ON FORMAL SPACES AND THEIR LOOP SPACE

BY
René Ruchti ${ }^{1}$
\section*{1. Introduction}

In this paper we describe a method of fibering a simply connected CWcomplex X over a certain product B of Eilenberg-MacLane-spaces $K\left(\mathbf{Q}, n_{i}\right) . B$ is determined, essentially, by the rational Hurewicz morphism. The construction of this fibration uses the theory of minimal differential graded algebras, as outlined in Section 2. Our main result is Theorem 4.1 in Section 4: For a particular class of formal CW-complexes-including skeletons in products of Eilenberg-MacLane-spaces-we prove that the fiber F of our fibration has the rational homotopy type of a wedge of spheres. Since the projection of our fibration is surjective in rational homotopy it follows that the Poincare series of the loop space ΩX for X in this class is rational, thus proving Serre's conjecture for this class of spaces.

In Sections 5 and 6 we construct \mathscr{B}-free minimal resolutions of certain algebras of type $\mathscr{B} / \mathscr{I}$, where \mathscr{B} is a free graded-commutative algebra. We iterate our method of fibering, i.e., we fibre F over a product B_{1} of Eilenberg-MacLane-spaces etc. It turns out that the minimal model of the P.L.-De Rham complex of X, X in our particular class, is the direct limit of the minimal models of the P.L.-De Rham complex of spaces constructed by successively twisting together the spaces B, B_{1}, \ldots (Theorem 6.2). We also outline how actually to compute the twistings in the corresponding twisted tensor products.

2. Algebraic preliminaries

Let \mathscr{A} be a differential graded-commutative algebra (DGA) over a field \mathbf{k}. In other words:
(1) $\mathscr{A}=\sum_{n \geq 0} \mathscr{A}^{n}$ is a graded vectorspace over \mathbf{k} together with a derivation $d: \mathscr{A}^{n} \rightarrow \mathscr{A}^{n+1}, d \cdot d=0$.
(2) If $a \in \mathscr{A}^{n}, a^{\prime} \in \mathscr{A}^{n^{\prime}}$, then $a \cdot a^{\prime}=(-1)^{n n^{\prime}} a^{\prime} \cdot a \in \mathscr{A}^{n+n^{\prime}}$.

All DGA's will be connected and simply connected, i.e., $\mathscr{A}^{0}=\mathbf{k}$ and $\mathscr{A}^{1}=0$. The cohomology groups of \mathscr{A} are denoted by $H^{n}(\mathscr{A})$.

Let $f: \mathscr{B} \rightarrow \mathscr{A}$ be a morphism of DGA's. There are defined relative cohomology groups $H^{n}(\mathscr{A}, \mathscr{B})$ by taking the cohomology of the relative cochain complex $\left\{C^{n}(\mathscr{A}, \mathscr{B}), d\right\}$, where $C^{n}(\mathscr{A}, \mathscr{B})=\mathscr{A}^{n} \oplus \mathscr{B}^{n+1}$ with differential d given by

[^0]$d(a, b)=(d a+f(b),-d b)$. There is a long exact sequence
\[

$$
\begin{equation*}
\cdots \longrightarrow H^{n}(\mathscr{B}) \xrightarrow{f *} H^{n}(\mathscr{A}) \xrightarrow{j} H^{n}(\mathscr{A}, \mathscr{B}) \xrightarrow{\delta} H^{n+1}(\mathscr{B}) \longrightarrow \cdots, \tag{2.1}
\end{equation*}
$$

\]

j and δ being defined by $j(a)=(a, 0)$ and $\delta(a, b)=b$.
A DGA \mathscr{M} is called minimal if it is free as an algebra, i.e., the only relations in \mathscr{M} are those imposed by associativity and graded-commutativity, and if the differential of every element in \mathscr{M} is decomposable, i.e., $d \mathscr{M} \subseteq \mathscr{M}^{+} \cdot \mathscr{M}^{+}$, where $\mathscr{M}^{+}=\sum_{n \geq 1} \mathscr{M}^{n}$. If $V=\sum_{n \geq 1} V^{n}$ denotes the graded vectorspace spanned by the generators of \mathscr{M} and if $P=P\left[\sum_{p \geq 1} V^{2 p}\right]$ is the symmetric algebra generated by all even-degree elements and $E=E\left(\sum_{p \geq 1} V^{2 p-1}\right)$ the exterior algebra of all odd-degree elements, then \mathscr{M} can be written as

$$
\begin{equation*}
\mathscr{M}=S^{*}(V)=P \otimes E . \tag{2.2}
\end{equation*}
$$

Let \mathscr{M} be minimal and denote by $\mathscr{M}(n-1) \subseteq \mathscr{M}$ the subalgebra generated by all elements of degree $\leq n-1$. According to (2.1) there is a long exact sequence (with respect to the inclusion $i: \mathscr{M}(n-1) \rightarrow \mathscr{M})$

$$
\begin{equation*}
\cdots \longrightarrow H^{n}(\mathscr{M}(n-1)) \xrightarrow{i *} H^{n}(\mathscr{M}) \xrightarrow{j_{n}} H^{n}(\mathscr{M}, \mathscr{M}(n-1)) \xrightarrow{\delta} \tag{2.3}
\end{equation*}
$$

$$
H^{n+1}(\mathscr{M}(n-1)) \longrightarrow \cdots
$$

$H^{n}(\mathscr{M}, \mathscr{M}(n-1))$ is isomorphic to the vectorspace $\mathscr{M}^{n}(n) / \mathscr{M}^{n}(n-1)$ spanned by all generators of \mathscr{M} of dimension n [2].

With this identification in mind, let $\mathscr{B} \subseteq \mathscr{M}$ be the subalgebra generated by $\sum_{n \geq 0} j_{n}\left(H^{n}(\mathscr{M})\right)$. It follows that each element in \mathscr{B} is closed and that the generators of \mathscr{M} can be chosen in such a way that \mathscr{B} is generated precisely by all closed generators. Let $\mathscr{F} \subseteq \mathscr{M}$ be the subalgebra generated by \mathbf{k} and all nonclosed generators. \mathscr{F} is isomorphic to $\mathbf{k} \otimes_{\mathscr{O}} \mathscr{M}$ and the differential d in \mathscr{M} induces a differential d_{0} in \mathscr{F} such that \mathscr{F} is a minimal DGA. It follows that \mathscr{M} can be written as twisted tensor product (over \mathbf{k}) with base \mathscr{B} and fibre \mathscr{F} :

$$
\begin{equation*}
\mathscr{M}=\mathscr{B} \otimes_{t} \mathscr{F}, \tag{2.4}
\end{equation*}
$$

where the twisting t is given by $d=d_{0}+t$. We shall call (2.4) the natural decomposition of \mathscr{M}. A geometric interpretation of (2.4) will be given in the next section.

