LINEAR MAPPINGS CONTINUOUS IN MEASURE

BY

DANIEL M. OBERLIN¹

In [3], Marcinkiewicz and Zygmund proved the following theorem.

THEOREM 1. Suppose that $0 and that T is a continuous linear operator on <math>L^p$ (= $L^p([0, 1])$) with norm ||T||, so that

$$\int_0^1 |Tf(x)|^p dx \le ||T||^p \int_0^1 |f(x)|^p dx$$

for every $f \in L^p$. Then for any n and any $f_1, \ldots, f_n \in L^p$ we have

$$\int_0^1 \left[\sum_{i=1}^n |Tf_i(x)|^q\right]^{p/q} dx \le ||T||^p \int_0^1 \left[\sum_{i=1}^n |f_i(x)|^q\right]^{p/q} dx.$$

Stated differently, Theorem 1 says that a continuous linear operator on L^p extends in a natural way to the space $L^p(l^q)$ of l^q -valued functions on [0, 1]. Now let L be the space of all measurable functions on [0, 1], equipped with the topology of convergence in measure. Our first result is an analog of Theorem 1. It implies that a continuous linear operator on L extends in the same natural way to the space of all l^q -valued measurable functions on [0, 1].

THEOREM 2. Let (X, μ) be a measure space and assume that μ is a probability measure on X. Let T be a linear operator defined on the space of measurable functions on X, and assume that T is continuous with respect to the topology of convergence in measure on X. Fix q with $0 < q \le 2$. Then for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any n and for any measurable functions f_1, \ldots, f_n on X which satisfy

$$\mu\left\{x\in X:\left[\sum_{i=1}^{n} |f_{i}(x)|^{q}\right]^{1/q}\geq\delta\right\}\leq\delta,$$

we have

$$\mu\left\{x\in X:\left[\sum_{i=1}^{n} |Tf_{i}(x)|^{q}\right]^{1/q}\geq\varepsilon\right\}\leq\varepsilon.$$

Using Theorem 2 as a lemma we can prove the following theorem, which was proved in [4] with the extra hypothesis that G be abelian.

THEOREM 3. Let G be a compact group and let L(G) be the space of all (Haar-) measurable functions on G, equipped with the topology of convergence in

Received July 12, 1976.

¹ Partially supported by a National Science Foundation grant.

Copyright © Board of Trustees, University of Illinois

measure. For $x \in G$ define the left and right translation operators L_x and R_x on L(G) by $L_x f(y) = f(xy)$, $R_x f(y) = f(yx)$ ($f \in L(G)$, $y \in G$). The only continuous linear operators on L(G) which commute with each R_x are the finite linear combinations of the L_x 's.

The proof of Theorem 2 rests on the following lemma.

LEMMA. For $0 < q \le 2$, the space l^q is topologically isomorphic to a subspace of L.

Proof. For $1 < q \le 2$ this is a consequence of Theorem 5.2 of [5], which states that (for these values of q) L^{q} is topologically isomorphic to a subspace of L. But given the result of [2], the proof of Theorem 5.2 in [5] works for any q with $0 < q \le 2$.

Proof of Theorem 2. Let X, μ, T, q , and ε be as in the statement of Theorem 2, and let *m* stand for Lebesgue measure on [0, 1]. By the lemma there exist $g_1, g_2, \ldots \in L$ (corresponding to the usual l^q basis) so that the following hold.

(1) There exists $\varepsilon_4 > 0$ such that if $m\{y \in [0, 1]: |\sum c_i g_i(y)| \ge \varepsilon_4\} \le \varepsilon_4$, then $(\sum |c_i|^q)^{1/q} < \varepsilon$;

(2) Given any $\varepsilon_1 > 0$ there exists some $\delta > 0$ such that if $(\sum |c_i|^q)^{1/q} \le \delta$, then

$$m\{y: |\sum c_i g_i(y)| \geq \varepsilon_1\} \leq \varepsilon_1.$$

Let ε_4 be as in (1) and choose $\varepsilon_3 > 0$ with $\varepsilon_3 \le \varepsilon_4$, $\varepsilon_3/\varepsilon_4 \le \varepsilon/3$. Since T is continuous, there exists $\varepsilon_2 > 0$ such that if the measurable function h on X satisfies $\mu\{x \in X : |h(x)| \ge \varepsilon_2\} \le \varepsilon_2$, then $\mu\{x : |Th(x)| \ge \varepsilon_3\} < \varepsilon_3$. Choose $\varepsilon_1 > 0$ such that $\varepsilon_1 \le \varepsilon_2$, $\varepsilon_1/(\varepsilon_2 \varepsilon_4) \le \varepsilon/3$. Choose δ as in (2) (corresponding to the present ε_1) and such that $\delta/(\varepsilon_2 \varepsilon_4) \le \varepsilon/3$. Then

