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RESIDUAL MEASURES

BY

THOMAS E. ARMSTRONG AND KAREL PRIKRY

Abstract

We define residual measures on topological spaces as a simultaneous general-
ization of the normal Radon measures of Dixmier and the category measures
of Oxtoby. We examine the regularity, z-smoothness, tightness, and support
properties of residual measures. We show that residual measures without sup-
port exist iff real-valued measurable cardinals exist. In the compact setting we
associate with any compact Hausdorff space X a larger Stonian compact Haus-
dorf space, the Gleason space of X, such that there is a bijective correspon-
dence between the residual measures on these spaces and the residual Radon
measures on these spaces. Hence, we lift the question of existence of certain
types of residual measures to the Stonian setting of Dixmier.

1. Residual measures on completely regular Baire spaces

Let X be a topological space. Let Z(X) E denote the a-algebra of subsets
of X with the property of Baire. Let r/(X)= r/denote the a-ring of meager
subsets of X. Since A 6 r/implies B 6 r/for all B c A, r is a complete a-ideal in
Y. When ordered by inclusion r/is Dedekind complete. The Boolean algebra
Z/r/ is a complete Boolean algebra. We let a a’(X) denote the Boolean
algebra of all regular open sets in X and we let aT(X) denote the Boolean
algebra of all regular closed sets in X. When X is a Baire space, , z,7 and E/rt
are isomorphic Boolean algebras. If A denotes symmetric difference the iso-
morphism between a’ and E/r/assigns to 0 its equivalence class 0 A r/=
{0 A N: N r/} Z/r/and the isomorphism between z and assigns to 0
its closure, 0, which lies in . These results may be found in [7], [11], or [20].
The Borel sets (X) in X have as a a-ideal the a-ring M r/ofmeager

Borel sets. The completion, measure theoretically, of r/is r/. The a-algebra
X; is obtained as the completion of with respect to r/since X; {0 A N:
N e rl, O }.

DEFINITION. (1) # e M/ (X, X;) is a residual measure iff r/c #- 1{0}.
(2) A residual measure is a cateaory measure iff rt =/-{0} iff/(0) > 0

when 0 is a nonempty open set.

Remark. (1) Residual measures are just those elements ofM/ (X, X;) aris-
ing from countably additive functions from Z/r/into [0, m).
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(2) / 6 M/ (X, 5’.) is residual iff #(c9C) 0 when C is a closed set.
(3) If # is residual and v is absolutely continuous with respect to # then v is

residual. Consequently, iff 6 L / (X, 2;,/), thenf. # is residual. In particular if
A 6 E then ;a # is residual. The restriction of # to A 6 E is a residual measure
on A. If v is a measure on A 6 E it may be extended to a residual measure on X
by setting v(X\Jt)= 0 iff, when A 0 A N with 0 open and N r/ then v is
residual on O\N and v(A N)= O.

(4) Residual measures/ can also be characterized by the fact that iffis a
bounded upper semicontinuous function with lower semicontinuous regular-
ization f then f dp f d#. See Proposition 2 of [2].

(5) Residual measures are uniquely determined by their restriction to the
Borel algebra, hence may be regarded as Borel measures.

(6) Any X which possesses a category measure is a Baize space.

We recall from [22, p. XII] that a measure # is regular iff it is regular with
respect to the paving (X) of closed sets in X. It is easily verified, from
the identity #(F) #(F) #(--0-) for residual measures, that a residual meas-
ure is regular iff it is regular with respect to the paving . It is shown in
Proposition 22.3 of [11] that any category measure on a regular Baire space is
regular. We may ask whether any residual measure on a regular Baire space is
regular.

In [22, p. XII] a Borel measure # is said to be z-smooth iff whenever
{F} is a decreasing family (i.e., filtering to the left) with intersection F one
has #(F) lim #(F). It is known, [22], that any z-smooth Borel measure/ on
a completely regular space has a closed support and is regular. For residual
measures we have the following proposition.

PROPOSITION 1. Let # be a residual measure on the topological space X.
Consider the following:

(a) la is z-smooth;
(b) supp(t)exists;
(c) 1 is regular.

When X is a completely regular space, (a).(b). When X is a regular Baize
space, (b)=:, (c). All three are equivalent if X is compact.

Proof Let X be a regular Baire space. If supp (#) exists it must belong to
sT. On supp (/),/ is a category measure. Hence, by Proposition 22.3 of [11],/
is regular on supp (/). The regularity of # on X follows immediately. Thus (b)
implies (c).

