ON FORMAL SPACES AND THEIR LOOP SPACE

BY

RENÉ RUCHTI¹

1. Introduction

In this paper we describe a method of fibering a simply connected CWcomplex X over a certain product B of Eilenberg-MacLane-spaces $K(\mathbf{Q}, n_i)$. B is determined, essentially, by the rational Hurewicz morphism. The construction of this fibration uses the theory of minimal differential graded algebras, as outlined in Section 2. Our main result is Theorem 4.1 in Section 4: For a particular class of formal CW-complexes—including skeletons in products of Eilenberg-MacLane-spaces—we prove that the fiber F of our fibration has the rational homotopy type of a wedge of spheres. Since the projection of our fibration is surjective in rational homotopy it follows that the Poincaré series of the loop space ΩX for X in this class is rational, thus proving Serre's conjecture for this class of spaces.

In Sections 5 and 6 we construct \mathscr{P} -free minimal resolutions of certain algebras of type \mathscr{P}/\mathscr{I} , where \mathscr{P} is a free graded-commutative algebra. We iterate our method of fibering, i.e., we fibre F over a product B_1 of Eilenberg-MacLane-spaces etc. It turns out that the minimal model of the P.L.-De Rham complex of X, X in our particular class, is the direct limit of the minimal models of the P.L.-De Rham complex of spaces constructed by successively twisting together the spaces B, B_1, \ldots (Theorem 6.2). We also outline how actually to compute the twistings in the corresponding twisted tensor products.

2. Algebraic preliminaries

Let \mathscr{A} be a differential graded-commutative algebra (DGA) over a field **k**. In other words:

(1) $\mathscr{A} = \sum_{n \ge 0} \mathscr{A}^n$ is a graded vectorspace over **k** together with a derivation $d: \mathscr{A}^n \to \mathscr{A}^{n+1}, d \cdot d = 0.$

(2) If $a \in \mathscr{A}^n$, $a' \in \mathscr{A}^{n'}$, then $a \cdot a' = (-1)^{nn'}a' \cdot a \in \mathscr{A}^{n+n'}$.

All DGA's will be connected and simply connected, i.e., $\mathscr{A}^0 = \mathbf{k}$ and $\mathscr{A}^1 = 0$. The cohomology groups of \mathscr{A} are denoted by $H^n(\mathscr{A})$.

Let $f: \mathscr{B} \to \mathscr{A}$ be a morphism of DGA's. There are defined *relative cohomo*logy groups $H^{n}(\mathscr{A}, \mathscr{B})$ by taking the cohomology of the relative cochain complex $\{C^{n}(\mathscr{A}, \mathscr{B}), d\}$, where $C^{n}(\mathscr{A}, \mathscr{B}) = \mathscr{A}^{n} \oplus \mathscr{B}^{n+1}$ with differential d given by

Copyright © Board of Trustees, University of Illinois

Received May 17, 1976. Received in revised form October 19, 1976.

¹ This research was supported by a grant of the Swiss National Fund for Scientific Research.

$$d(a, b) = (da + f(b), -db). \text{ There is a long exact sequence}$$

(2.1) $\cdots \longrightarrow H^n(\mathscr{B}) \xrightarrow{f^*} H^n(\mathscr{A}) \xrightarrow{j} H^n(\mathscr{A}, \mathscr{B}) \xrightarrow{\delta} H^{n+1}(\mathscr{B}) \longrightarrow \cdots,$

j and δ being defined by j(a) = (a, 0) and $\delta(a, b) = b$.

A DGA \mathscr{M} is called *minimal* if it is free as an algebra, i.e., the only relations in \mathscr{M} are those imposed by associativity and graded-commutativity, and if the differential of every element in \mathscr{M} is decomposable, i.e., $d\mathscr{M} \subseteq \mathscr{M}^+ \cdot \mathscr{M}^+$, where $\mathscr{M}^+ = \sum_{n \ge 1} \mathscr{M}^n$. If $V = \sum_{n \ge 1} V^n$ denotes the graded vectorspace spanned by the generators of \mathscr{M} and if $P = P[\sum_{p \ge 1} V^{2p}]$ is the symmetric algebra generated by all even-degree elements and $E = E(\sum_{p \ge 1} V^{2p-1})$ the exterior algebra of all odd-degree elements, then \mathscr{M} can be written as

(2.2)
$$\mathscr{M} = S^*(V) = P \otimes E.$$

Let \mathcal{M} be minimal and denote by $\mathcal{M}(n-1) \subseteq \mathcal{M}$ the subalgebra generated by all elements of degree $\leq n-1$. According to (2.1) there is a long exact sequence (with respect to the inclusion $i: \mathcal{M}(n-1) \rightarrow \mathcal{M}$)

(2.3)
$$\cdots \longrightarrow H^n(\mathcal{M}(n-1)) \xrightarrow{i^*} H^n(\mathcal{M}) \xrightarrow{j_n} H^n(\mathcal{M}, \mathcal{M}(n-1)) \xrightarrow{\delta} H^{n+1}(\mathcal{M}(n-1)) \longrightarrow \cdots$$

 $H^n(\mathcal{M}, \mathcal{M}(n-1))$ is isomorphic to the vectorspace $\mathcal{M}^n(n)/\mathcal{M}^n(n-1)$ spanned by all generators of \mathcal{M} of dimension n [2].

With this identification in mind, let $\mathscr{B} \subseteq \mathscr{M}$ be the subalgebra generated by $\sum_{n\geq 0} j_n(\mathcal{M}^n(\mathscr{M}))$. It follows that each element in \mathscr{B} is closed and that the generators of \mathscr{M} can be chosen in such a way that \mathscr{B} is generated precisely by all closed generators. Let $\mathscr{F} \subseteq \mathscr{M}$ be the subalgebra generated by \mathbf{k} and all nonclosed generators. \mathscr{F} is isomorphic to $\mathbf{k} \otimes_{\mathscr{B}} \mathscr{M}$ and the differential d in \mathscr{M} induces a differential d_0 in \mathscr{F} such that \mathscr{F} is a minimal DGA. It follows that \mathscr{M} can be written as twisted tensor product (over \mathbf{k}) with base \mathscr{B} and fibre \mathscr{F} :

$$(2.4) \mathcal{M} = \mathcal{B} \otimes_{t} \mathcal{F},$$

where the twisting t is given by $d = d_0 + t$. We shall call (2.4) the *natural* decomposition of \mathcal{M} . A geometric interpretation of (2.4) will be given in the next section.