Remark 2.1. Let $f: \mathscr{M} \rightarrow \mathscr{M}^{\prime}$ be a morphism. In general, there is no morphism g, homotopic to f, which induces a morphism of the corresponding natural decompositions, so that, in general, $g(\mathscr{B}) \nsubseteq \mathscr{B}^{\prime}$.

Let \mathscr{A} be a DGA. Up to isomorphism, there exists a unique minimal DGA $\mathscr{M}=\mathscr{M}(\mathscr{A})$ and a morphism $f: \mathscr{M} \rightarrow \mathscr{A}$, unique up to homotopy, such that $f^{*}: H^{*}(\mathscr{M}) \rightarrow H^{*}(\mathscr{A})$ is an isomorphism. $\mathscr{M}(\mathscr{A})$ is called the minimal model of \mathscr{A} [2].

Let $\mathscr{M}(\mathscr{A})=\mathscr{B} \otimes \mathscr{F}$ be the natural decomposition of the minimal model of A. f induces a morphism

$$
\begin{equation*}
f^{*} \mid \mathscr{B}: H^{*}(\mathscr{B})=\mathscr{B} \rightarrow H^{*}(\mathscr{A}) . \tag{2.5}
\end{equation*}
$$

In general, this morphism is not surjective. If \mathscr{A} is formal, i.e., if there exists a morphism of DGA's $H^{*}(\mathscr{A}) \rightarrow \mathscr{A}$ inducing an isomorphism in cohomology, it follows that (2.5) is surjective and $\mathscr{M}(\mathscr{A}) \cong \mathscr{M}(\mathscr{B} / \mathscr{I})$, where $\mathscr{I}=\operatorname{ker} f^{*} \mid \mathscr{B}$ and $\mathscr{B} / \mathscr{I} \cong H^{*}(\mathscr{A})$.

Remark 2.2. The definition of formality raises the following question: Suppose \mathscr{A} is formal and let \mathscr{F} be the fibre in the natural decomposition of $\mathscr{M}(\mathscr{A})$. Is \mathscr{F} formal too? I conjecture that the answer is affirmative. A special case will be discussed in Sections 4, 5, and 6.

3. Natural fibrations

Let $f: X \rightarrow B$ be a morphism of CW-complexes and let

$$
P(B, X)=\{(\omega, x) \mid \omega \text { a path in } B \text { such that } \omega(1)=f(x), x \in X\} .
$$

The inclusion $x \in X \mapsto\left(\omega_{x}, x\right) \in P(B, X)$ is a homotopy equivalence, ω_{x} being the constant path at $f(x)$. The map $\pi:(\omega, x) \in P(B, X) \mapsto \omega(0) \in B$ is the projection in the fibration

$$
\begin{equation*}
F \longrightarrow \underset{\substack{\mid \boldsymbol{\pi} \\ B}}{P(B, X)} \tag{3.1}
\end{equation*}
$$

where the fibre F is the total space of the induced fibration

$P(B) \rightarrow B$ being the path fibration of B with fibre $\Omega(B)$.
Suppose X is simply connected and $H^{*}(X, \mathbf{Q})$ is finite dimensional in each degree. The P.L.-De Rham complex $\mathscr{A}(X)$ of X (with respect to a triangulation) is defined as follows [2], [7], [8]: Let σ be an n-simplex with barycentric coordinates $\left(t_{0}, \ldots, t_{n}\right)$. A rational p-form ω_{σ} on σ is given by

$$
\omega_{\sigma}=\sum a_{i_{1} \cdots i_{p}} d t_{i_{1}} \wedge \cdots \wedge d t_{i_{p}}, \quad d t_{0}+\cdots+d t_{n}=0
$$

the $a_{i_{1} \ldots i_{p}}$'s being polynomials in t_{0}, \ldots, t_{n} with \mathbf{Q}-coefficients. A rational p-form ω on X is a collection $\omega=\left\{\omega_{\sigma}\right\}, \sigma$ ranging over all simplexes of the triangulation of X, such that the following compatibility condition holds: Let τ be a face of σ and $i: \tau \rightarrow \sigma$ the inclusion; then $i^{*} \omega_{\sigma}$ equals ω_{τ} as differential forms. Let $\mathscr{A}^{p}(X)$ be the \mathbf{Q}-vectorspace of all such p-forms and put $\mathscr{A}(X)=$ $\oplus_{p \geq 0} \mathscr{A}^{p}(X)$. Exterior multiplication and differentiation turns $\mathscr{A}(X)$ into a DGA, and there is an algebra isomorphism $H^{*}(\mathscr{A}(X)) \longrightarrow H^{*}(X, \mathbf{Q})$ [2], [7], [8].

Let \mathscr{M} be the minimal model of $\mathscr{A}(X)$. In the long exact sequence (2.3), $H^{n}(\mathscr{M}, \mathscr{M}(n-1))$ is isomorphic to the dual of the homotopy group $\pi_{n}(X)$ and
j_{n} is the dual of the Hurewicz morphism. Let $\mathscr{M}=\mathscr{B} \otimes \mathscr{F}$ be the natural decomposition of $\mathscr{M}(\mathscr{A})$ and let $B=\Pi K\left(\mathbf{Q}, n_{i}\right)$ be a product of EilenbergMacLane spaces such that $H^{*}(B, \mathbf{Q}) \cong \mathscr{B}$. B is simply connected. Let $f: X \rightarrow B$ be a morphism inducing $f^{*} \mid \mathscr{B}$ (see (2.5)). The corresponding fibration (3.1) we shall call the natural fibration of X.
Morphism f induces the inclusion $\mathscr{M}(\mathscr{B})=\mathscr{B} \rightarrow \mathscr{B} \otimes \mathscr{F}$ and therefore a morphism between the corresponding long exact sequences (see (2.3)). In particular, f maps $H^{n}(\mathscr{B}, \mathscr{B}(n-1))$ injectively into $H^{n}(\mathscr{M}, \mathscr{M}(n-1))$. It follows that the projection π in (3.1) is surjective in rational homotopy whence $\pi_{n}(X, \mathbf{Q})=$ $\pi_{n}(F, \mathbf{Q}) \oplus \pi_{n}(\mathbf{B}, \mathbf{Q})$, and therefore

$$
\pi_{n}(\Omega X, \mathbf{Q})=\pi_{n}(\Omega F, \mathbf{Q}) \oplus \pi_{n}(\Omega B, \mathbf{Q}) .
$$

Let $p(\Omega X)=\sum_{n \geq 0}\left(\operatorname{dim} H_{n}(\Omega X, \mathbf{Q})\right) \cdot t^{n}$ be the (rational) Poincaré series of ΩX. By a theorem in [5], the Hurewicz morphism induces an isomorphism of Hopf algebras $U\left(\pi_{*}(\Omega X, \mathbf{Q})\right) \cong H_{*}(\Omega X, \mathbf{Q})$, where $U\left(\pi_{*}(\Omega X, \mathbf{Q})\right)$ denotes the universal enveloping algebra of the Lie algebra $\pi_{*}(\Omega X, \mathbf{Q})$. This leads to:

Proposition 3.1. Let $F \rightarrow P(B, X) \rightarrow B$ be the natural fibration of X. Then $p(\Omega X, \mathbf{Q})=p(\Omega B, \mathbf{Q}) \cdot p(\Omega F, \mathbf{Q})$. In particular, if $p(\Omega F, \mathbf{Q})$ is a rational function, so is $p(\Omega X, \mathbf{Q})$.