Let X be a completely regular space. That (a) implies (b) is known.
Let supp (#) exist. To show that/ is z-smooth let {F,} c be a decreasing

family with intersection F. Let lim,/(F,) p > 2 #(F) =/(F). We must
show that p 2. By considering F’, F, \F we may assume that F 0 hence
that 2 0. If{F," n Z+ c {F,} is a decreasing sequence with intersection F
and with/(F) lim,oo/(F,) p we find that/(Foo \F,)= 0 for all . If we



66 THOMAS E. ARMSTRONG AND KAREL PRIKRY

let F F, c F(R) then {F} = decreases to F and #(Fog \F) 0 for all .
Consequently, F\F F\F, is an open subset of X\supp (#) for all a. Since

) (Foo \F,)= Foo \( F,) Foo \F c X\supp (#)

we have p =/(Foo) #(V) #(F \F) + #(F)= 0 2. This establishes that

If X is compact, any regular # is Radon hence is z-smooth. Consequently, in
this ease, (e) = (a). |

COROLLARY 1.1.
z-smooth.

Any category measure on a completely regular space is

Remark. The equivalence of z-smoothness and regularity for Borel meas-
ures on a completely regular space X is the definition of Borel measure com-
pactness of X in [4]. Consequently, if X is Borel measure compact (a), (b), and
(c) are equivalent for residual measures.
A cardinal number n is said to be real-valued measurable, or an R-cardinal, iff

there is a discrete space T of cardinality n and a positive eountably additive #
on 2r such that #({t}) 0 for all e T. A cardinal which isn’t an R-cardinal is
called a non-R-cardinal. These cardinals were first investigated by Ulam. Solo-
vay [21] has introduced a more restrictive definition of real-valued measurable
cardinals where the measures satisfy a stronger additivity condition. Since no
new phenomena seem to arise if we consider a higher degree of additivity, we
will not be concerned with this notion of real-valued measurability.

It is known that the existence of R-cardinals is independent of the Zermelo-
Fraenkel axioms of set theory even with the axiom of choice. If R-cardinals
exist the least such cardinal must be very large (weakly inaccessible) but maybe
as small as the cardinality of the continuum. Note that if n is an R-cardinal all
larger cardinals are R-cardinals. Non-R-cardinals are dosed under finite pro-
ducts and under sums with at most a non-R-cardinal number ofsummands. No
is a non-R-cardinal. We refer the reader to [21] for more specific details.
We call a topological space R-Lindelof iff any collection {0} ofopen sets has

a subeollection, {0’,: t e F}, with the same union with card (F) a non-R-
cardinal. We say that the space is weakly R-Lindelof iff no disjoint collection of
opens has an R-cardinal as its cardinal number. Any topological space with a
base whose cardinal is a non-R-cardinal is R-Lindelof.

PROPOSITION 2. (a) If X is a completely regular space which is weakly
R-Lindelof then any residual measure is z-smooth.

(b) IfX is metrizable and has a dense set whose cardinal number is a non-R-
cardinal all residual measures on X are z-smooth.

Proof (a) By Proposition 1, if # is residual we need only show that supp (#)
exists. If it exists it is the complement ofthe union, U, of all open sets which are
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/t-negligible. Supp (#) exists iff#(U) 0. Let us assume that #(U) > 0. Let be
a maximal collection {o,: e V} of disjoint open sets which have the property
that #(o) 0 for all 0 e F. Let V . We assert that/t(V) #(U) > 0.
Note that V U and that if U didn’t lie in I7 there would exist an open
o U\I7 with
Since U\V e\V 1, #(U\V) 0 so #(V)= #(U) > 0.
On the discrete space F define/(F’) #(L,) {o: F’}), F’ F. Observe

that is positive countably additive, that if r" then ({})= 0, and that
(V) > 0. The existence of implies that card (F) is an R-cardinal. This contra-
dicts the assumption on X. We conclude that/z(U) 0 and that supp (/z) U*.

(b) IfX is a metric space, {x," 0 V} is a dense subset and N is a countable
base of neighborhoods for x, for 1" then N L,) N is a base for X whose
cardinality is at most o" card (V). If card (V) is a non-R-cardinal then X is
weakly R-Lindelof.

Remarks. (1) (b) may be generalized to include the case where X has a base
for its uniform structure and a dense subset both of which have a non-R-
cardinal number.

(2) Because of the uncertainty on the size of R-cardinals and because the
continuum hypothesis could be assumed to hold the only consequence of (b)
that we may be sure of is that in a separable metric space all residual measures
are ,-smooth but this is already a consequence of the fact that all Borel meas-
ures on a separable metric space have a support.

PROPOSITION 3. The following are equivalent.

(a) There exists an R-cardinal.
(b) There exists a residual non-z-smooth measure on some compact Hausdorff

space.
(c) There exists a residual, regular, non-z-smooth measure on some locally

compact Hausdorff space.

Proof It is clear that both (b) and (c) imply (a). Conversely given (a) we will
construct examples of (c) and of (b).

