfied: If i: zcr is a face and j: n-l(z)---,rc-(cr) is the inclusion then
cos (i* (R)j*)co. Let ’(E) +=p z"’(E) and .’(E)= (,>0 z’’(E)
Under exterior multiplication and derivation, (E) is a DGA. To define h, let
co 6 ."’(E). Let z be a simplex in E, a n(z)and n, nlz. Let i,: z-,n-t(a)
be the inclusion. If

then (hco), n* ^ i*/ M’+’(z). The compatibility condition holds,
hence hco 6 M’+’(E). h is a morphism inducing an isomorphism in cohomo-
logy. There is a canonical injection /(B)(E) defining a (left) (B)-
module structure on ’(E).
Now let

E, .-C E

be a fibre square. We define a morphism g: za’(B’) (R) z’(E)---, z’(E’) as follows:
Let a’ be a simplex in B’, a =f(cr’), f,: a’a and f;: ’-(a’)-l(a) the
corresponding restrictions off and f’. Let ’ 6 (n’), "(E). If

then

Morphism g induces a morphism M(B’)@()(E)(E’), the right M(B)-
module structure on (B’) being induced by fl and we have

TorcCn,(zC’(B’), ’(E)) H*(E’).
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(This is shown in [9] for the real case but the proof also works for the rational
case.

Consider now (3.2). Let be generated by bz, e L, and let -1 , the
(-1)-suspension, be generated by u z, e L, with deg ut= deg bt-1, i.e.,
u= ’.-1 b. - ’ corresponds to the cohomology of fB. In

(R) - define a derivation d by du b, dbt 0. Then H*(M’) Q.
Since is the minimal model of(B) and the latter injects into ’(E) it follows
that there is a morphism (R)- ’(E) commuting with the -action and inducing an isomorphism in cohomology. By general properties of
Tor [6] it follows that

Tor (’(B’), z) H*(F);
moreover, since the projection --*Q commutes with the -action, we get

Tor (z’(B’), Q) H*(F).
By assumption, there is a morphism ’/J (B’) inducing an isomorphism in
cohomology. This morphism commutes with the action of , hence

(4.1) Tor (/o, ) H*(F).
Let P(/J) be the bar-resolution of the (right) -module ’/J. P(/de) has the
structure of a DGA [9] and the isomorphism (4.1) is induced by the morphism
b defined by

Both complexes P(/)(R) as /and/ (R)- compute Tor (/o, Q),
the first one using resolutions of’/ and Q, the second one using a resolution
of Q only. e (R) 1 establishes an isomorphism in cohomology, hence # induces an
isomorphism in cohomology. The theorem is therefore proved if there exist
cocycles in z/, forming a base of H*(/), such that on the cochain level the
product of two of them each is zero.
The construction of this base will be done using a spectral sequence. First we

are going to relabel the generators bz of by integers l’ 6 E such that, for a
certain integer N, deg by, b, > M iff l’ + + l’p > N. Note that if has
at most one generator in each dimension we could choose l’ to be the degree of
the corresponding generator and N M. We will construct the new index set E
using the following lemma.

LEMMA 4.4. Let V En>_ 2 Vn be a finite dimensional graded vector space, let
S*(V) be defined as in (2.2) and let (M)

_
S*(V) be the ideal generated by all

elements of degree larler than M. Then there exists a graded vector space
V’ En,>_ 2 v’n’, a linear isomorphism / V--, V’ (not respecting the degrees) and
an integer N such that:

(1) dim V’"’ <_ 1,for all n’.
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(2) The induced maps

s*(v)--, s*(v’),
are algebra isomorphisms (not respecting degrees), mapping even- and odd-degree
elements onto even- and odd-degree elements, respectively.

Proof Let at,..., am span V and define

po=2[M/no]’(m- 1)+ 1, qo=Po’no, Mo=Po(M+ 1)- 1.

Let Vo q 2 V be the graded vector space defined as follows" V/ 2i is
spanned by bqo + 2, 0 m 1, V V if q Po n, n :fi no, and V 0
in the other cases. The elements in V have now the degree q. The map
’o: V---, Vo is defined to be the identity on , n :fi no, only changing the
degrees, and

ko: ai Vnt--b/o+2i V0+2i, i-0, m- 1.

It is not hard to verify that Vo, $o and Mo satisfy requirement (2) above.
Applying this process stepwise to each W leads to V’, and N.
We may therefore assume that the generators b, l L, of ’ already are

labeled in such a way that

(4.1) b, b," iff la+’"+l>N,
where N is the integer constructed in Lemma 4.4 and is even iff deg b is even,
for all e L. We denote by J

_
L the subset of all odd integers.

Let at,,, b btp (R) Us1 Um such that Ix < < l,, mx < < m
and let It + + l,. The ideals a’, (at;,,,, > r)

_
a’ define a filtration of

a’ and for the corresponding spectral sequence {E,, d,} we have:

LEMMA 4.5. The sets of elements
A, {ae;,,,[ m, < r, l+ m, > N, l, >_ m,, m, J},
A2, {ae;,,,lm < r, l+ m, > N, l, > m,, m, J},

D, {ae;,,,lml > r, 11 > r}
form a base of E,.