Remark 3.2. Let $g: X \rightarrow X^{\prime}$ be a morphism and let B and B^{\prime} be the base spaces of the natural fibrations of X and X^{\prime}, respectively, with corresponding maps $f: X \rightarrow B$ and $f^{\prime}: X^{\prime} \rightarrow B^{\prime}$. In general, there exists no morphism $B \rightarrow B^{\prime}$ making the diagram

homotopy commutative.

4. Formal spaces

We consider now a particular class of formal spaces (i.e., CW-complexes X such that $\mathscr{A}(X)$ is formal). Let $X=X^{(M)}$ be such that $H^{*}(X, \mathbf{Q}) \cong \mathscr{B} / \mathscr{I}$, where $\mathscr{I}=\mathscr{I}^{(M)}$ is the ideal generated by all elements of degree larger than M, and the isomorphism is induced by the map f in (3.2).

Theorem 4.1. The fibre F of the natural fibration of $X^{(M)}$ has the rational homotopy type of a wedge of spheres.

Since, by [1], the Poincare series of the loop space of a wedge of spheres is rational, we get the following corollary from Proposition 3.1.

Corollary 4.2. $\quad p\left(\Omega X^{(M)}, \mathbf{Q}\right)$ is rational.

Example 4.3. Let $B=B U(n)$ be the classifying space of the unitary group $U(n) . B$ is rationally equivalent to $\prod_{k=1}^{n} K(\mathbf{Q}, 2 k)$. Let $X=B U^{(2 n)}$ be the $2 n$-skeleton and let F be the fibre of the natural fibration. F has the rational homotopy type of a wedge of spheres in dimensions between $2 n+1$ and $n^{2}+2 n$ and $H^{*}(F, \mathbf{Q}) \cong H^{*}\left(\mathfrak{H}_{n}\right), \mathfrak{U}_{n}$ being the Lie algebra of formal vector fields in n variables, [3], [4]. More generally, Theorem 4.1 applies to M skeletons $X^{(M)}$ in spaces B which are rationally equivalent to a product of Eilenberg-MacLane spaces $\prod K\left(\mathbf{Q}, n_{i}\right), n_{i} \geq 2$.

Proof of Theorem 4.1. Let

$$
F \longrightarrow E \xrightarrow{\pi} B
$$

be a fibration, B as usual connected and simply connected. Denote by $\mathscr{A}(F)$, $\mathscr{A}(E)$ and $\mathscr{A}(B)$ the corresponding P.L.-De Rham complexes. We define a DGA $\overline{\mathscr{A}}(E)$ and a morphism $h: \overline{\mathscr{A}}(E) \rightarrow \mathscr{A}(E)$ as follows [9]. Let σ be a simplex in B and $\omega_{\sigma} \in \mathscr{A}^{r}(\sigma) \otimes \mathscr{A}^{s}\left(\pi^{-1}(\sigma)\right)$. $\overline{\mathcal{A}}^{r}, s(E)$ is the \mathbf{Q}-vectorspace formed by all collections $\omega=\left\{\omega_{\sigma}\right\}, \sigma$ ranging over all simplexes of B, such that the following is satisfied: If $i: \tau \rightarrow \sigma$ is a face and $j: \pi^{-1}(\tau) \rightarrow \pi^{-1}(\sigma)$ is the inclusion then $\omega_{\tau}=\left(i^{*} \otimes j^{*}\right) \omega_{\sigma}$. Let $\quad \overline{\mathscr{A}}^{p}(E)=\oplus_{r+s=p} \overline{\mathscr{A}}^{r, s}(E)$ and $\overline{\mathscr{A}}(E)=\oplus_{p>0} \overline{\mathscr{A}}^{p}(E)$. Under exterior multiplication and derivation, $\overline{\mathscr{A}}(E)$ is a DGA. To define h, let $\omega \in \overline{\mathscr{A}}^{r, s}(E)$. Let τ be a simplex in $E, \sigma=\pi(\tau)$ and $\pi_{\tau}=\pi \mid \tau$. Let $i_{\tau}: \tau \rightarrow \pi^{-1}(\sigma)$ be the inclusion. If

$$
\omega_{\sigma}=\sum \alpha_{k} \otimes \beta_{k} \in \mathscr{A}^{r}(\sigma) \otimes \mathscr{A}^{s}\left(\pi^{-1}(\sigma)\right)
$$

then $(h \omega)_{\tau}=\sum \pi_{\tau}^{*} \alpha_{k} \wedge i_{\tau}^{*} \beta_{k} \in \mathscr{A}^{r+s}(\tau)$. The compatibility condition holds, hence $h \omega \in \mathscr{A}^{r+s}(E)$. h is a morphism inducing an isomorphism in cohomology. There is a canonical injection $\mathscr{A}(B) \rightarrow \overline{\mathscr{A}}(E)$ defining a (left) $\mathscr{A}(B)$ module structure on $\overline{\mathscr{A}}(E)$.

Now let

be a fibre square. We define a morphism $g: \mathscr{A}\left(B^{\prime}\right) \otimes \overline{\mathscr{A}}(E) \rightarrow \overline{\mathscr{A}}\left(E^{\prime}\right)$ as follows: Let σ^{\prime} be a simplex in $B^{\prime}, \sigma=f\left(\sigma^{\prime}\right), f_{\sigma}: \sigma^{\prime} \rightarrow \sigma$ and $f_{\sigma}^{\prime}: \pi^{\prime-1}\left(\sigma^{\prime}\right) \rightarrow \pi^{-1}(\sigma)$ the corresponding restrictions of f and f^{\prime}. Let $\omega^{\prime} \in \mathscr{A}^{q}\left(B^{\prime}\right), \omega \in \overline{\mathscr{A}}^{r, s}(E)$. If

$$
\omega_{\sigma}=\sum \alpha_{k} \otimes \beta_{k} \in \mathscr{A}^{r}(\sigma) \otimes \mathscr{A}^{s}\left(\pi^{-1}(\sigma)\right)
$$

then

$$
\left(g\left(\omega^{\prime} \otimes \omega\right)\right)_{\sigma^{\prime}}=\sum \omega_{\sigma^{\prime}}^{\prime} \wedge f_{\sigma}^{*} \alpha_{k} \otimes f_{\sigma}^{\prime *} \beta_{k} \in \mathscr{A}^{q+r}\left(\sigma^{\prime}\right) \otimes \mathscr{A}^{s}\left(\pi^{\prime-1}\left(\sigma^{\prime}\right)\right) .
$$