Let T be a discrete space whose cardinal is real-valued measurable. Let # 0
be a countably additive real function on 2r with #({t})--0 for all t T. It is
easily verified that # is a regular, residual measure on the locally compact T
which has no support. This establishes that (a) (c). Let T* be the one point
compactification, Y u {o}, of Y. We verify that (T*) 2r* and that r/(Y*)
{, {}}. Extend # to E(T*) by setting #(A)= #(A c T) for all A c T*. The
measure/t on T* is residual but is easily seen to have no support. Consequently
(a) (c). |

We recall from [22] that a Borel measure # on X is said to be tight or Radon
iff, for any Borel set A, #(A) sup {#(K): K A, K YF(X)} where (X)is
the paving on X consisting of compacts. We will reserve the term Radon for
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measures on locally compact spaces. If X is a complete metric space or is a
locally compact space all z-smooth measures are tight, [22]. Conversely any
tight measure is z-smooth. Therefore an equivalent to part (c)of the preceding
proposition is the existence of a regular residual measure on a locally compact
space which isn’t a Radon measure.

Corollary 1.1 shows that when X is a complete metric space, a locally com-
pact space or a residual Borel subset of such a space all category measures on X
are tight. Hence, all residual measures with support are tight on these spaces.
The following proposition shows that on metric spaces nonzero residual

measures usually have to be purely atomic.

PROPOSITION 4. Let X be metrizable.

(1) There is a nonzero z-smooth residual measure on X iffX has an isolated
point.

(2) If R-cardinals don’t exist, nonzero residual measures exist on X iffX has
an isolated point.

(3) If X is separable, or more 9enerally, is weakly R-Lindelof there is a
nonzero residual measure on X iff X has an isolated point.

Proof If X has an isolated point x then 6 is a nonzero residual measure
which is -smooth. Conversely, if is a residual measure and x X with
p({x}) > 0 then x is isolated. For the rest of the proof we assume that X has no
isolated points.

(1) If/ is a z-smooth residual measure, by Proposition 1, it has a support Y
and p is a category measure on Y. Theorem 18 of 12], shows that if Y then
Y is the closure of its countable set of isolated points and that each isolated
point y of Y has/({y}) > 0. Since this is impossible, # 0.

(2) If there are no R-cardinals, Proposition 2(b) shows that all residual
measures on X are z-smooth.

(3) Proposition 2(a) shows that all residual measures on X are
z-smooth. |

We now construct an example of a compact Hausdorff space X which isn’t
R-Lindelof such that all residual measures are z-smooth. In fact, all residual
measures are zero. This example is built on the space [0, 1] which, by Proposi-
tion 4, admits no nonzero residual measures. We let T be a discrete space
with an R-cardinal, let T* denote the one point compactification of T and let
X [0, 1] x T*. That X is not weakly R-Lindelof is immediate. If/ is a
residual measure on X we define the measure m on [0, 1] by setting m(A)=
/(A x T*). It is easily checked that m is residual on [0, 1] hence is 0. Con-
sequently/t(X) 0.
The preceding example brings forth the question of existence of residual

measures on product spaces. The following proposition answers most of this
question.
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If/ is a measure on a product space X x Y, its marginal distribution v on X
is that measure such that v(A) #(A x Y) when A x Y is p-measurable.

In [1] or [13], the notion of a pseudobase of a topological space is defined as
a generalization of a base of a topological space. A collection of open sets is a
pseudobase of a topological space iff every open set contains a member of.
Any space possessing a countable pseudobase is separable.

PROPOSITION 5. (a) IfX is a topological space which has no nonzero resi-
dual measures and Y is a topological space then X x Y has no nonzero residual
measures.

(b) Let X be a topological space with a countable pseudobase and let Y be a
topological space. If la and v are residual measures on X and Y respectively, then
x v is a residual measure on X x Y.
(c) If {X: 0 F} is an infinite collection of topological spaces possessing

nonempty nondense open subsets there is no nonzero residual measure on
x I-I {x=: + r}.

Proof (a) This is immediate from the preceding example.
(b) We must show that when N rl(X x Y) then (/ x v)(N) 0. We may

assume that N is a Borel set; hence is/ x v measurable. For any y Y let
N(y) {x: (x, y) N} c X. The category version, (1.1) of [13], of Fubini’s
Theorem shows that, except for a meager set of y in Y, N(y) is meager in X.
Thus, except for a v-negligible set of y in Y, N(y) is/-negligible. The classical
Fubini Theorem shows that (/ x v)(N)= O.