Proof. Decompose Dr as follows:

D {ae;,,,I ml r, + m, _< N, 11 > r, r J},
02, {ae;,,,lm r, l+ ml < N, 11 > r,r J},
0,3 {at;,,,
D,4 {at,;,,,
D,s

D,6 {at,;,,,
D,7 {at;,,,

]ml=r,l+ml>N, ll>_r, rCJ},
]m r, + m > N, II > r, r ff J},
[ml > r, 11 r, r J},

m -> r, 11 r, r d},
Im, > r, 11 > r}.
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From the particular labeling of the bt’s it follows that d,(ae.,,,)is either zero or
consists of exactly one nonzero element, d, maps D, and ’D,2 isomorphically
onto D,5 and D,6, respectively. The elements in A,, A2 3 4 7

r, Dr, Dr, and Dr are closed
=a 3 2 2 4.under d, and it follows that Ar+ Dr, Ar+l Ar Dr, and

Dr+ D,7.

COROLLARY 4.6. The set A A w A2 where

A {ar;,,,l + m > N, 1 _> m, m J},
A2 {ae;,,,ll + m > N, l > m, m J)

forms a base for H*(d) and ae;,,, at;,,,, 0 ind for all ar;,,,, ar;,,,, A.

This proves Theorem 4.1.

Remark 4.7. We actually did compute a h-free minimal resolution of
/tM (see Section 5).

Remark 4.8. If has odd-dimensional generators, then H*() is infinite
dimensional, although finite dimensional in each degree.

Remark 4.9. It is clear how Theorem 4.1 generalizes to other formal spaces,
where there is a labeling of the generators of such that (4.1) holds for a
certain N. For instance, this is possible for (+)M, i.e., consists of all
products of exactly M elements. On the other hand, not every ideal can be
obtained via (4.1) even if the corresponding F has the rational homotopy type
of a wedge of spheres.

5. Resolutions

Let {b, L} be a set of indeterminants having degrees. > 2 and let 6e be the
free, skew algebra generated by this set, i.e., the underlying graded vector space
of if’ is isomorphic to the underlying graded vector space of the polynomial
algebra generated by the b[s and the multiplication is given by bt’bt,
(- 1)nn’bt, b, where :/: l’, n deg b, n’= deg bt,. Note that (bt)2 0 for all
e .L.
Let {ak, k e K} Mono (oY’) be a set of not necessarily independent mono-

mials of 6e and let
_

6e be the ideal generated by Mono (’). An 6e-free
resolution of 6e/cr is obtained as follows"

Let o k and let n be the k-vector space spanned by the n-tuples
/’ (k, k.), k, k K, where (kntl), k,t.))= (-1)(k, k.), n
being a permutation. Let I/’1 6 6e be the smallest common multiple of the
monomials Ok, Ok.. In (R) define a differential d by
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where ’ (k 1, ...,/, k,), (d is zero on 5e) and define a multiplication by

I 1 (R)

where (, ’)= (kl k,, k’ k’.,). With respect to this product, d is a
derivation.

PROPOSITION 5.1. S (R) is a resolution of
Proof Consider the complex

do
0 ---- (R) // ....

ho h

Let Mon (3’) be the set of all monomials in o". Define a map
a:.Mon (cg’)---, K such that

(5.2) OklO, k a(o).
The contracting homotopy is defined by

h.(o(R) xe)= " Il/l(k, )l (R) (k, .4’),
where xe e #", s Mon (St) and k a(o "1 xel).
Now let be a free, graded-commutative algebra generated by b,, e L, and

suppose L has an ordering which is consistent with the degrees of the bt’s. Let
J {j e Lldeg b is odd}. Suppose J (e, e I)

__
is an ideal, generated by

monomials and let a’: Mon (J)--,I be a map satisfying (5.2). In order to
construct a -free resolution of’/J, let 6e 6e(N’) be the free, skew algebra as
constructed above and let ((b)2, j e J). Clearly, /] as graded-
commutative algebras. Let of

_
6e be the ideal with generators

Mono (oug)= {ei, it I} w {(bj)2, (bj)a j J}.
The corresponding index set is K I w K’, K’ J x N’, where N’ is the set of
integers larger than 1.
We decompose e Mon () into ’. a", where ’=

(11 <"" </r) is the linear part of and o"=(bl)"t-1 (bs)
Jl <"" < is, Jv e J, r/v >_ 2 and (bv)"v . Define a(o) as follows: If e Mon (),
then a(o)= a’(o). If Mon (o), i.e., if s _> 1, let v be maximal such that
r/v max {r/1 r/s} and define a(o)= k (Jr, r/v), i.e., Ok (bv)"v. a satisfies
(5.2).