Remark 2.1. Let $f: \mathcal{M} \to \mathcal{M}'$ be a morphism. In general, there is no morphism g, homotopic to f, which induces a morphism of the corresponding natural decompositions, so that, in general, $g(\mathcal{B}) \notin \mathcal{B}'$.

Let \mathscr{A} be a DGA. Up to isomorphism, there exists a unique minimal DGA $\mathscr{M} = \mathscr{M}(\mathscr{A})$ and a morphism $f: \mathscr{M} \to \mathscr{A}$, unique up to homotopy, such that $f^*: H^*(\mathscr{M}) \to H^*(\mathscr{A})$ is an isomorphism. $\mathscr{M}(\mathscr{A})$ is called the *minimal model* of \mathscr{A} [2].

Let $\mathcal{M}(\mathcal{A}) = \mathcal{B} \otimes \mathcal{F}$ be the natural decomposition of the minimal model of \mathcal{A} . f induces a morphism

(2.5)
$$f^* | \mathscr{B} \colon H^*(\mathscr{B}) = \mathscr{B} \to H^*(\mathscr{A}).$$

RENÉ RUCHTI

In general, this morphism is not surjective. If \mathscr{A} is *formal*, i.e., if there exists a morphism of DGA's $H^*(\mathscr{A}) \to \mathscr{A}$ inducing an isomorphism in cohomology, it follows that (2.5) is surjective and $\mathscr{M}(\mathscr{A}) \cong \mathscr{M}(\mathscr{B}/\mathscr{I})$, where $\mathscr{I} = \ker f^* | \mathscr{B}$ and $\mathscr{B}/\mathscr{I} \cong H^*(\mathscr{A})$.

Remark 2.2. The definition of formality raises the following question: Suppose \mathscr{A} is formal and let \mathscr{F} be the fibre in the natural decomposition of $\mathscr{M}(\mathscr{A})$. Is \mathscr{F} formal too? I conjecture that the answer is affirmative. A special case will be discussed in Sections 4, 5, and 6.

3. Natural fibrations

Let $f: X \rightarrow B$ be a morphism of CW-complexes and let

$$P(B, X) = \{(\omega, x) | \omega \text{ a path in } B \text{ such that } \omega(1) = f(x), x \in X\}.$$

The inclusion $x \in X \mapsto (\omega_x, x) \in P(B, X)$ is a homotopy equivalence, ω_x being the constant path at f(x). The map π : $(\omega, x) \in P(B, X) \mapsto \omega(0) \in B$ is the projection in the fibration

where the fibre F is the total space of the induced fibration

$$(3.2) \qquad F \longrightarrow P(B) \\ \downarrow \qquad \downarrow \\ X \xrightarrow{f} B ,$$

 $P(B) \rightarrow B$ being the path fibration of B with fibre $\Omega(B)$.

Suppose X is simply connected and $H^*(X, \mathbf{Q})$ is finite dimensional in each degree. The P.L.-De Rham complex $\mathscr{A}(X)$ of X (with respect to a triangulation) is defined as follows [2], [7], [8]: Let σ be an *n*-simplex with barycentric coordinates (t_0, \ldots, t_n) . A rational *p*-form ω_{σ} on σ is given by

$$\omega_{\sigma} = \sum a_{i_1 \cdots i_p} dt_{i_1} \wedge \cdots \wedge dt_{i_p}, \quad dt_0 + \cdots + dt_n = 0,$$

the $a_{i_1 \dots i_p}$'s being polynomials in t_0, \dots, t_n with Q-coefficients. A rational *p*-form ω on X is a collection $\omega = \{\omega_{\sigma}\}, \sigma$ ranging over all simplexes of the triangulation of X, such that the following compatibility condition holds: Let τ be a face of σ and $i: \tau \to \sigma$ the inclusion; then $i^*\omega_{\sigma}$ equals ω_{τ} as differential forms. Let $\mathscr{A}^p(X)$ be the Q-vectorspace of all such *p*-forms and put $\mathscr{A}(X) = \bigoplus_{p \ge 0} \mathscr{A}^p(X)$. Exterior multiplication and differentiation turns $\mathscr{A}(X)$ into a DGA, and there is an algebra isomorphism $H^*(\mathscr{A}(X)) \longrightarrow H^*(X, \mathbf{Q})$ [2], [7], [8].

Let \mathcal{M} be the minimal model of $\mathcal{A}(X)$. In the long exact sequence (2.3), $H^n(\mathcal{M}, \mathcal{M}(n-1))$ is isomorphic to the dual of the homotopy group $\pi_n(X)$ and

 j_n is the dual of the Hurewicz morphism. Let $\mathcal{M} = \mathcal{B} \otimes \mathcal{F}$ be the natural decomposition of $\mathcal{M}(\mathcal{A})$ and let $B = \prod K(\mathbf{Q}, n_i)$ be a product of Eilenberg-MacLane spaces such that $H^*(B, \mathbf{Q}) \cong \mathcal{B}$. B is simply connected. Let $f: X \to B$ be a morphism inducing $f^* | \mathcal{B}$ (see (2.5)). The corresponding fibration (3.1) we shall call the *natural fibration* of X.