Morphism g induces a morphism $\mathscr{A}\left(B^{\prime}\right) \otimes_{\mathscr{A}(B)} \overline{\mathscr{A}}(E) \rightarrow \overline{\mathscr{A}}\left(E^{\prime}\right)$, the right $\mathscr{A}(B)$ module structure on $\mathscr{A}\left(B^{\prime}\right)$ being induced by f, and we have

$$
\operatorname{Tor}_{\mathscr{A}(B)}\left(\mathscr{A}\left(B^{\prime}\right), \overline{\mathscr{A}}(E)\right) \longrightarrow H^{*}\left(E^{\prime}\right) .
$$

(This is shown in [9] for the real case but the proof also works for the rational case.)

Consider now (3.2). Let \mathscr{B} be generated by $b_{l}, l \in L$, and let $\sum^{-1} \mathscr{B}$, the (-1)-suspension, be generated by $u_{l}, l \in L$, with $\operatorname{deg} u_{l}=\operatorname{deg} b_{l}-1$, i.e., $u_{l}=\sum^{-1} b_{l} . \quad \sum^{-1} \mathscr{B}$ corresponds to the cohomology of ΩB. In $\mathscr{A}=\mathscr{B} \otimes \sum^{-1} \mathscr{B}$ define a derivation d by $d u_{l}=b_{l}, d b_{l}=0$. Then $H^{*}(\mathscr{A}) \cong \mathbf{Q}$. Since \mathscr{B} is the minimal model of $\mathscr{A}(B)$ and the latter injects into $\overline{\mathscr{A}}(E)$ it follows that there is a morphism $\mathscr{B} \otimes \sum^{-1} \mathscr{B}=\mathscr{A} \rightarrow \overline{\mathscr{A}}(E)$ commuting with the \mathscr{B} action and inducing an isomorphism in cohomology. By general properties of Tor [6] it follows that

$$
\operatorname{Tor}_{\mathscr{A}}\left(\mathscr{A}\left(B^{\prime}\right), \mathscr{A}\right) \stackrel{(}{\Longrightarrow} H^{*}(F) ;
$$

moreover, since the projection $\mathscr{A} \rightarrow \mathbf{Q}$ commutes with the \mathscr{B}-action, we get

$$
\operatorname{Tor}_{\mathscr{B}}\left(\mathscr{A}\left(B^{\prime}\right), \mathbf{Q}\right) \cong H^{*}(F)
$$

By assumption, there is a morphism $\mathscr{B} / \mathscr{I} \rightarrow \mathscr{A}\left(B^{\prime}\right)$ inducing an isomorphism in cohomology. This morphism commutes with the action of \mathscr{B}, hence

$$
\begin{equation*}
\operatorname{Tor}_{\mathscr{B}}(\mathscr{B} / \mathscr{I}, \mathscr{A}) \stackrel{\Longrightarrow}{\Longrightarrow} H^{*}(F) . \tag{4.1}
\end{equation*}
$$

Let $P(\mathscr{B} / \mathscr{I})$ be the bar-resolution of the (right) \mathscr{B}-module $\mathscr{B} / \mathscr{I} . P(\mathscr{B} / \mathscr{I})$ has the structure of a DGA [9] and the isomorphism (4.1) is induced by the morphism ϕ defined by

Both complexes $P(\mathscr{B} / \mathscr{I}) \otimes_{\mathscr{B}} \mathscr{A}$ and $\mathscr{B} / \mathscr{I} \otimes \sum^{-1} \mathscr{B}$ compute $\operatorname{Tor}_{\mathscr{O}}(\mathscr{B} / \mathscr{I}, \mathbf{Q})$, the first one using resolutions of $\mathscr{B} / \mathscr{I}$ and \mathbf{Q}, the second one using a resolution of \mathbf{Q} only. $\varepsilon \otimes 1$ establishes an isomorphism in cohomology, hence g induces an isomorphism in cohomology. The theorem is therefore proved if there exist cocycles in \mathscr{A}, forming a base of $H^{*}(\mathscr{A})$, such that on the cochain level the product of two of them each is zero.

The construction of this base will be done using a spectral sequence. First we are going to relabel the generators b_{l} of \mathscr{B} by integers $l^{\prime} \in L^{\prime}$ such that, for a certain integer $N, \operatorname{deg} b_{l^{\prime},} \cdots \cdot b_{l^{\prime} p}>M$ iff $l_{1}^{\prime}+\cdots+l_{p}^{\prime}>N$. Note that if \mathscr{B} has at most one generator in each dimension we could choose l^{\prime} to be the degree of the corresponding generator and $N=M$. We will construct the new index set L^{\prime} using the following lemma.

Lemma 4.4. Let $V=\sum_{n \geq 2} V^{n}$ be a finite dimensional graded vector space, let $S^{*}(V)$ be defined as in (2.2) and let $\mathscr{I}^{(M)} \subseteq S^{*}(V)$ be the ideal generated by all elements of degree larger than M. Then there exists a graded vector space $V^{\prime}=\sum_{n^{\prime} \geq 2} V^{\prime n^{\prime}}$, a linear isomorphism $\psi: V \rightarrow V^{\prime}$ (not respecting the degrees) and an integer N such that:
(1) $\operatorname{dim} V^{\prime n^{\prime}} \leq 1$, for all n^{\prime}.
(2) The induced maps

$$
S^{*}(V) \rightarrow S^{*}\left(V^{\prime}\right), \quad \mathscr{I}^{(M)} \rightarrow \mathscr{I}^{(N)}, \quad S^{*}(V) / \mathscr{I}^{(M)} \rightarrow S^{*}\left(V^{\prime}\right) / \mathscr{I}^{(N)}
$$

are algebra isomorphisms (not respecting degrees), mapping even- and odd-degree elements onto even- and odd-degree elements, respectively.

Proof. Let a^{1}, \ldots, a^{m} span $V^{n 0}$ and define

$$
p_{0}=2\left[M / n_{0}\right] \cdot(m-1)+1, \quad q_{0}=p_{0} \cdot n_{0}, \quad M_{0}=p_{0}(M+1)-1
$$

Let $V_{0}=\sum_{q \geq 2} V_{0}^{q}$ be the graded vector space defined as follows: $V_{8}^{q+2 i}$ is spanned by $b_{q_{0}+2 i}, i=0, \ldots, m-1, V^{q} \cong V^{n}$ if $q=p_{0} \cdot n, n \neq n_{0}$, and $V^{q}=0$ in the other cases. The elements in V_{q}^{q} have now the degree q. The map $\psi_{0}: V \rightarrow V_{0}$ is defined to be the identity on $V^{n}, n \neq n_{0}$, only changing the degrees, and

$$
\psi_{0}: a^{i} \in V^{n_{0}} \mapsto b_{q_{0}+2 i} \in V_{0}^{q_{0}+2 i}, \quad i=0, \ldots, m-1
$$

It is not hard to verify that V_{0}, ψ_{0} and M_{0} satisfy requirement (2) above. Applying this process stepwise to each V^{n} leads to V^{\prime}, ψ and N.