Let ro k and let "
_

/’" be spanned by the elements

(il, i,, j]’, js),

where n r + r/1 +"" + r/s- 1, r/v _> 2, and fl, j ff J, denotes the sequence
(j, q), (j, 2) in K. N’ (R) is closed under multiplication and the projection
"--," induces a differential d and a contracting homotopy in (R) f’,
whence:

PROPOSITION 5.2. (R) / is a resolution of/.
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Note that, by construction of the induced differential in (R),
I 1/1  1 (R) 0 in (5.1), if .
We define the degree of xe //’" by deg deg [Al n, where deg I1 is the

degree in . With respect to this degree, d becomes a coboundary operator. On
the other hand, (/) @ produces a -free resolution of/.
Hence, there is a chain morphism : @ @ such that H*()
Tor (/, k) H*() as graded vector spaces. Now I: is not an
algebra morphism, however the induced map *: H*()H*() is actually
a ring isomorphism.

Consider now the case of a truncated algebra/ more in detail. We
assume that the generators bt, L of are labeled as in the proof ofTheorem
4.1. In order to express the base in Corollary 4.6 in terms of the complex , we
define a mapping l: Mon ()by lae;,,l la, l" la,,l, where lael
b,, b,,, a,,, b., b, - b,a urea (see Section 4). Let o’ be the
linear part of a,,, and let b. b,, be the largest divisor of o’ such that
b., "lael # 0 in , p 1,..., r. It follows that

a,,, b., b,,. (bj,)"’-1 (b,)"’-, j e J, n, 2 2,

and (b)"’l a,;,,,l, v l, s. Now let ae;,,,e A and define e,, e i, e

Mono (J()) by

%=b.," ou, i,=a(b,," ou_a), ox= la, l,=2, r.

PROPOSITION 5.3. The elements xe (ix,..., i,., j]l, ...,fls,) ./-n, n r +
+"" + ’ls- s, such that

(1) I(i,’ i,)1 b., b.,. 01, n, < ...< n,, el, b., %,

u tr(b., .ou_l), It 1, r,

(2) bjv 1(il i,)l, fly > 2, v 1, s, and
(3) either nl < lo, if nl J or n < lo, if n J, where bto is the minimal

deoree element dividin9 o,form a base of H*($r).

COROLLARY 5.4. Let ll"
_

"l/-" be spanned by the elements in Proposition 5.3.
dp( (R) ql)_ (R) is a subcomplex and in fact is a minimal resolution of
/drtM). dp (R) ql is injective.

6. Twistings

Let o ,Jo octM), d#(o/Jo) Mo (R),o o. The generators ofo are
denoted by bo,, e Lo. Let

_
oo be the subalgebra generated by b,,

L1, where b , 4(x),/’ running through the elements defined in Proposi-
tion 5.3. It follows that oo t (R), t is the natural decomposition ofo.



106 RENI RUCHTI

According to (5.1) the twisting to of the elements in M is given by

(6.1) to(bl.t) to(b(d))= Z (-1)" I 1/1 ,1 (R) (,).
Since o is the minimal model of the cohomology of a wedge of spheres it
follows that H*(ffo) /1, where is the ideal generated by all pairwise
products of the generators of , and therefore ’(0x/ ) ff o ’ (R) ff .
Although is in general generated by infinitely many elements, a direct

limit process gives the following description of H*(-I):

PROPOSITION 6.1. Let be the complex /" obtained by replacin# with
and with in Proposition 5.2. Let L, the index set ofthe #enerators of , be
#iven an orderin# which is consistent with the de#rees of the b x,;s. The elements

(i i,, j] jms /’], u I x, j J, n r + q + ""+ rls- s,

such that
(1) I(i, i,)1 b,,., b,,., "b,,,o, n, < "-<

ea,, b,,, b,0 e J, / 1, r,

(2) bi,jl (ix, i,) l, rl > 2, v 1, s, and
(3) either n < lo if n q J or n < lo if nx J

form a base ofn*().

We have therefore the following result.

THeOReM 6.2. Let o be a minimal DGA with trivial differential and let
J;o jM) be an ideal truncated at degree M. Let /’(o/Jo) o (R)o and
,-x , (R), ,, n 1,..., be the natural decompositions.

(1) H*(o._,) ./J,, n > 1, where J. (.+)2. The twistin9 t,_, in

-2 of the 9enerators of. is 9iven by formulas correspondin9 to (6.1).
(2) /’, o (R)’"(R) , is a sub-DGA ofl and //= inj lim /, as DGA.

Remark 6.3. Let /’ be any minimal DGA with natural decomposition
/= o (R) -o. Let fro a (R) ffa be the natural decomposition of fro. In
general, o (R) is not invariant under the differential of //’. There is,
however, a certain subalgebra ’

_
, such that o (R) ’ is a sub-DGA of

’. One has then a similar situation as in (2) above.

Remark 6.4. If the conjecture in Remark 2.2 is true, it would follow that (2)
of Theorem 6.2 holds for any minimal DGA with trivial differential and any
ideal J

_ .
Remark 6.5. The computation of the twisting to of, say, the generators of
2 is more complicated than in (6.1). For instance, the elements of2 hitting
the generators , of the ideal o

___
are of two different types depending on

whether or not the e ,’s, which are products, are zero in "Uo. If , is nonzero in
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o, the element in ’2 hitting cl,i is in fact the b-imagc of a certain ’ oand
its twisting to can be obtained by (6.1). In the other case the construction of the
element hitting e ,i is more complicated; it can be done inductively. We omit
details.
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