(c) Let Fo be a countable subset of F and let

Xo 1-I + Co}.
Part (a) of this proposition shows that to establish (c) it is.enough to show that
if p is a residual measure on Xo then p 0. Let {Fi: j N} be a partition of Fo
with card (Fi) j + for j N. Since there is a nondense nonempty open set
in X, there are at least two disjoint open sets in X, for all 0 F. There is a
disjoint family G of nonempty open subsets of Xi= I-I {x,. Fi} with
card (Gi) 2i+ for any j N. Let #i be the marginal distribution of/ on Xi.
For any j there is a 0 G with pi(0i)< 2 -i-1 If we set Fi= Xi\O and
F H=l F = Xo then

/h(Fi) >_ (1 2 -i- 1)lj(Xj)- (1 2 -i-

hence/(F) > [1 j= 2 -i- 1]./(Xo) 1/2/(Xo). Since F is nowhere dense in
Xo and/ is residual, 0 =/(F) 1/2/(Xo). This establishes (c). |

Remarks. (1) (b) holds for finite products as long as one factor has a count-
able pseudobase. The limitation of the validity of (b) to products with one
factor having a countable pseudo base appears from the category version of
Fubini’s theorem in [13].

(2) If X is a topological space such that any open set is dense either X is
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meager or every nonempty open set is residual. In the first case there are no
residual measures on X. In the second case the nonempty open sets form a filter
base whose associated filter " has the property that countable intersections of
its elements are nonempty; in fact, they are dense. There is, in this case, a
uniquely determined category measure on X with/(Y) 1 if Y e ’.

Let X be a space such that every nonempty open set is dense for F. IfX
is 1-I {x. e F} then every nonempty open set in X is dense. It may be shown
that X is not meager iff each X is not meager. Consequently, if each X has a
nonzero residual measure for all ct e F so does X.

Let T be an infinite set with the cofinite topology. Any nonempty open set is
dense in T and T is meager iff it is countable. Consequently, if T is uncountable
T possesses a nonzero category measure. This fact shows that (c) of Proposi-
tion 5 doesn’t have any significant extensions.

(3) The usual cases of interest for applying (c) are products of metric
spaces, of compact Hausdorff spaces, or locally compact Hausdorff spaces.
Products of discrete spaces have been examined before. In particular (c) applies
to an infinite power of a discrete space such as NN or {0, 1}m for some infinite
cardinal number m. Sudderth and Purves have established results in [17]
having as a corollary the validity of (c) for Xs where X is an infinite discrete
space.

(4) If X has no nonzero residual measure, every Borel measure on X
assigns full measure to some meager .

2. Residual measures on compact Hausdorff spaces

If X is a compact Hausdorff space, by Proposition 1, the residual Radon
measures, the z-smooth residual measures, and the residual measures with sup-
port are the same.

Dixmier [2] appears to be the first to consider residual Radon measures on
any compact Hausdorff space. The compact Hausdorff spaces he works with
are the Stonian or extremally disconnected spaces in which the closure of every
open set is open. When X is a Stonian compact Dixmier defines a normal
measure on X to be a residual Radon measure, r// (X) denotes the cone of all
normal measures on X and r/(X) // (X)- r// (X) is the vector space of all
signed normal measures on X.

Stonian compact Hausdorff spaces are totally disconnected in that the Bool-
ean algebra of clopen sets forms a basis for the topology. Between the totally
disconnected compact Hausdorff spaces and the extremally disconnected com-
pact Hausdorff spaces are the basically disconnected compact Hausdorff spaces
in which every Baire open set has open closure and every closed Baire set has
closed interior, [5].

It is known that a compact Hausdorff space X is totally disconnected iff the
unit ball of (X) is the uniformly closed convex hull of its extreme points. X is
basically disconnected iff ca(X) is Dedekind a-complete as a vector lattice. X is



RESIDUAL MEASURES 71

extremally disconnected iff cg(X) is a Dedekind complete vector lattice [5], 19].
If is any Boolean algebra its Stone spaceX is constructed either as the set

of all maximal ideals in or of all ultrafilters on . We use the latter definition.
To any A one associates the subset [A] ofX consisting of all ultrafilters
on containing A. The Stone correspondence (I)" A [A] is an isomorphism
of onto a Boolean algebra of subsets of X. Taking () as a base for a
topology on X we obtain the Stone topology on X which is known to be
compact, Hausdorff and totally disconnected with *(’)the algebra of clopen
sets in X. Any totally disconnected compact Hausdorff space is (homeomor-
phic to) the Stone space of its algebra of clopen sets. X is basically discon-
nected iff is a-complete and X is Stonian iff is complete.

It is useful to note that any clopen set is a regular open set and a regular
closed set. A compact Hausdorff space is Stonian iff every regular open set is
clopen iff every regular closed set is clopen. Consequently, if X is a Stonian
compact Hausdorff space, X is the Stone space of (X) or of Z(X)/rI(X).