Morphism f induces the inclusion $\mathcal{M}(\mathcal{B}) = \mathcal{B} \to \mathcal{B} \otimes \mathcal{F}$ and therefore a morphism between the corresponding long exact sequences (see (2.3)). In particular, f maps $H^n(\mathcal{B}, \mathcal{B}(n-1))$ injectively into $H^n(\mathcal{M}, \mathcal{M}(n-1))$. It follows that the projection π in (3.1) is surjective in rational homotopy whence $\pi_n(X, \mathbf{Q}) = \pi_n(F, \mathbf{Q}) \oplus \pi_n(\mathcal{B}, \mathbf{Q})$, and therefore

$$\pi_n(\Omega X, \mathbf{Q}) = \pi_n(\Omega F, \mathbf{Q}) \oplus \pi_n(\Omega B, \mathbf{Q}).$$

Let $p(\Omega X) = \sum_{n \ge 0} (\dim H_n(\Omega X, \mathbf{Q})) \cdot t^n$ be the (rational) Poincaré series of ΩX . By a theorem in [5], the Hurewicz morphism induces an isomorphism of Hopf algebras $U(\pi_*(\Omega X, \mathbf{Q})) \cong H_*(\Omega X, \mathbf{Q})$, where $U(\pi_*(\Omega X, \mathbf{Q}))$ denotes the universal enveloping algebra of the Lie algebra $\pi_*(\Omega X, \mathbf{Q})$. This leads to:

PROPOSITION 3.1. Let $F \rightarrow P(B, X) \rightarrow B$ be the natural fibration of X. Then $p(\Omega X, \mathbf{Q}) = p(\Omega B, \mathbf{Q}) \cdot p(\Omega F, \mathbf{Q})$. In particular, if $p(\Omega F, \mathbf{Q})$ is a rational function, so is $p(\Omega X, \mathbf{Q})$.

Remark 3.2. Let $g: X \to X'$ be a morphism and let B and B' be the base spaces of the natural fibrations of X and X', respectively, with corresponding maps $f: X \to B$ and $f': X' \to B'$. In general, there exists no morphism $B \to B'$ making the diagram

$$\begin{array}{ccc} X \xrightarrow{\boldsymbol{\theta}} & X' \\ \downarrow^{f} & \qquad \downarrow^{f} \\ B & B' \end{array}$$

homotopy commutative.

4. Formal spaces

We consider now a particular class of formal spaces (i.e., CW-complexes X such that $\mathscr{A}(X)$ is formal). Let $X = X^{(M)}$ be such that $H^*(X, \mathbb{Q}) \cong \mathscr{B}/\mathscr{I}$, where $\mathscr{I} = \mathscr{I}^{(M)}$ is the ideal generated by all elements of degree larger than M, and the isomorphism is induced by the map f in (3.2).

THEOREM 4.1. The fibre F of the natural fibration of $X^{(M)}$ has the rational homotopy type of a wedge of spheres.

Since, by [1], the Poincaré series of the loop space of a wedge of spheres is rational, we get the following corollary from Proposition 3.1.

COROLLARY 4.2. $p(\Omega X^{(M)}, \mathbf{Q})$ is rational.

Example 4.3. Let B = BU(n) be the classifying space of the unitary group U(n). B is rationally equivalent to $\prod_{k=1}^{n} K(\mathbf{Q}, 2k)$. Let $X = BU^{(2n)}$ be the 2n-skeleton and let F be the fibre of the natural fibration. F has the rational homotopy type of a wedge of spheres in dimensions between 2n + 1 and $n^2 + 2n$ and $H^*(F, \mathbf{Q}) \cong H^*(\mathfrak{A}_n)$, \mathfrak{A}_n being the Lie algebra of formal vector fields in n variables, [3], [4]. More generally, Theorem 4.1 applies to M-skeletons $X^{(M)}$ in spaces B which are rationally equivalent to a product of Eilenberg-MacLane spaces $\prod K(\mathbf{Q}, n_i), n_i \ge 2$.

Proof of Theorem 4.1. Let

 $F \longrightarrow E \xrightarrow{\pi} B$

be a fibration, *B* as usual connected and simply connected. Denote by $\mathscr{A}(F)$, $\mathscr{A}(E)$ and $\mathscr{A}(B)$ the corresponding P.L.-De Rham complexes. We define a DGA $\overline{\mathscr{A}}(E)$ and a morphism $h: \overline{\mathscr{A}}(E) \to \mathscr{A}(E)$ as follows [9]. Let σ be a simplex in *B* and $\omega_{\sigma} \in \mathscr{A}^{r}(\sigma) \otimes \mathscr{A}^{s}(\pi^{-1}(\sigma))$. $\overline{\mathscr{A}^{r,s}}(E)$ is the Q-vectorspace formed by all collections $\omega = \{\omega_{\sigma}\}, \sigma$ ranging over all simplexes of *B*, such that the following is satisfied: If $i: \tau \to \sigma$ is a face and $j: \pi^{-1}(\tau) \to \pi^{-1}(\sigma)$ is the inclusion then $\omega_{\tau} = (i^* \otimes j^*)\omega_{\sigma}$. Let $\overline{\mathscr{A}}^{p}(E) = \bigoplus_{r+s=p} \overline{\mathscr{A}}^{r,s}(E)$ and $\overline{\mathscr{A}}(E) = \bigoplus_{p>0} \overline{\mathscr{A}}^{p}(E)$. Under exterior multiplication and derivation, $\overline{\mathscr{A}}(E)$ is a DGA. To define *h*, let $\omega \in \overline{\mathscr{A}}^{r,s}(E)$. Let τ be a simplex in $E, \sigma = \pi(\tau)$ and $\pi_{\tau} = \pi | \tau$. Let $i_{\tau}: \tau \to \pi^{-1}(\sigma)$ be the inclusion. If

$$\omega_{\sigma} = \sum \alpha_k \otimes \beta_k \in \mathscr{A}^r(\sigma) \otimes \mathscr{A}^s(\pi^{-1}(\sigma)),$$

then $(h\omega)_{\tau} = \sum \pi_{\tau}^{*} \alpha_{k} \wedge i_{\tau}^{*} \beta_{k} \in \mathscr{A}^{r+s}(\tau)$. The compatibility condition holds, hence $h\omega \in \mathscr{A}^{r+s}(E)$. *h* is a morphism inducing an isomorphism in cohomology. There is a canonical injection $\mathscr{A}(B) \to \overline{\mathscr{A}}(E)$ defining a (left) $\mathscr{A}(B)$ module structure on $\overline{\mathscr{A}}(E)$.