(3)
$$((\delta + \varepsilon_1)/\varepsilon_2 + \varepsilon_3)/\varepsilon_4 = \delta/\varepsilon_2\varepsilon_4 + \varepsilon_1/\varepsilon_2\varepsilon_4 + \varepsilon_3/\varepsilon_4 \le \varepsilon.$$

Now suppose that $\mu\{x: (\sum |f_i(x)|^q)^{1/q} \ge \delta\} \le \delta$; we will show that

$$\mu\{x\colon (\sum |Tf_i(x)|^q)^{1/q} \ge \varepsilon\} \le \varepsilon.$$

Since $m\{y: |\sum f_i(x)g_i(y)| \ge \varepsilon_1\} > \varepsilon_1$ implies $(\sum |f_i(x)|^q)^{1/q} > \delta$ by (2), we have

$$u\{x: [m\{y: |\sum f_i(x)g_i(y)| \geq \varepsilon_1\} > \varepsilon_1]\} \leq \delta.$$

Writing $\phi_1(x, y)$ for $\sum f_i(x)g_i(y)$ and E_1 for the set

 $\{x: [m\{y: |\phi_1(x, y)| \geq \varepsilon_1\} > \varepsilon_1\}\},\$

we get $\mu(E_1) \leq \delta$. If $x \notin E_1$, then $m\{y: |\phi_1(x, y)| \geq \varepsilon_1\} \leq \varepsilon_1$. It follows (from Fubini's theorem) that

 $(\mu \times m)\{(x, y) \in X \times [0, 1]: |\phi_1(x, y)| \ge \varepsilon_1\} \le \delta + \varepsilon_1.$

Since $\varepsilon_2 \ge \varepsilon_1$ we have $(\mu \times m)\{(x, y): |\phi_1(x, y)| \ge \varepsilon_2\} \le \delta + \varepsilon_1$. Another application of Fubini's theorem then yields

(4)
$$m\{y: |\mu\{x: |\phi_1(x, y)| \ge \varepsilon_2\} \ge \varepsilon_2]\} \le (\delta + \varepsilon_1)/\varepsilon_2.$$

Write $\phi_2(x, y)$ for $\sum Tf_i(x)g_i(y) = T(\sum f_i g_i(y))(x)$ and recall that

 $\phi_1(x, y) = \sum f_i(x)g_i(y).$

By the choice of ε_2 , the inequality (for fixed y) $\mu\{x: |\phi_2(x, y)| \ge \varepsilon_3\} \ge \varepsilon_3$ implies the inequality $\mu\{x: |\phi_1(x, y)| \ge \varepsilon_2\} \ge \varepsilon_2$. Thus if we write E_2 for the set

$$\{y: \left[\mu\{x: \left|\phi_{2}(x, y)\right| \geq \varepsilon_{3}\} \geq \varepsilon_{3}\right]\},\$$

(4) yields $m(E_2) \le (\delta + \varepsilon_1)/\varepsilon_2$. If $y \notin E_2$, though, $\mu\{x: |\phi_2(x, y)| \ge \varepsilon_3\} < \varepsilon_3$. Therefore

$$(\mu \times m)\{(x, y): |\phi_2(x, y)| \ge \varepsilon_3\} \le [(\delta + \varepsilon_1)/\varepsilon_2] + \varepsilon_3,$$

and so

$$(\mu \times m)\{(x, y): |\phi_2(x, y)| \ge \varepsilon_4\} \le [(\delta + \varepsilon_1)/\varepsilon_2] + \varepsilon_3$$

since $\varepsilon_4 \ge \varepsilon_3$. A last application of Fubini's theorem gives

$$\mu\{x: [m\{y: |\phi_2(x, y)| \ge \varepsilon_4\} \ge \varepsilon_4]\} \le \left(\frac{\delta + \varepsilon_1}{\varepsilon_2} + \varepsilon_3\right) / \varepsilon_4.$$

Taking into account (3) and the definition of ϕ_2 , we have

(5)
$$\mu\{x: [m\{y: |\sum Tf_i(x)g_i(y)| \ge \varepsilon_4\} \ge \varepsilon_4]\} \le \varepsilon$$

Now (1) implies that $m\{y: |\sum Tf_i(x)g_i(y)| \ge \varepsilon_4\} \ge \varepsilon_4$ if $(\sum |Tf_i(x)|^q)^{1/q} \ge \varepsilon$, so (5) yields the desired result:

$$\mu\{x\colon (\sum |Tf_i(x)|^q)^{1/q} \ge \varepsilon\} \le \varepsilon.$$

Proof of Theorem 3. Write $L^p(G)$ for the Lebesgue space formed with respect to Haar measure on G and write $||f||_p$ for the norm of a function in $L^p(G)$. Let T be as in the statement of Theorem 3. The only part of the proof in [4] which does not go over *mutatis mutandis* to the present situation is the demonstration that T is bounded on $L^2(G)$. In [4], where the compact group G was abelian, this was an easy observation. Here we shall use Theorem 2 to show that T is bounded on $L^2(G)$ without the hypothesis that G be abelian. Our method is based on an adaptation of the central idea in [1]. We shall show the following.