If # is an additive real function of bounded variation on the Boolean algebra
(i.e., # e BA()) there is a corresponding Radon measure onXdefined by

the requirement that ([A]) =/(A) for all A . The correspondence/--,/t is
known to be a Banach lattice isomorphism from BA() (with the variation
norm) onto /’(X). Under this isomorphism the cone FA+() of positive
elements of BA() is carried onto /+(X). The Banach lattice CA()of
countably additive elements ofBA() is isomorphic under this isomorphism to
the closed sublattice of /(X) consisting of those/t with I (N) 0 for any
nowhere dense Baire compact set N. If we extend Luxemburg’s definition [9] of
a normal measure on from the case with complete to the case where is
an arbitrary Boolean algebra we find that they are precisely those/ FA /()
such that/t is a residual measure in /// (X). With complete,/ is normal on

for Luxemburg’s definition iff is normal on the Stonian compact Hausdorff
space X.
The importance of normal measures on Stonian spaces is demonstrated in

this theorem due essentially to Dixmier in [2].

THEOREM. Let X be a compact Hausdorffspace. In order that c(X) be a dual
Banach space it is necessary and sufficient that X be Stonian and that rl

+ (X)
separate functions in c(X). If this is the case, rl(X is the unique subspace of
d#(X) predual to c(X).

The Stonian compact Hausdorff spaces X with r/+ (X) separating (g(X) are
called hyperstonian by Dixmier. r// (X) separates cg(X) iff for every open set
0 :/: 0 there is a nonzero normal measure/ with supp (/) c 0. If this is the case
it is possible to construct a dense open Y c X and a v dg+ (Y) such that on Y
all elements of r/+ (X) are absolutely continuous with respect to v and such that
v(A) 0 in Y iff A r/(Y). The mapping p--* dla Ir/dv is a Banach lattice iso-
morphism of r/(X) onto L1(, v). This was established by Dixmier in [2]. Note
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that supp (v) Y and that in general v(Y) oz. In fact, v can be constructed
so that v(Y) < o iff X has a category measure. We have cO(X) isomorphic to
L(Y, v) as a Banach lattice since rl(X) is isomorphic to L(Y, v).

If (S, ,/) is a positive measure space with L(S, , l) the dual of
La(S, , la) then L(S, , !) is isomorphic with cg(X) for some compact hyper-
stonian X, L(S, 3, #) is isomorphic to q(X) and L’(S, Y), #) is isomorphic to
#(X) as Banach lattices. X is the Stone space of the complete Boolean meas-
ure algebra of/ which is modulo the #-negligible sets. In this case we may
define the dense open set Y = X as {[A]:/(a) < o} where [a] is the clopen
set in X corresponding to the equivalence class of A in the measure algebra
of/. Defining v([A]) =/(A) for A we obtain an element v of //+ (Y) with
v(N) 0 if N rl(Y). We find that La(Y, v), rl(X), and L(S, , la) are isomor-
phic as Banaeh lattices as are L(Y, v), cg(y), cg(X), and L(S, Y3, I) and as are
L’(Y, v), l(X) and L’(S,
Of particular importance is the case where the Stonian compact Hausdorff

space X has a category measure. This is true iff X is the Stone space of the
measure algebra of a finite measure iff the union of all the supports of normal
measures on X is a dense t-compact open set. Such a space X is called a
measurable Stonian compact Hausdorff space in accordance with the termino-
logy of [12].
One might suppose that if X were a compact Hausdorff space such that the

residual Radon measures separated rg(X) then X would automatically be
hyperstonian. That this is not the case may be seen by considering compact
Hausdorff spaces X which have a dense set of isolated points. All scattered
compact Hausdorff spaces, as in [19], are of this form. The discrete measures
concentrated on the isolated points are the only residual Radon measures on
such a space. Consequently, if X is a compact Hausdorff space with a dense set
T of isolated points then 11 + (T) is (isomorphic to) the set of residual Radon
measures on X. If X were to be hyperstonian then cg(X), when restricted to T,
would be l(T) Ca(T). This is the case, when T is infinite, iff X is the Stone-
Cech compactification, fiT, of T. When T is infinite there are uncountably
many compactifications X of T other than fiT. The Alexandroff
compactification X T w {} is a totally disconnected compact Hausdorff
space which isn’t extremally disconnected yet the residual Radon measures
separate cg(X). If we let T c R2 be the set

{(k/n, l/n)" 0 <_ k <_ n}
n=l

then X=]F is the compact set [[0, 1] x{0}]w T. No point (2,0) with
0 <_ 2 < 1 has a base of elopen neighborhoods in X. Thus, X is a compact
metric space with a category measure which isn’t totally disconnected. Note
that Theorem 18 of [ 12], or Proposition 4, show that a compact metric space X
has a category measure iff it is the closure of its isolated points iff the residual
Radon measures on X separate c(X). Finally, we note that the compact Haus-
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dorff spaces X such that all residual Radon measures are discrete and separate
rg(X) are precisely those X with dense isolated points.