We may therefore assume that the generators $b_{l}, l \in L$, of \mathscr{B} already are labeled in such a way that

$$
\begin{equation*}
b_{l_{1}} \cdots \cdot b_{l_{p}} \in \mathscr{I} \quad \text { iff } \quad l_{1}+\cdots+l_{p}>N \tag{4.1}
\end{equation*}
$$

where N is the integer constructed in Lemma 4.4 and l is even iff deg b_{l} is even, for all $l \in L$. We denote by $J \subseteq L$ the subset of all odd integers.

Let $a_{\ell m}=b_{l_{1}} \cdots \cdot b_{l_{p}} \otimes u_{m_{1}} \cdots \cdot u_{m_{q}}$ such that $l_{1} \leq \cdots \leq l_{p}, m_{1} \leq \cdots \leq m_{q}$ and let $l=l_{1}+\cdots+l_{p}$. The ideals $\mathscr{A}_{r}=\left(a_{\ell ; m}, l>r\right) \subseteq \mathscr{A}$ define a filtration of \mathscr{A} and for the corresponding spectral sequence $\left\{E_{r}, d_{r}\right\}$ we have:

Lemma 4.5. The sets of elements

$$
\begin{gathered}
A_{r}^{1}=\left\{a_{\ell ; m} \mid m_{1}<r, l+m_{1}>N, l_{1} \geq m_{1}, m_{1} \notin J\right\}, \\
A_{r}^{2}=\left\{a_{\ell ; m} \mid m_{1}<r, l+m_{1}>N, l_{1}>m_{1}, m_{1} \in J\right\}, \\
D_{r}=\left\{a_{\ell ; m} \mid m_{1} \geq r, l_{1} \geq r\right\}
\end{gathered}
$$

form a base of E_{r}.
Proof. Decompose D_{r} as follows:

$$
\begin{aligned}
& D_{r}^{1}=\left\{a_{\ell ; m} \mid m_{1}=r, l+m_{1} \leq N, l_{1} \geq r, r \notin J\right\}, \\
& D_{r}^{2}=\left\{a_{\ell ; m} \mid m_{1}=r, l+m_{1} \leq N, l_{1}>r, r \in J\right\}, \\
& D_{r}^{3}=\left\{a_{\ell ; m} \mid m_{1}=r, l+m_{1}>N, l_{1} \geq r, r \notin J\right\}, \\
& D_{r}^{4}=\left\{a_{\ell ; m} \mid m_{1}=r, l+m_{1}>N, l_{1}>r, r \in J\right\}, \\
& D_{r}^{5}=\left\{a_{\ell ; m} \mid m_{1}>r, l_{1}=r, r \notin J\right\}, \\
& D_{r}^{6}=\left\{a_{\ell ; m} \mid m_{1} \geq r, l_{1}=r, r \in J\right\}, \\
& D_{r}^{7}=\left\{a_{\ell ; m} \mid m_{1}>r, l_{1}>r\right\} .
\end{aligned}
$$

From the particular labeling of the b_{l} 's it follows that $d_{r}\left(a_{\ell ; m}\right)$ is either zero or consists of exactly one nonzero element. d_{r} maps D_{r}^{1} and D_{r}^{2} isomorphically onto D_{r}^{5} and D_{r}^{6}, respectively. The elements in $A_{r}^{1}, A_{r}^{2}, D_{r}^{3}, D_{r}^{4}$, and D_{r}^{7} are closed under d_{r} and it follows that $A_{r+1}^{1}=A_{r}^{1} \cup D_{r}^{3}, A_{r+1}^{2}=A_{r}^{2} \cup D_{r}^{4}$, and $D_{r+1}=D_{r}^{7}$.

Corollary 4.6. The set $A=A^{1} \cup A^{2}$ where

$$
\begin{aligned}
& A^{1}=\left\{a_{\ell ; m} \mid l+m_{1}>N, l_{1} \geq m_{1}, m_{1} \notin J\right\} \\
& A^{2}=\left\{a_{\ell ; m} \mid l+m_{1}>N, l_{1}>m_{1}, m_{1} \in J\right\}
\end{aligned}
$$

forms a base for $H^{*}(\mathscr{A})$ and $a_{\ell ; m} \cdot a_{\ell ; \mu}=0$ in \mathscr{A} for all $a_{\ell ; m}, a_{\ell ; m} \in A$.
This proves Theorem 4.1.
Remark 4.7. We actually did compute a \mathscr{B}-free minimal resolution of $\mathscr{B} / \mathscr{I}^{(M)}$ (see Section 5).

Remark 4.8. If \mathscr{B} has odd-dimensional generators, then $H^{*}(\mathscr{A})$ is infinite dimensional, although finite dimensional in each degree.

Remark 4.9. It is clear how Theorem 4.1 generalizes to other formal spaces, where there is a labeling of the generators of \mathscr{B} such that (4.1) holds for a certain N. For instance, this is possible for $\mathscr{I}=\left(\mathscr{B}^{+}\right)^{M}$, i.e., \mathscr{I} consists of all products of exactly M elements. On the other hand, not every ideal can be obtained via (4.1) even if the corresponding F has the rational homotopy type of a wedge of spheres.

5. Resolutions

Let $\left\{b_{l}, l \in L\right\}$ be a set of indeterminants having degrees ≥ 2 and let \mathscr{S} be the free, skew algebra generated by this set, i.e., the underlying graded vector space of \mathscr{S} is isomorphic to the underlying graded vector space of the polynomial algebra generated by the b_{l} 's and the multiplication is given by $b_{l} \cdot b_{l^{\prime}}=$ $(-1)^{n n^{\prime}} b_{l^{\prime}} \cdot b_{l}$, where $l \neq l^{\prime}, n=\operatorname{deg} b_{l}, n^{\prime}=\operatorname{deg} b_{l^{\prime}}$. Note that $\left(b_{l}\right)^{2} \neq 0$ for all $l \in L$.