(6) There exists a $\delta > 0$ such that if f and Tf are continuous and if $|| f ||_2 \le \delta/2$, then $|| Tf ||_2 \le (1 + \delta)/2$.

(7) Tf is continuous whenever f is a trigonometric polynomial on G.

From (6) and (7) it follows immediately that T is bounded on $L^2(G)$. First we establish (6). Write μ for normalized Haar measure on G and let $\delta > 0$ be such that

(8)
$$\mu\{x \in G: (\sum |Tf_i(x)|^2)^{1/2} \ge 1/2\} \le 1/2$$

if

$$\mu\{x \in G: \left(\sum |f_i(x)|^2\right)^{1/2} \ge \delta\} \le \delta$$

for $f_i \in L(G)$. Such a δ exists by Theorem 2. Let f be a continuous function on G such that Tf is continuous, and suppose that $||f||_2 \leq \delta/2$. By the uniform continuity of f and Tf, there exists a Borel partition $\{E_i\}_{i=1}^n$ of G such that

(9)
$$|f(xy_1) - f(xy_2)|, |Tf(xy_1) - Tf(xy_2)| \le \delta/2$$

for any $x \in G$ whenever $y_1, y_2 \in E_i$ $(1 \le i \le n)$. For i = 1, ..., n, fix $x_i \in E_i$ and let $f_i(x) = f(xx_i)\mu(E_i)^{1/2}$. Writing χ_i for the characteristic function of E_i $(1 \le i \le n)$ and, for arbitrary fixed $x \in G$, putting $g(y) = \sum f(xx_i)\chi_i(y)$, we have

$$(\sum |f_i(x)|^2)^{1/2} = (\sum |f(xx_i)|^2 \mu(E_i))^{1/2} = ||g||_2.$$

Now $||g - L_x f||_{\infty} \le \delta/2$ by (9), and so

$$\|g\|_{2} \leq \|L_{x}f\|_{2} + \|g - L_{x}f\|_{2} \leq \|f\|_{2} + \|g - L_{x}f\|_{\infty} \leq \delta.$$

Thus $(\sum |f_i(x)|^2)^{1/2} \le \delta$. As this holds for any $x \in G$, we have

(10)
$$\mu\{x \in G: (\sum |Tf_i(x)|^2)^{1/2} \ge 1/2\} \le 1/2$$

by (8). Since T commutes with each R_{xp} $Tf_i(x) = Tf(xx_i)m(E_i)^{1/2}$. If for fixed $x \in G$ we put $h(y) = \sum Tf(xx_i)\chi_i(y)$, then we have, as before, $(\sum |Tf_i(x)|^2)^{1/2} = ||h||_2$. Since $||h - L_x Tf||_{\infty} \le \delta/2$ by (9), we get

$$(\sum |Tf_i(x)|^2)^{1/2} \ge ||Tf||_2 - \delta/2,$$

and this holds for each $x \in G$. Now (10) implies that $|| Tf ||_2 \le 1/2 + \delta/2$, and so (6) is established.

We conclude the proof of Theorem 3 by establishing (7). Each trigonometric polynomial f on G is a finite linear combination of trigonometric polynomials u which satisfy functional equations of the form

$$u(xy) = \sum_{l=1}^{m} u_{jl}(x)u_{lk}(y).$$

Here the u_{jl} 's and the u_{lk} 's are again trigonometric polynomials. For such a u and for each fixed $y \in G$ we have

(11)
$$Tu(xy) = (R_y Tu)(x) = (TR_y u)(x)$$
$$= \left(T \sum_{l=1}^m u_{jl} u_{lk}(y)\right)(x) = \sum_{l=1}^m Tu_{jl}(x) u_{lk}(y),$$

for almost all $x \in G$. Thus there exists some x in G such that (11) holds for almost all $y \in G$, and so Tu is (equal almost everywhere to) a continuous function on G.

References

- 1. C. HERZ AND N. RIVIÈRE, Estimates for translation-invariant operators on spaces with mixed norms, Studia Math., vol. 44 (1972), pp. 511-515.
- M. KANTER, Stable laws and the imbedding of L^o spaces, Amer. Math. Monthly, vol. 80 (1973), pp. 403-407.
- 3. J. MARCINKIEWICZ AND A. ZYGMUND, Quelques inégalités pour les opérations linéaires, Fund. Math., vol. 32 (1939), pp. 115–121.
- 4. D. OBERLIN, Translation-invariant operators continuous in measure, J. Functional Analysis,
- 5. W. STILES, On properties of subspaces of l_p , 0 , Trans. Amer. Math. Soc., vol. 149 (1970), pp. 405-415.

FLORIDA STATE UNIVERSITY TALLAHASSEE, FLORIDA