If is the Boolean algebra of clopen subsets of a totally disconnected
compact Hausdorff space X then X has a dense set of isolated points iff every
element of :\{0} contains an atom of. We recall 16] that a dense subset S of
a Boolean algebra ’ is one such that every A ’\{} contains an element ofS
other than . Thus, X has a dense set of isolated points iff the atoms of are
dense in . Examples of this exist in profusion. If is any Boolean algebra of
subsets of some set S such that all singletons belong to they form the dense
set of atoms of ’. Particular examples are Blackwell spaces of [10], Borel
algebras of T1 spaces, Baire algebras of second countable T1 spaces and all
larger algebras.
Examples ofcompact Hausdorff spaces X such that all residual Radon meas-

ures are purely nonatomic and separate if(X) are hard to come by except for
hyperstonian X. These are precisely the Stone spaces of measure algebras for
purely nonatomic positive measure spaces.
We will now show that on the Gleason space X. of a compact Hausdorff

space X the existence of residual measures (either Radon or not) is equivalent
with their existence on X. The Gleason space X. is the Stone space of the
complete Boolean algebra zC(X) (or (X)or E(X)/r/(X)). If we let z zC’(X),

(X), E E(X) and r/= r/(X), the corresponding sets for Xz are denoted
by ’, /’, E’, r/’. Since Xz is Stonian, z’ M’ is the Boolean algebra of clopen
sets in Xz. Since Xz is the Stone space of all of the algebras , E/r/, E’/r/’ and

’ are isomorphic. There is a unique continuous projection n" X X which
assigns to any x X (which is an ultrafilter in (X)) its unique limit point
n(x) in X when x is considered as a (convergent) filter base in X. Xz is the
minimal Stonian space admitting a continuous surjection onto X. If Y is Ston-
ian and rrr" Y X is a continuous surjection there is a continuous surjection
nz,r" Y ---’ Xz such that nr nz nz,r. These facts about Xz are to be found in
[6]. The mapping rrz is irreducible in that there is no proper closed subset Z of
Xz with nz(Z)= X [19, p. 448]. Equivalently, A c Xz is dense iff it has dense
image in X under rrz. It follows [1, p. 58] that X and Xz have the same density
character and that if q/is a pseudobase of X the inverse image is a pseudobase
of Xz. If X is the Stone space of a Boolean algebra ’, it is shown in [1] that Xz
is the Stone space of the completion of as a Boolean Algebra.
The following lemma shows that the isomorphism between E/r/and E’/r/’ is

effected by rr..

LEMMA 6.
space.

Let X be a compact Hausdorff space and let Xz be its Gleason

(i)
(ii)
(iii)

rr l(r/) is cofinal in r/’.
r-l(E) has completion with respect to rc l(r/) equal to E’.
lfO / has [0] as its correspondinl clopen set in Xz then [0] rr- 1(0).
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Proof. (i) Let N be closed and nowhere dense in X. Since hr. is irreducible,
(X\N) is a dense open set in X so zr (N) r/’. Consequently, n (r/)
Let N be closed and nowhere dense in Xz and let 0 X\n- (nr(N)). Since

is irreducible and %(0 w N) X, 0 w N is dense in X.; hence 0 is dense in X
and n(0)= X\n.(N) is a dense open set in X. Since n(N) rl we have
N n- (n(N)) n (r/). This is sufficient to establish the cofinality of ;r (r/)
in r/’.

(iii) It is easy to show that n- (0) [0] if 0 and that

’(x\o) IX\O] \[o].
Since n (d0) r/’ we must have r- (0) dense in [0]; hence n (0) [0].

(ii) If A E there is a 0 e a’ and N r/with A 0 A N. Since n (0) is
open and n :(N) r/’ we have

-(A) zru. (0) A u- (N) Z’.

Thus, n- (E) c E’.
If A e E’ there is an N r/’ and a 0 a’ with

A [0]/ N r 1(0)/ [N
Thus, A differs at most by an element of r/’ from an element of n- t(y.). This is
sufficient to show that X’ is a completion of n l(E) with respect to its ideal

I
Since t(Z) Z’ we may define a measure # on X from a measure #’ on X’

by setting #(A) p’(-I(A)) for A e Z. This is analogous to the process of
defining a Radon measure # on X from a Radon measure p’ on Xz. The two
processes are the same for p’ on Z’ which are regular. If p’ is a residual measure
then p is also a residual measure since n l(r/)c r/’. If p’ is normal on the
Stonian space Xz then # is a residual Radon measure on X. The following
shows that for residual measures the transformation p’--,p is invcrtible.

PROPOSITION 7. Let X be a compact Hausdorffspace with Gleason space Xr.
If # is a residual measure on X there is a unique residual measure p’ on X such
that p’([0])= #(O) for all 0 . The measure p’ is normal iff # is Radon.

Proof. The uniqueness of the residual measure p’ is immediate for ifA
there is a unique 0 a’ and N r/’ such that A [0] & N. We must have
if(A) #’([0])= #(0).