Let $\left\{{ }_{\sigma}, k \in K\right\}=\operatorname{Mon}_{0}(\mathscr{K})$ be a set of not necessarily independent monomials of \mathscr{S} and let $\mathscr{K} \subseteq \mathscr{S}$ be the ideal generated by $\operatorname{Mon}_{0}(\mathscr{K})$. An \mathscr{S}-free resolution of $\mathscr{S} / \mathscr{K}$ is obtained as follows:

Let $\mathscr{W}^{0}=\mathbf{k}$ and let \mathscr{W}^{n} be the \mathbf{k}-vector space spanned by the n-tuples $\mathfrak{k}=\left(k_{1}, \ldots, k_{n}\right), k_{1}, \ldots, k_{n} \in K$, where $\left(k_{\pi(1)}, \ldots, k_{\pi(n)}\right)=(-1)^{\pi}\left(k_{1}, \ldots, k_{n}\right), \pi$ being a permutation. Let $|\mathfrak{k}| \in \mathscr{S}$ be the smallest common multiple of the monomials $\left.\lrcorner_{k_{1}}, \ldots,\right\lrcorner_{k_{n}}$. In $\mathscr{S} \otimes \mathscr{W}$ define a differential d by

$$
\begin{equation*}
d k=\sum_{\kappa=1}^{n}(-1)^{\kappa}|k| /\left|k_{\kappa}\right| \otimes k_{\kappa} \tag{5.1}
\end{equation*}
$$

where $k_{\kappa}=\left(k_{1}, \ldots, \hat{k}_{\kappa}, \ldots, k_{n}\right),(d$ is zero on $\mathscr{S})$ and define a multiplication by

$$
k \cdot k^{\prime}=|k| \cdot\left|k^{\prime}\right| /\left|\left(k, k^{\prime}\right)\right| \otimes\left(k, k^{\prime}\right)
$$

where $\left(k, k^{\prime}\right)=\left(k_{1}, \ldots, k_{n}, k_{1}^{\prime}, \ldots, k_{n^{\prime}}^{\prime}\right)$. With respect to this product, d is a derivation.

Proposition 5.1. $\mathscr{S} \otimes \mathscr{W}$ is a resolution of $\mathscr{S} / \mathscr{K}$.
Proof. Consider the complex

$$
0 \underset{h_{0}}{\stackrel{d_{0}}{\leftrightarrows}} \mathscr{K} \underset{h_{1}}{\stackrel{d_{1}}{\leftrightarrows}} \mathscr{S} \otimes \mathscr{W}^{1} \quad \cdots
$$

Let $\operatorname{Mon}(\mathscr{K})$ be the set of all monomials in \mathscr{K}. Define a map $\sigma:$ Mon $(\mathscr{K}) \rightarrow K$ such that

$$
\begin{equation*}
\jmath_{k} \mid \jmath, k=\sigma(\jmath) . \tag{5.2}
\end{equation*}
$$

The contracting homotopy is defined by

$$
h_{n}(\triangleleft \otimes k)=\jmath \cdot|k| /|(k, k)| \otimes(k, k),
$$

where $k \in \mathscr{W}^{n}, \jmath \in \operatorname{Mon}(\mathscr{S})$ and $k=\sigma(\jmath \cdot|k|)$.
Now let \mathscr{B} be a free, graded-commutative algebra generated by $b_{l}, l \in L$, and suppose L has an ordering which is consistent with the degrees of the b_{i} 's. Let $J=\left\{j \in L \mid \operatorname{deg} b_{j}\right.$ is odd $\}$. Suppose $\mathscr{I}=\left(c_{i}, i \in I\right) \subseteq \mathscr{B}$ is an ideal, generated by monomials and let σ^{\prime} : Mon $(\mathscr{I}) \rightarrow I$ be a map satisfying (5.2). In order to construct a \mathscr{B}-free resolution of $\mathscr{B} / \mathscr{I}$, let $\mathscr{S}=\mathscr{S}(\mathscr{B})$ be the free, skew algebra as constructed above and let $\mathscr{J}=\left(\left(b_{j}\right)^{2}, j \in J\right)$. Clearly, $\mathscr{S} \mid \mathscr{J} \cong \mathscr{B}$ as gradedcommutative algebras. Let $\mathscr{K} \subseteq \mathscr{S}$ be the ideal with generators

$$
\operatorname{Mon}_{0}(\mathscr{K})=\left\{c_{i}, i \in I\right\} \cup\left\{\left(b_{j}\right)^{2},\left(b_{j}\right)^{3}, \ldots, j \in J\right\} .
$$

The corresponding index set is $K=I \cup K^{\prime}, K^{\prime}=J \times \mathbf{N}^{\prime}$, where \mathbf{N}^{\prime} is the set of integers larger than 1.

We decompose $s \in \operatorname{Mon}(\mathscr{S})$ into $s=s^{\prime} \cdot \jmath^{\prime \prime}$, where $s^{\prime}=b_{l_{1}} \cdots \cdot b_{l_{r}}$ $\left(l_{1}<\cdots<l_{r}\right)$ is the linear part of δ and $\sigma^{\prime \prime}=\left(b_{j_{1}}\right)^{n_{1}-1} \cdots \cdots\left(b_{j_{s}}\right)^{n_{s}-1}$, $j_{1}<\cdots<j_{s}, j_{v} \in J, \eta_{v} \geq 2$ and $\left.\left(b_{j_{v}}\right)^{\eta_{v}}\right|_{\jmath}$. Define $\sigma(\triangleleft)$ as follows: If $s \in \operatorname{Mon}(\mathscr{I})$, then $\sigma(\jmath)=\sigma^{\prime}(\jmath)$. If $\jmath \notin \operatorname{Mon}(\mathscr{I})$, i.e., if $s \geq 1$, let v be maximal such that $\eta_{v}=\max \left\{\eta_{1}, \ldots, \eta_{s}\right\}$ and define $\sigma(\jmath)=k=\left(j_{v}, \eta_{v}\right)$, i.e., $s_{k}=\left(b_{j_{v}}\right)^{\eta_{v}} . \sigma$ satisfies (5.2).

Let $\mathscr{V}^{0}=\mathbf{k}$ and let $\mathscr{V}^{n} \subseteq \mathscr{W}^{n}$ be spanned by the elements

$$
k=\left(i_{1}, \ldots, i_{r}, j_{1}^{\eta_{1}}, \ldots, j_{s}^{\eta_{s}}\right)
$$

where $n=r+\eta_{1}+\cdots+\eta_{s}-1, \eta_{v} \geq 2$, and $j^{\eta}, j \in J$, denotes the sequence $(j, \eta), \ldots,(j, 2)$ in $K . \mathscr{B} \otimes \mathscr{V}$ is closed under multiplication and the projection $\mathscr{W}^{n} \rightarrow \mathscr{V}^{n}$ induces a differential d and a contracting homotopy in $\mathscr{B} \otimes \mathscr{V}$, whence:

Proposition 5.2. $\mathscr{B} \otimes \mathscr{V}$ is a resolution of $\mathscr{B} / \mathscr{I}$.