Now let

$$\begin{array}{ccc} E' & \xrightarrow{f'} & E \\ \downarrow^{\pi'} & & \downarrow^{\pi} \\ B' & \xrightarrow{f} & B \end{array}$$

be a fibre square. We define a morphism $g: \mathscr{A}(B') \otimes \overline{\mathscr{A}}(E) \to \overline{\mathscr{A}}(E')$ as follows: Let σ' be a simplex in B', $\sigma = f(\sigma')$, $f_{\sigma}: \sigma' \to \sigma$ and $f'_{\sigma}: \pi'^{-1}(\sigma) \to \pi^{-1}(\sigma)$ the corresponding restrictions of f and f'. Let $\omega' \in \mathscr{A}^{q}(B'), \omega \in \overline{\mathscr{A}}^{r,s}(E)$. If

$$\omega_{\sigma} = \sum \alpha_k \otimes \beta_k \in \mathscr{A}^r(\sigma) \otimes \mathscr{A}^s(\pi^{-1}(\sigma)),$$

then

$$(g(\omega'\otimes\omega))_{\sigma'}=\sum \omega'_{\sigma'} \wedge f^*_{\sigma}\alpha_k \otimes f'^*_{\sigma}\beta_k \in \mathscr{A}^{q+r}(\sigma') \otimes \mathscr{A}^s(\pi'^{-1}(\sigma')).$$

Morphism g induces a morphism $\mathscr{A}(B') \otimes_{\mathscr{A}(B)} \overline{\mathscr{A}}(E) \to \overline{\mathscr{A}}(E')$, the right $\mathscr{A}(B)$ -module structure on $\mathscr{A}(B')$ being induced by f, and we have

$$\operatorname{Tor}_{\mathscr{A}(B)}(\mathscr{A}(B'), \, \overline{\mathscr{A}}(E)) \longrightarrow H^*(E').$$

(This is shown in [9] for the real case but the proof also works for the rational case.)

Consider now (3.2). Let \mathscr{B} be generated by b_l , $l \in L$, and let $\sum_{i=1}^{-1} \mathscr{B}$, the (-1)-suspension, be generated by u_l , $l \in L$, with deg $u_l = \deg b_l - 1$, i.e., $u_l = \sum_{i=1}^{-1} b_l$. $\sum_{i=1}^{-1} \mathscr{B}$ corresponds to the cohomology of ΩB . In $\mathscr{A} = \mathscr{B} \otimes \sum_{i=1}^{-1} \mathscr{B}$ define a derivation d by $du_l = b_l$, $db_l = 0$. Then $H^*(\mathscr{A}) \cong \mathbb{Q}$. Since \mathscr{B} is the minimal model of $\mathscr{A}(B)$ and the latter injects into $\overline{\mathscr{A}}(E)$ it follows that there is a morphism $\mathscr{B} \otimes \sum_{i=1}^{-1} \mathscr{B} = \mathscr{A} \to \overline{\mathscr{A}}(E)$ commuting with the \mathscr{B} -action and inducing an isomorphism in cohomology. By general properties of Tor [6] it follows that

$$\operatorname{Tor}_{\mathscr{B}}(\mathscr{A}(B'), \mathscr{A}) \xrightarrow{\simeq} H^*(F);$$

moreover, since the projection $\mathscr{A} \to \mathbf{Q}$ commutes with the \mathscr{B} -action, we get

Tor_{$$\mathscr{B}$$} ($\mathscr{A}(B'), \mathbf{Q}$) $\cong H^*(F)$.

By assumption, there is a morphism $\mathscr{B}/\mathscr{I} \to \mathscr{A}(B')$ inducing an isomorphism in cohomology. This morphism commutes with the action of \mathscr{B} , hence

(4.1)
$$\operatorname{Tor}_{\mathscr{B}}(\mathscr{B}/\mathscr{I},\mathscr{A}) \xrightarrow{\simeq} H^*(F).$$

Let $P(\mathscr{B}/\mathscr{I})$ be the bar-resolution of the (right) \mathscr{B} -module \mathscr{B}/\mathscr{I} . $P(\mathscr{B}/\mathscr{I})$ has the structure of a DGA [9] and the isomorphism (4.1) is induced by the morphism ϕ defined by

$$\begin{array}{ccc} P(\mathscr{B}/\mathscr{I}) \otimes_{\mathscr{B}} \mathscr{A} & \stackrel{\phi}{\longrightarrow} \bar{\mathscr{A}}(F) \\ & \downarrow^{\varepsilon \otimes 1} & \uparrow^{g} \\ \mathscr{B}/\mathscr{I} & \otimes_{\mathscr{B}} \mathscr{A} \cong \mathscr{B}/\mathscr{I} \otimes \sum^{-1} \mathscr{B}. \end{array}$$

Both complexes $P(\mathscr{B}/\mathscr{I}) \otimes_{\mathscr{B}} \mathscr{A}$ and $\mathscr{B}/\mathscr{I} \otimes \sum^{-1} \mathscr{B}$ compute $\operatorname{Tor}_{\mathscr{B}}(\mathscr{B}/\mathscr{I}, \mathbb{Q})$, the first one using resolutions of \mathscr{B}/\mathscr{I} and \mathbb{Q} , the second one using a resolution of \mathbb{Q} only. $\varepsilon \otimes 1$ establishes an isomorphism in cohomology, hence g induces an isomorphism in cohomology. The theorem is therefore proved if there exist cocycles in \mathscr{A} , forming a base of $H^*(\mathscr{A})$, such that on the cochain level the product of two of them each is zero.

The construction of this base will be done using a spectral sequence. First we are going to relabel the generators b_l of \mathscr{B} by integers $l' \in L$ such that, for a certain integer N, deg $b_{l'_1} \cdots b_{l'_p} > M$ iff $l'_1 + \cdots + l'_p > N$. Note that if \mathscr{B} has at most one generator in each dimension we could choose l' to be the degree of the corresponding generator and N = M. We will construct the new index set L' using the following lemma.

LEMMA 4.4. Let $V = \sum_{n \ge 2} V^n$ be a finite dimensional graded vector space, let $S^*(V)$ be defined as in (2.2) and let $\mathscr{I}^{(M)} \subseteq S^*(V)$ be the ideal generated by all elements of degree larger than M. Then there exists a graded vector space $V' = \sum_{n'\ge 2} V'^{n'}$, a linear isomorphism $\psi: V \to V'$ (not respecting the degrees) and an integer N such that:

(1) dim
$$V'^{n'} \leq 1$$
, for all n'.