Since p is a countably additive positive finite measure on
hence #’ is well defined as a residual measure on X.
By Proposition 1, #’ is a normal measure iff supp (p’) exists and # is Radon iff

supp (#) exists. To establish the proposition we need to show that supp (p’)
iff supp (p) q: 0.
Ifsupp (#’) =/= 0, it is a clopen set [0] with 0 a’. If0 q= 0o c 0 and 0o a’ we

have #(0o) p’([0o]) q= 0. Thus 0 =/= 0 c supp (#). Conversely, if supp (#) 4= 0 it
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is 0 for some 0 , and if 0 4: 0o c 0 is in then if([00]) =/(0o) 4: 0. Thus
0 [0] c supp (if). |

COROLLARY 7.1. (1) X has a nonzero residual measure iff Xz does.
(2) X has a nonzero residual Radon measure iff Xz does.
(3) Xz is hyperstonian iff the residual Radon measures on X separate
(4) X has a category measure iffXz is a measurable Stonian compact Haus-

dorff space.

Proof. We will only establish (3). Xz is hyperstonian iff given a clopen
subset [0] with 0 there is a normal measure/’ 4:0 with supp (if) [0].
This is equivalent to the existence of a nonzero residual Radon measure on X
with supp (/) c 0. This suffices to establish (3). |

COROLLARY 7.2. (1) IfX is an infinite product of nontrivial compact Haus-
dorff spaces then Xz isn’t hyperstonian.

(2) If X is a compact metric space in which the isolated points aren’t dense
then Xz isn’t hyperstonian.

Proof. (1) By Proposition 5, X has no nonzero residual measures; hence
Xz has no nonzero normal measures.

(2) By Proposition 4 there are no nonzero residual Radon measures on the
complement of the isolated points of X. Since this set has nonempty interior,
the residual Radon measures don’t separate (X). |

Remarks. (1) The residual Radon measures # on a compact Hausdorff
space X form the positive cone of a Banach lattice which is isomorphic as a
Banach lattice to r/(X). The residual measures on X form the positive cone of
another Banach lattice isomorphic to the corresponding Banach lattice of
measures on Xz.

(2) Propositions 2 and 6 imply that there is a Stonian compact Hausdorff
space X with a non-Radon residual measure iff R-cardinals exist. The example
generated by the proof of Proposition 2 is the following. Let T be discrete with
cardinal number an R-cardinal and let T* be its Alexandroff compactification.
The Gleason space (T*)z is the desired example. This is known to be fiT. This
example is the Stone space of a complete atomic Boolean algebra for which the
atoms are dense.

(3) As a consequence of (1) of Corollary 6.2, when X {0, 1}n for an infinite
cardinal number n then X. isn’t hyperstonian. This was established in [8] for
n > card ([0, 1]).
One might expect that (b) of Proposition 5 would have the following ana-

logy. If X and Y are compact Hausdorff spaces such that Y has a countable
pseudobase and X and Y are hyperstonian then so is (X x Y)t. This is true
but reduces to the trivial special case where Y is the closure of a countable set of
isolated points as shown below.
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COROLLARY 7.3. Let Y be a compact Hausdorffspace with a countable pseu-
dobase and with Y hyperstonian. Y is the closure of countably many isolated
points.

Proof It is immediate that the number of isolated points of Y is countable.
Since the maximum number of disjoint nonzero residual Radon measures on Y
must be countable, Y must have a category measure. The Stonian space Y. has
a countable pseudobase q/. The set q {0:0 q/} is also a countable pseudob-
ase. The algebra of clopen sets generated by q/is countable hence has a
metrizable Stone space X. There is a continuous projection p" Y X; hence if
nr" Y---’ Y and nx: X---,X are the canonical maps there is a continuous
projection q" Y X with nx q p. If 9 is the inverse image of a’(X) in
a’Y(_ it is complete. If has supremum q in 9 then ) W. If
W\_) :/: there is a 0 q\{O} with 0 I’\) o-. This contradicts the
definition of q so q= . If V (Y) then the union of

{0 q" 0 V} is easily seen to be dense in V hence V is the supremum of
in 9. Thus ac(Y) henceX Ywith q the identity map. Since Y. has a

category measure so does X. Consequently, by Theorem 18 of [12], X is the
closure of its isolated points and all residual Radon measures on X are atomic.
It easily follows that all residual Radon measures on Y and on Y are atomic.
This implies that Y is the closure of its isolated points. |

Remark. (1) The question whether X and Y hyperstonian for compact
Hausdorff spaces X and Y implies that (X x Y) is hyperstonian remains
unanswered. An equivalent formulation of this question has both X and Y
Stonian. Another equivalent question is whether X x Y possesses a category
measure when both X and Y do.