Note that, by construction of the induced differential in $\mathscr{B} \otimes \mathscr{V}$, $|k| /\left|k_{\kappa}\right| \otimes k_{\kappa}=0$ in (5.1), if $k_{\kappa} \notin \mathscr{V}$.
We define the degree of $k \in \mathscr{V}^{n}$ by $\operatorname{deg} k=\operatorname{deg}|k|-n$, where $\operatorname{deg}|k|$ is the degree in \mathscr{S}. With respect to this degree, d becomes a coboundary operator. On the other hand, $\mathscr{M}=\mathscr{M}(\mathscr{B} / \mathscr{I})=\mathscr{B} \otimes \mathscr{F}$ produces a \mathscr{B}-free resolution of $\mathscr{B} / \mathscr{I}$. Hence, there is a chain morphism $\phi: \mathscr{B} \otimes \mathscr{V} \rightarrow \mathscr{B} \otimes \mathscr{F}$ such that $H^{*}(\mathscr{V}) \cong$ $\operatorname{Tor}^{\mathscr{E}}(\mathscr{B} / \mathscr{I}, \mathbf{k}) \cong H^{*}(\mathscr{F})$ as graded vector spaces. Now $\phi \mid \mathscr{V}: \mathscr{V} \rightarrow \mathscr{F}$ is not an algebra morphism, however the induced map $\phi^{*}: H^{*}(\mathscr{V}) \rightarrow H^{*}(\mathscr{F})$ is actually a ring isomorphism.

Consider now the case of a truncated algebra $\mathscr{B} / \mathscr{I}^{(M)}$ more in detail. We assume that the generators $b_{l}, l \in L$, of \mathscr{B} are labeled as in the proof of Theorem 4.1. In order to express the base in Corollary 4.6 in terms of the complex \mathscr{V}, we define a mapping $|\quad|: \operatorname{Mon}(\mathscr{A}) \rightarrow \mathscr{S}$ by $\left|a_{\ell ; \ldots}\right|=\left|a_{\ell}\right| \cdot\left|a_{m}\right|$, where $\left|a_{\ell}\right|=$ $b_{l_{1}} \cdots \cdot b_{l_{p}},\left|a_{\mu}\right|=b_{m_{1}} \cdots \cdot b_{m_{q}}, \sum^{-1} b_{m_{\lambda}}=u_{m_{\lambda}}$ (see Section 4). Let s^{\prime} be the linear part of $\left|a_{\mu / \prime}\right|$ and let $b_{n_{1}} \cdots \cdots b_{n_{r}}$ be the largest divisor of σ^{\prime} such that $b_{n_{\mu}} \cdot\left|a_{\ell}\right| \neq 0$ in $\mathscr{B}, \mu=1, \ldots, r$. It follows that

$$
\left|a_{\mu}\right|=b_{n_{1}} \cdots \cdot b_{n_{r}} \cdot\left(b_{j_{1}}\right)^{n_{1}-1} \cdots \cdot\left(b_{j_{s}}\right)^{n_{s}-1}, \quad j_{v} \in J, \eta_{v} \geq 2
$$

and $\left(b_{j_{v}}\right)^{\eta_{v}}| | a_{\ell ; m} \mid, v=1, \ldots, s$. Now let $a_{\ell ; m} \in A$ and define $c_{i_{1}}, \ldots, c_{i_{r}} \in$ $\operatorname{Mon}_{0}\left(\mathscr{I}^{(M)}\right)$ by

$$
\begin{gathered}
c_{i_{1}}=b_{n_{1}} \cdot\left|a_{\ell}\right| \\
c_{i_{\mu}}=b_{n_{\mu}} \cdot \jmath_{\mu}, \quad i_{\mu}=\sigma\left(b_{n_{\mu}} \cdot \jmath_{\mu-1}\right), \jmath_{1}=\left|a_{\ell}\right|, \mu=2, \ldots, r .
\end{gathered}
$$

Proposition 5.3. The elements $k=\left(i_{1}, \ldots, i_{r}, j_{1}^{\eta_{1}}, \ldots, j_{s}^{\eta_{s}}\right) \in \mathscr{V}^{n}, n=r+$ $\eta_{1}+\cdots+\eta_{s}-s$, such that

$$
\begin{gather*}
\left|\left(i_{1}, \ldots, i_{r}\right)\right|=b_{n_{1}} \cdots \cdot b_{n_{r}} \cdot \jmath_{1}, n_{1}<\cdots<n_{r}, c_{i_{\mu}}=b_{n_{\mu}} \cdot \jmath_{\mu} \tag{1}\\
i_{\mu}=\sigma\left(b_{n_{\mu}} \cdot \jmath_{\mu-1}\right), \mu=1, \ldots, r
\end{gather*}
$$

(2) $b_{j_{v}}| |\left(i_{1}, \ldots, i_{r}\right) \mid, \eta_{v} \geq 2, v=1, \ldots, s$, and
(3) either $n_{1} \leq l_{0}$, if $n_{1} \notin J$ or $n_{1}<l_{0}$, if $n_{1} \in J$, where $b_{l_{0}}$ is the minimal degree element dividing ${ }_{{ }_{1}}$, form a base of $H^{*}(\mathscr{V})$.

Corollary 5.4. Let $\mathscr{U}^{n} \subseteq \mathscr{V}^{n}$ be spanned by the elements in Proposition 5.3. $\phi(\mathscr{B} \otimes \mathscr{U}) \subseteq \mathscr{B} \otimes \mathscr{F}$ is a subcomplex and in fact is a minimal resolution of $\mathscr{B} / \mathscr{I}^{(M)} \cdot \phi \mid \mathscr{B} \otimes \mathscr{U}$ is injective.

6. Twistings

Let $\mathscr{B}_{0}=\mathscr{B}, \mathscr{I}_{0}=\mathscr{I}^{(M)}, \mathscr{M}\left(\mathscr{B}_{0} / \mathscr{I}_{0}\right)=\mathscr{B}_{0} \otimes_{t_{0}} \mathscr{F}_{0}$. The generators of \mathscr{B}_{0} are denoted by $b_{0, l}, l \in L_{0}$. Let $\mathscr{B}_{1} \subseteq \mathscr{F}_{0}$ be the subalgebra generated by $b_{1, l}$, $l \in L_{1}$, where $b_{1, l}=\phi(k), k$ running through the elements defined in Proposition 5.3. It follows that $\mathscr{F}_{0}=\mathscr{B}_{1} \otimes_{t_{1}} \mathscr{F}_{1}$ is the natural decomposition of \mathscr{F}_{0}.