(2) The induced maps

 $S^{*}(V) \to S^{*}(V'), \quad \mathscr{I}^{(M)} \to \mathscr{I}^{(N)}, \quad S^{*}(V)/\mathscr{I}^{(M)} \to S^{*}(V')/\mathscr{I}^{(N)}$

are algebra isomorphisms (not respecting degrees), mapping even- and odd-degree elements onto even- and odd-degree elements, respectively.

Proof. Let a^1, \ldots, a^m span V^{n_0} and define

$$p_0 = 2[M/n_0] \cdot (m-1) + 1, \quad q_0 = p_0 \cdot n_0, \quad M_0 = p_0(M+1) - 1.$$

Let $V_0 = \sum_{q \ge 2} V_0^q$ be the graded vector space defined as follows: $V_0^{q_0+2i}$ is spanned by b_{q_0+2i} , i = 0, ..., m-1, $V_0^q \cong V^n$ if $q = p_0 \cdot n, n \neq n_0$, and $V_0^q = 0$ in the other cases. The elements in V_0^q have now the degree q. The map $\psi_0: V \to V_0$ is defined to be the identity on V^n , $n \neq n_0$, only changing the degrees, and

$$\psi_0: a^i \in V^{n_0} \mapsto b_{a_0+2i} \in V_0^{a_0+2i}, \quad i = 0, \dots, m-1.$$

It is not hard to verify that V_0 , ψ_0 and M_0 satisfy requirement (2) above. Applying this process stepwise to each V^n leads to V', ψ and N.

We may therefore assume that the generators b_l , $l \in L$, of \mathscr{B} already are labeled in such a way that

$$(4.1) b_{l_1} \cdots b_{l_p} \in \mathscr{I} \quad \text{iff} \quad l_1 + \cdots + l_p > N,$$

where N is the integer constructed in Lemma 4.4 and l is even iff deg b_l is even, for all $l \in L$. We denote by $J \subseteq L$ the subset of all odd integers.

Let $a_{\ell,m} = b_{l_1} \cdots b_{l_p} \otimes u_{m_1} \cdots u_{m_q}$ such that $l_1 \leq \cdots \leq l_p$, $m_1 \leq \cdots \leq m_q$ and let $l = l_1 + \cdots + l_p$. The ideals $\mathscr{A}_r = (a_{\ell,m}, l > r) \subseteq \mathscr{A}$ define a filtration of \mathscr{A} and for the corresponding spectral sequence $\{E_r, d_r\}$ we have:

LEMMA 4.5. The sets of elements

$$\begin{aligned} A_r^1 &= \{a_{\ell;w} | m_1 < r, \ l+m_1 > N, \ l_1 \ge m_1, \ m_1 \notin J\}, \\ A_r^2 &= \{a_{\ell;w} | m_1 < r, \ l+m_1 > N, \ l_1 > m_1, \ m_1 \in J\}, \\ D_r &= \{a_{\ell;w} | m_1 \ge r, \ l_1 \ge r\} \end{aligned}$$

form a base of E_r .

Proof. Decompose D_r as follows:

$$\begin{split} D_r^1 &= \{a_{\ell;m} | \, m_1 = r, \, l + m_1 \leq N, \, l_1 \geq r, \, r \notin J \}, \\ D_r^2 &= \{a_{\ell;m} | \, m_1 = r, \, l + m_1 \leq N, \, l_1 > r, \, r \in J \}, \\ D_r^3 &= \{a_{\ell;m} | \, m_1 = r, \, l + m_1 > N, \, l_1 \geq r, \, r \notin J \}, \\ D_r^4 &= \{a_{\ell;m} | \, m_1 = r, \, l + m_1 > N, \, l_1 > r, \, r \in J \}, \\ D_r^5 &= \{a_{\ell;m} | \, m_1 > r, \, l_1 = r, \, r \notin J \}, \\ D_r^6 &= \{a_{\ell;m} | \, m_1 \geq r, \, l_1 = r, \, r \in J \}, \\ D_r^7 &= \{a_{\ell;m} | \, m_1 > r, \, l_1 > r \}. \end{split}$$

102

From the particular labeling of the b_l 's it follows that $d_r(a_{\ell;m})$ is either zero or consists of exactly one nonzero element. d_r maps D_r^1 and D_r^2 isomorphically onto D_r^5 and D_r^6 , respectively. The elements in $A_r^1, A_r^2, D_r^3, D_r^4$, and D_r^7 are closed under d_r and it follows that $A_{r+1}^1 = A_r^1 \cup D_r^3$, $A_{r+1}^2 = A_r^2 \cup D_r^4$, and $D_{r+1} = D_r^7$.

COROLLARY 4.6. The set $A = A^1 \cup A^2$ where

$$A^{1} = \{a_{\ell;m} | l + m_{1} > N, l_{1} \ge m_{1}, m_{1} \notin J\},\$$

$$A^{2} = \{a_{\ell;m} | l + m_{1} > N, l_{1} > m_{1}, m_{1} \in J\}$$

forms a base for $H^*(\mathscr{A})$ and $a_{\ell:m} \cdot a_{\ell:m'} = 0$ in \mathscr{A} for all $a_{\ell:m}, a_{\ell:m'} \in A$.

This proves Theorem 4.1.

Remark 4.7. We actually did compute a \mathscr{B} -free minimal resolution of $\mathscr{B}/\mathscr{I}^{(M)}$ (see Section 5).

Remark 4.8. If \mathscr{B} has odd-dimensional generators, then $H^*(\mathscr{A})$ is infinite dimensional, although finite dimensional in each degree.

Remark 4.9. It is clear how Theorem 4.1 generalizes to other formal spaces, where there is a labeling of the generators of \mathscr{B} such that (4.1) holds for a certain N. For instance, this is possible for $\mathscr{I} = (\mathscr{B}^+)^M$, i.e., \mathscr{I} consists of all products of exactly M elements. On the other hand, not every ideal can be obtained via (4.1) even if the corresponding F has the rational homotopy type of a wedge of spheres.

5. Resolutions

Let $\{b_l, l \in L\}$ be a set of indeterminants having degrees ≥ 2 and let \mathscr{S} be the *free*, skew algebra generated by this set, i.e., the underlying graded vector space of \mathscr{S} is isomorphic to the underlying graded vector space of the polynomial algebra generated by the b_l 's and the multiplication is given by $b_l \cdot b_l = (-1)^{nn'}b_{l'} \cdot b_l$, where $l \neq l'$, $n = \deg b_l$, $n' = \deg b_{l'}$. Note that $(b_l)^2 \neq 0$ for all $l \in L$.