(2) We should remark that the equation (X x Y) (Xr. x Y). is true
whereas the equation (X x Y) X x Y is false when X and Y are infinite
compact Hausdorff spaces. Indeed, no product of infinite compact Hausdorff
spaces is Stonian or even basically disconnected" To see this one can find a
disjoint sequence {0,: n N} of nonempty Baire open sets in X and a disjoint
sequence {W,: n N} of nonempty Baire open sets in Y. The Baire open set

= (0, x q) in X x Y doesn’t have open closure.

We have associated to any residual measure/ on a compact Hausdorff space
X a unique residual measure/’ on X. satisfying if([0])=/(0) if 0 (X).
Since X. is the Stone space of (X) the Stone correspondence assigns to bt a
unique Radon measure on X. satisfying ([0])=/(0) if 0 (X). Con-
sequently ’ and agree on clopen subsets of X and are identical iff is a
normal measure iff/’ is a Radon measure iff # is a Radon measure. In general
we can only say that/’ and t agree on the Baire algebra ofX but not on the
Borel algebra. Since/’ is residual, annihilates all compact nowhere dense
Baire subsets of X. but doesn’t annihilate all nowhere dense compact sets.

PROPOSITION 8. Let X be a Stonian compact Hausdorff space. There is a
non-Radon residual measure on X iffthere is a positive Radon measure -fl q: 0 on X
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such that supp (fl) c r/(X) and such that fl annihilates all compact nowhere dense
Baire sets in X.

Proof. If a non-Radon residual measure/ exists on X (= X) there is a
Radon measure on X annihilating all compact nowhere dense Baire sets but
with t(N) > 0 for some compact nowhere dense N. Let fl Xs /.

Conversely, if fl exists there is a residual measure/ on X corresponding to fl
under the Stone correspondence. Since fl isn’t residual,/a isn’t Radon. |

COROLLARY 8.1. Let X be a Stonian compact Hausdorff space with no non-
zero normal measures. There are enouth positive Radon measures on X which
annihilate compact nowhere dense Baire sets yet which have nowhere dense sup-
port to separate ((X) iff every open set in X is assitned strictly positive measure
by some residual measure.

Proof. Immediate. |

COROLLARY 8.2. The followint are equivalent.

(a) R-cardinals don’t exist.
(b) If# /[+ (X) for a Stonian compact Hausdorff space X and Ix(K)= 0

for any compact nowhere dense Baire set K then Ix is residual.
(c) If is a complete Boolean algebra, any Ix C,4 + () is normal in the

sense of Luxemburg.
Proof (c) is just a restatement of (b).
Let X be Stonian and let Ix t’ + (X) annihilate all Baire compact nowhere

dense sets. Let v be the corresponding countably additive function on (X)
and let be the corresponding residual measure on X. If (a) is true then Ix
by Proposition 3 hence (b) holds. If (a) is false, by (b) of Proposition 3, there
is a residual non-Radon measure on some compact Hausdorff space X, hence,
by Proposition 7, there is a residual non-Radon measure on X which suffices
to establish (b) using Proposition 8. |

Remark. (1) In [2] it is shown that if X is Stonian and every clopen set 0
has Ix(0) > 0 for some Ix ///+ (X) with nowhere dense support which annihi-
lates all nowhere dense compact Baire sets then X is purely nonhyperstonian so
that there are no normal measures on X. It is shown that R-cardinals exist iff
such a Stonian space X exists.

(2) Dixmier canonically decomposes a Stonian space into three lopen sets
X 1, X 2, and X 3. X is hyperstonian, X 2 k_) X 3 is purely nonhyperstonian, X 2 is
the largest purely nonhyperstonian open set in which every meager set is no-
where dense and X3 is the largest open set in which a meager set is dense. We
may decompose X2 k3 X3 into two clopen sets Y1 and Y2. Y1 is the largest open
set such that every open subset is assigned nonzero measure by some residual
measure. On Y2 there is a dense open set 0 which receives full measure from
each residual measure yet every point in 0 has a neighborhood which is as-
signed measure 0 by each residual measure. It is not known which, if any, of
Y1 c X2, Y c Xa, Y2 c X2 and Y2 c X3 are automatically empty.
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(3) Does there exist a Boolean algebra and a/ e CA+() such that
vg(X) isn’t residual? More generally, does there exist a compact Haus-

dorf space X and a/ ’+ (X) which isn’t residual yet annihilates all compact
nowhere dense Baire sets ? If R-cardinals exist the answer is yes. The converse
to this is conjectured to be true.

Note added in Proof. Lacey and Cohen, in the paper On injective envelopes
of Banach spaces (J. Functional Analysis, vol. 4 (1969), pp. 11-30), have estab-
lished Lemma 6 and (3) of Corollary 7.1. They also remark that no perfect
separable compact Hausdorff space has a nonzero residual Radon measure
hence its Gleason space isn’t hyperstonian.
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