According to (5.1) the twisting t_{0} of the elements in \mathscr{B}_{1} is given by

$$
\begin{equation*}
t_{0}\left(b_{1, l}\right)=t_{0}(\phi(k))=\sum(-1)^{\kappa}|k| /\left|k_{\kappa}\right| \otimes \phi\left(k_{\kappa}\right) \tag{6.1}
\end{equation*}
$$

Since \mathscr{F}_{0} is the minimal model of the cohomology of a wedge of spheres it follows that $H^{*}\left(\mathscr{F}_{0}\right)=\mathscr{B}_{1} / \mathscr{I}_{1}$, where \mathscr{I}_{1} is the ideal generated by all pairwise products of the generators of \mathscr{B}_{1}, and therefore $\mathscr{M}\left(\mathscr{B}_{1} / \mathscr{I}_{1}\right)=\mathscr{F}_{0}=\mathscr{B}_{1} \otimes \mathscr{F}_{1}$.

Although \mathscr{B}_{1} is in general generated by infinitely many elements, a direct limit process gives the following description of $H^{*}\left(\mathscr{F}_{1}\right)$:

Proposition 6.1. Let \mathscr{V}_{1} be the complex \mathscr{V} obtained by replacing \mathscr{B} with \mathscr{B}_{1} and \mathscr{I} with \mathscr{I}_{1} in Proposition 5.2. Let L_{1}, the index set of the generators of \mathscr{B}_{1}, be given an ordering which is consistent with the degrees of the $b_{1, l}$ s. The elements

$$
\left(i_{1}, \ldots, i_{r}, j_{1}^{\eta_{1}}, \ldots, j_{s}^{\eta_{s}}\right) \in \mathscr{V}_{1}^{n}, \quad i_{\mu} \in I_{1}, j_{v} \in J_{1}, n=r+\eta_{1}+\cdots+\eta_{s}-s
$$

such that

$$
\begin{gather*}
\left|\left(i_{1}, \ldots, i_{r}\right)\right|=b_{1, n_{1}} \cdots \cdots b_{1, n_{r}} \cdot b_{1, l_{0}}, n_{1}<\cdots<n_{r}, \tag{1}\\
c_{1, i_{\mu}}=b_{1, n_{\mu}} \cdot b_{1, l_{0}} \in \mathscr{I}_{1}, \mu=1, \ldots, r,
\end{gather*}
$$

(2) $b_{i, j_{v}}| |\left(i_{1}, \ldots, i_{r}\right) \mid, \eta \geq 2, v=1, \ldots, s$, and
(3) either $n_{1} \leq l_{0}$ if $n_{1} \notin J$ or $n_{1}<l_{0}$ if $n_{1} \in J$
form a base of $H^{*}\left(\mathscr{F}_{1}\right)$.
We have therefore the following result.
Theorem 6.2. Let \mathscr{B}_{0} be a minimal DGA with trivial differential and let $\mathscr{I}_{0}=\mathscr{I}^{(M)}$ be an ideal truncated at degree M. Let $\mathscr{M}\left(\mathscr{B}_{0} / \mathscr{I}_{0}\right)=\mathscr{B}_{0} \otimes \mathscr{F}_{0}$ and $\mathscr{F}_{n-1}=\mathscr{B}_{n} \otimes_{t_{n}} \mathscr{F}_{n}, n=1, \ldots$, be the natural decompositions.
(1) $H^{*}\left(\mathscr{F}_{n-1}\right)=\mathscr{B}_{n} / \mathscr{I}_{n}, n \geq 1$, where $\mathscr{I}_{n}=\left(\mathscr{B}_{n}^{+}\right)^{2}$. The twisting t_{n-1} in \mathscr{F}_{n-2} of the generators of \mathscr{B}_{n} is given by formulas corresponding to (6.1).
(2) $\mathscr{M}_{n}=\mathscr{B}_{0} \otimes \cdots \otimes \mathscr{B}_{n}$ is a sub-DGA of \mathscr{M} and $\mathscr{M}=\operatorname{inj} \lim \mathscr{M}_{n}$ as $D G A$.

Remark 6.3. Let \mathscr{M} be any minimal DGA with natural decomposition $\mathscr{M}=\mathscr{B}_{0} \otimes \mathscr{F}_{0}$. Let $\mathscr{F}_{0}=\mathscr{B}_{1} \otimes \mathscr{F}_{1}$ be the natural decomposition of \mathscr{F}_{0}. In general, $\mathscr{B}_{0} \otimes \mathscr{B}_{1}$ is not invariant under the differential of \mathscr{M}. There is, however, a certain subalgebra $\mathscr{B}_{1}^{\prime} \subseteq \mathscr{B}_{1}$, such that $\mathscr{B}_{0} \otimes \mathscr{B}_{1}^{\prime}$ is a sub-DGA of \mathscr{M}. One has then a similar situation as in (2) above.

Remark 6.4. If the conjecture in Remark 2.2 is true, it would follow that (2) of Theorem 6.2 holds for any minimal DGA \mathscr{B} with trivial differential and any ideal $\mathscr{I} \subseteq \mathscr{B}$.

Remark 6.5. The computation of the twisting t_{0} of, say, the generators of \mathscr{B}_{2} is more complicated than in (6.1). For instance, the elements of \mathscr{B}_{2} hitting the generators $c_{1, i}$ of the ideal $\mathscr{I}_{1} \subseteq \mathscr{B}_{1}$ are of two different types depending on whether or not the $c_{1, i}$ s, which are products, are zero in \mathscr{V}_{0}. If $c_{1, i}$ is nonzero in
\mathscr{V}_{0}, the element in \mathscr{B}_{2} hitting $c_{1, i}$ is in fact the ϕ-image of a certain $k \in \mathscr{V}_{0}$ and its twisting t_{0} can be obtained by (6.1). In the other case the construction of the element hitting $c_{1, i}$ is more complicated; it can be done inductively. We omit details.

References

1. R. Bott and H. Samelson, On the Pontryagin product in spaces of paths, Comment. Math. Helv., vol. 27 (1953), pp. 320-337.
2. E. Friedlander, P. A. Griffiths, and J. Morgan, Homotopy theory and differential forms, Seminario di Geometria, Firenze, 1972.
3. I. M. Gelfand and D. B. Fuks, Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk. SSSR, vol. 34 (1970), pp. 322-337.
4. C. Godbillon, Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki, 1972/73, No. 421.
5. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math., vol. 81 (1965), pp. 211-264.
6. L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc., vol. 129 (1967), pp. 58-93.
7. D. Sullivan, Differential forms and the topology of manifolds, Proc. Conference on Manifolds, Tokyo, 1973.
8. ———, Infinitesimal computations in topology, Ann. of Math., to appear.
9. Wen-Tsün Wu, Theory of I^{*}-functor in algebraic topology, Scientia Sinica, vol. 18 (1975), pp. 464-482.

Harvard University
Cambridge, Massachusetts

[^0]: Received May 17, 1976. Received in revised form October 19, 1976.
 ${ }^{1}$ This research was supported by a grant of the Swiss National Fund for Scientific Research.