Let $\{\beta_k, k \in K\} = \text{Mon}_0(\mathscr{K})$ be a set of not necessarily independent monomials of \mathscr{S} and let $\mathscr{K} \subseteq \mathscr{S}$ be the ideal generated by $\text{Mon}_0(\mathscr{K})$. An \mathscr{S} -free resolution of \mathscr{S}/\mathscr{K} is obtained as follows:

Let $\mathcal{W}^0 = \mathbf{k}$ and let \mathcal{W}^n be the k-vector space spanned by the *n*-tuples $\mathbf{k} = (k_1, \ldots, k_n), k_1, \ldots, k_n \in K$, where $(k_{\pi(1)}, \ldots, k_{\pi(n)}) = (-1)^{\pi}(k_1, \ldots, k_n), \pi$ being a permutation. Let $|\mathbf{k}| \in \mathcal{S}$ be the smallest common multiple of the monomials $\sigma_{k_1}, \ldots, \sigma_{k_n}$. In $\mathcal{S} \otimes \mathcal{W}$ define a differential d by

(5.1)
$$d\mathfrak{k} = \sum_{\kappa=1}^{n} (-1)^{\kappa} |\mathfrak{k}| / |\mathfrak{k}_{\kappa}| \otimes \mathfrak{k}_{\kappa},$$

where $\mathbf{k}_{\kappa} = (k_1, \dots, \hat{k}_{\kappa}, \dots, k_n)$, (*d* is zero on \mathcal{S}) and define a multiplication by $\mathbf{k} \cdot \mathbf{k}' = |\mathbf{k}| \cdot |\mathbf{k}'| / |(\mathbf{k}, \mathbf{k}')| \otimes (\mathbf{k}, \mathbf{k}')$,

where $(\ell, \ell') = (k_1, \ldots, k_n, k'_1, \ldots, k'_{n'})$. With respect to this product, d is a derivation.

PROPOSITION 5.1. $\mathscr{S} \otimes \mathscr{W}$ is a resolution of \mathscr{S}/\mathscr{K} .

Proof. Consider the complex

$$0 \stackrel{d_0}{\longleftrightarrow}_{h_0} \mathscr{K} \stackrel{d_1}{\longleftrightarrow}_{h_1} \mathscr{S} \otimes \mathscr{W}^1 \qquad \cdots.$$

Let Mon (\mathcal{K}) be the set of all monomials in \mathcal{K} . Define a map $\sigma: Mon (\mathcal{K}) \rightarrow K$ such that

The contracting homotopy is defined by

$$h_n(\mathfrak{o}\otimes \mathfrak{k}) = \mathfrak{o}\cdot |\mathfrak{k}|/|(k,\mathfrak{k})|\otimes (k,\mathfrak{k}),$$

where $k \in \mathcal{W}^n$, $s \in Mon(\mathcal{S})$ and $k = \sigma(s \cdot |k|)$.

Now let \mathscr{B} be a free, graded-commutative algebra generated by $b_i l \in L$, and suppose L has an ordering which is consistent with the degrees of the b_i 's. Let $J = \{j \in L | \deg b_j \text{ is odd}\}$. Suppose $\mathscr{I} = (c_i, i \in I) \subseteq \mathscr{B}$ is an ideal, generated by monomials and let $\sigma' \colon \text{Mon } (\mathscr{I}) \to I$ be a map satisfying (5.2). In order to construct a \mathscr{B} -free resolution of \mathscr{B}/\mathscr{I} , let $\mathscr{S} = \mathscr{S}(\mathscr{B})$ be the free, skew algebra as constructed above and let $\mathscr{J} = ((b_j)^2, j \in J)$. Clearly, $\mathscr{S}/\mathscr{J} \cong \mathscr{B}$ as gradedcommutative algebras. Let $\mathscr{K} \subseteq \mathscr{S}$ be the ideal with generators

$$Mon_0 (\mathscr{K}) = \{c_i, i \in I\} \cup \{(b_j)^2, (b_j)^3, \dots, j \in J\}.$$

The corresponding index set is $K = I \cup K'$, $K' = J \times N'$, where N' is the set of integers larger than 1.

We decompose $\sigma \in \text{Mon}(\mathscr{S})$ into $\sigma = \sigma' \cdot \sigma''$, where $\sigma' = b_{l_1} \cdots b_{l_r}$ $(l_1 < \cdots < l_r)$ is the linear part of σ and $\sigma'' = (b_{j_1})^{\eta_1 - 1} \cdots (b_{j_s})^{\eta_s - 1}$, $j_1 < \cdots < j_s, j_v \in J, \eta_v \ge 2$ and $(b_{j_v})^{\eta_v} | \sigma$. Define $\sigma(\sigma)$ as follows: If $\sigma \in \text{Mon}(\mathscr{I})$, then $\sigma(\sigma) = \sigma'(\sigma)$. If $\sigma \notin \text{Mon}(\mathscr{I})$, i.e., if $s \ge 1$, let v be maximal such that $\eta_v = \max \{\eta_1, \ldots, \eta_s\}$ and define $\sigma(\sigma) = k = (j_v, \eta_v)$, i.e., $\sigma_k = (b_{j_v})^{\eta_v}$. σ satisfies (5.2).

Let $\mathscr{V}^0 = \mathbf{k}$ and let $\mathscr{V}^n \subseteq \mathscr{W}^n$ be spanned by the elements

$$\mathbf{k} = (i_1, \ldots, i_r, j_1^{\eta_1}, \ldots, j_s^{\eta_s}),$$

where $n = r + \eta_1 + \cdots + \eta_s - 1$, $\eta_v \ge 2$, and j^{η} , $j \in J$, denotes the sequence $(j, \eta), \ldots, (j, 2)$ in K. $\mathscr{B} \otimes \mathscr{V}$ is closed under multiplication and the projection $\mathscr{W}^n \to \mathscr{V}^n$ induces a differential d and a contracting homotopy in $\mathscr{B} \otimes \mathscr{V}$, whence:

PROPOSITION 5.2. $\mathscr{B} \otimes \mathscr{V}$ is a resolution of \mathscr{B}/\mathscr{I} .

104

Note that, by construction of the induced differential in $\mathscr{B} \otimes \mathscr{V}$, $|\mathscr{K}| / |\mathscr{K}_{\kappa}| \otimes \mathscr{K}_{\kappa} = 0$ in (5.1), if $\mathscr{K}_{\kappa} \notin \mathscr{V}$.

We define the degree of $\ell \in \mathcal{V}^n$ by deg $\ell = \deg |\ell| - n$, where deg $|\ell|$ is the degree in \mathscr{S} . With respect to this degree, d becomes a coboundary operator. On the other hand, $\mathscr{M} = \mathscr{M}(\mathscr{B}/\mathscr{I}) = \mathscr{B} \otimes \mathscr{F}$ produces a \mathscr{B} -free resolution of \mathscr{B}/\mathscr{I} . Hence, there is a chain morphism $\phi : \mathscr{B} \otimes \mathscr{V} \to \mathscr{B} \otimes \mathscr{F}$ such that $H^*(\mathscr{V}) \cong$ Tor $\mathscr{B}(\mathscr{B}/\mathscr{I}, \mathbf{k}) \cong H^*(\mathscr{F})$ as graded vector spaces. Now $\phi | \mathscr{V} : \mathscr{V} \to \mathscr{F}$ is not an algebra morphism, however the induced map $\phi^* : H^*(\mathscr{V}) \to H^*(\mathscr{F})$ is actually a ring isomorphism.

Consider now the case of a truncated algebra $\mathscr{B}/\mathscr{I}^{(M)}$ more in detail. We assume that the generators $b_l, l \in L$, of \mathscr{B} are labeled as in the proof of Theorem 4.1. In order to express the base in Corollary 4.6 in terms of the complex \mathscr{V} , we define a mapping $| : \text{Mon}(\mathscr{A}) \to \mathscr{S}$ by $|a_{\ell;m}| = |a_{\ell}| \cdot |a_m|$, where $|a_{\ell}| = b_{l_1} \cdots b_{l_p}$, $|a_m| = b_{m_1} \cdots b_{m_q}$, $\sum^{-1} b_{m_{\lambda}} = u_{m_{\lambda}}$ (see Section 4). Let \mathscr{I} be the linear part of $|a_m|$ and let $b_{n_1} \cdots b_{n_r}$ be the largest divisor of \mathscr{I} such that $b_{n_{\mu}} \cdot |a_{\ell}| \neq 0$ in $\mathscr{B}, \mu = 1, \ldots, r$. It follows that

$$|a_{m}| = b_{n_1} \cdots b_{n_r} \cdot (b_{j_1})^{\eta_1 - 1} \cdots (b_{j_s})^{\eta_s - 1}, \quad j_{\nu} \in J, \, \eta_{\nu} \ge 2,$$

and $(b_{j_v})^{\eta_v} | |a_{\ell;w}|$, v = 1, ..., s. Now let $a_{\ell;w} \in A$ and define $c_{i_1}, ..., c_{i_r} \in Mon_0 (\mathscr{I}^{(M)})$ by

$$c_{i_1} = b_{n_1} \cdot |a_\ell|,$$

$$c_{i_\mu} = b_{n_\mu} \cdot s_\mu, \quad i_\mu = \sigma(b_{n_\mu} \cdot s_{\mu-1}), \ s_1 = |a_\ell|, \ \mu = 2, \ \dots, \ r.$$

PROPOSITION 5.3. The elements $\mathscr{k} = (i_1, \ldots, i_r, j_1^{\eta_1}, \ldots, j_s^{\eta_s}) \in \mathscr{V}^n$, $n = r + \eta_1 + \cdots + \eta_s - s$, such that

(1)
$$|(i_1, ..., i_r)| = b_{n_1} \cdot \cdots \cdot b_{n_r} \cdot s_1, n_1 < \cdots < n_r, c_{i_\mu} = b_{n_\mu} \cdot s_\mu,$$

 $i_\mu = \sigma(b_{n_\mu} \cdot s_{\mu-1}), \mu = 1, ..., r,$

(2) $b_{i_v} | |(i_1, ..., i_r)|, \eta_v \ge 2, v = 1, ..., s, and$

(3) either $n_1 \leq l_0$, if $n_1 \notin J$ or $n_1 < l_0$, if $n_1 \in J$, where b_{l_0} is the minimal degree element dividing s_1 , form a base of $H^*(\mathscr{V})$.

COROLLARY 5.4. Let $\mathcal{U}^n \subseteq \mathcal{V}^n$ be spanned by the elements in Proposition 5.3. $\phi(\mathcal{B} \otimes \mathcal{U}) \subseteq \mathcal{B} \otimes \mathcal{F}$ is a subcomplex and in fact is a minimal resolution of $\mathcal{B}/\mathcal{I}^{(M)}$. $\phi \mid \mathcal{B} \otimes \mathcal{U}$ is injective.

6. Twistings

Let $\mathscr{B}_0 = \mathscr{B}, \mathscr{I}_0 = \mathscr{I}^{(M)}, \mathscr{M}(\mathscr{B}_0/\mathscr{I}_0) = \mathscr{B}_0 \otimes_{t_0} \mathscr{F}_0$. The generators of \mathscr{B}_0 are denoted by $b_{0,l}, l \in L_0$. Let $\mathscr{B}_1 \subseteq \mathscr{F}_0$ be the subalgebra generated by $b_{1,l}, l \in L_1$, where $b_{1,l} = \phi(\mathscr{K}), \mathscr{K}$ running through the elements defined in Proposition 5.3. It follows that $\mathscr{F}_0 = \mathscr{B}_1 \otimes_{t_1} \mathscr{F}_1$ is the natural decomposition of \mathscr{F}_0 .

According to (5.1) the twisting t_0 of the elements in \mathscr{B}_1 is given by

(6.1)
$$t_0(b_{1,l}) = t_0(\phi(\mathscr{k})) = \sum (-1)^{\kappa} |\mathscr{k}| / |\mathscr{k}_{\kappa}| \otimes \phi(\mathscr{k}_{\kappa}).$$

Since \mathscr{F}_0 is the minimal model of the cohomology of a wedge of spheres it follows that $H^*(\mathscr{F}_0) = \mathscr{B}_1/\mathscr{I}_1$, where \mathscr{I}_1 is the ideal generated by all pairwise products of the generators of \mathscr{B}_1 , and therefore $\mathscr{M}(\mathscr{B}_1/\mathscr{I}_1) = \mathscr{F}_0 = \mathscr{B}_1 \otimes \mathscr{F}_1$.

Although \mathscr{B}_1 is in general generated by infinitely many elements, a direct limit process gives the following description of $H^*(\mathscr{F}_1)$:

PROPOSITION 6.1. Let \mathscr{V}_1 be the complex \mathscr{V} obtained by replacing \mathscr{B} with \mathscr{B}_1 and \mathscr{I} with \mathscr{I}_1 in Proposition 5.2. Let L_1 , the index set of the generators of \mathscr{B}_1 , be given an ordering which is consistent with the degrees of the $b_{1,i}$'s. The elements

 $(i_1, \ldots, i_r, j_1^{\eta_1}, \ldots, j_s^{\eta_s}) \in \mathscr{V}_1^n, \quad i_\mu \in I_1, j_\nu \in J_1, n = r + \eta_1 + \cdots + \eta_s - s,$

such that

(1)
$$|(i_1, \ldots, i_r)| = b_{1,n_1} \cdots b_{1,n_r} \cdot b_{1,l_0}, n_1 < \cdots < n_r,$$

 $c_{1,i_{\mu}} = b_{1,n_{\mu}} \cdot b_{1,l_0} \in \mathcal{I}_1, \ \mu = 1, \ldots, r,$

(2) $b_{i,j_{\nu}} | |(i_1, ..., i_r)|, \eta \ge 2, \nu = 1, ..., s, and$

(3) either $n_1 \leq l_0$ if $n_1 \notin J$ or $n_1 < l_0$ if $n_1 \in J$

form a base of $H^*(\mathcal{F}_1)$.

We have therefore the following result.

THEOREM 6.2. Let \mathscr{B}_0 be a minimal DGA with trivial differential and let $\mathscr{I}_0 = \mathscr{I}^{(M)}$ be an ideal truncated at degree M. Let $\mathscr{M}(\mathscr{B}_0/\mathscr{I}_0) = \mathscr{B}_0 \otimes \mathscr{F}_0$ and $\mathscr{F}_{n-1} = \mathscr{B}_n \otimes_{t_n} \mathscr{F}_n$, n = 1, ..., be the natural decompositions.

(1) $H^*(\mathscr{F}_{n-1}) = \mathscr{B}_n/\mathscr{I}_n, n \ge 1$, where $\mathscr{I}_n = (\mathscr{B}_n^+)^2$. The twisting t_{n-1} in \mathscr{F}_{n-2} of the generators of \mathscr{B}_n is given by formulas corresponding to (6.1).

(2) $\mathcal{M}_n = \mathcal{B}_0 \otimes \cdots \otimes \mathcal{B}_n$ is a sub-DGA of \mathcal{M} and $\mathcal{M} = \text{inj lim } \mathcal{M}_n$ as DGA.

Remark 6.3. Let \mathscr{M} be any minimal DGA with natural decomposition $\mathscr{M} = \mathscr{B}_0 \otimes \mathscr{F}_0$. Let $\mathscr{F}_0 = \mathscr{B}_1 \otimes \mathscr{F}_1$ be the natural decomposition of \mathscr{F}_0 . In general, $\mathscr{B}_0 \otimes \mathscr{B}_1$ is not invariant under the differential of \mathscr{M} . There is, however, a certain subalgebra $\mathscr{B}'_1 \subseteq \mathscr{B}_1$, such that $\mathscr{B}_0 \otimes \mathscr{B}'_1$ is a sub-DGA of \mathscr{M} . One has then a similar situation as in (2) above.

Remark 6.4. If the conjecture in Remark 2.2 is true, it would follow that (2) of Theorem 6.2 holds for any minimal DGA \mathscr{B} with trivial differential and any ideal $\mathscr{I} \subseteq \mathscr{B}$.

Remark 6.5. The computation of the twisting t_0 of, say, the generators of \mathscr{B}_2 is more complicated than in (6.1). For instance, the elements of \mathscr{B}_2 hitting the generators $c_{1,i}$ of the ideal $\mathscr{I}_1 \subseteq \mathscr{B}_1$ are of two different types depending on whether or not the $c_{1,i}$'s, which are products, are zero in \mathscr{V}_0 . If $c_{1,i}$ is nonzero in

 \mathscr{V}_0 , the element in \mathscr{B}_2 hitting $c_{1,i}$ is in fact the ϕ -image of a certain $\mathscr{E} \in \mathscr{V}_0$ and its twisting t_0 can be obtained by (6.1). In the other case the construction of the element hitting $c_{1,i}$ is more complicated; it can be done inductively. We omit details.

REFERENCES

- 1. R. BOTT AND H. SAMELSON, On the Pontryagin product in spaces of paths, Comment. Math. Helv., vol. 27 (1953), pp. 320-337.
- 2. E. FRIEDLANDER, P. A. GRIFFITHS, AND J. MORGAN, Homotopy theory and differential forms, Seminario di Geometria, Firenze, 1972.
- 3. I. M. GELFAND AND D. B. FUKS, Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk. SSSR, vol. 34 (1970), pp. 322–337.
- 4. C. GODBILLON, Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki, 1972/73, No. 421.
- 5. J. W. MILNOR AND J. C. MOORE, On the structure of Hopf algebras, Ann. of Math., vol. 81 (1965), pp. 211–264.
- 6. L. SMITH, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc., vol. 129 (1967), pp. 58–93.
- 7. D. SULLIVAN, Differential forms and the topology of manifolds, Proc. Conference on Manifolds, Tokyo, 1973.
- 8. ———, Infinitesimal computations in topology, Ann. of Math., to appear.
- 9. WEN-TSÜN WU, Theory of I*-functor in algebraic topology, Scientia Sinica, vol. 18 (1975), pp. 464-482.

Harvard University Cambridge, Massachusetts