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LINEAR MAPPINGS CONTINUOUS IN MEASURE

BY

DANIEL M. OBERLIN

In [3], Marcinkiewicz and Zygmund proved the following theorem.

THEOREM 1. Suppose that 0 < p <_ q <_ 2 and that T is a continuous linear
operator on Lp (-- LP([0, 1]))with norm T II, so that

for everyf Lp. Then for any n and any fl, f, If we have

dx.

Stated differently, Theorem says that a continuous linear operator on Lp
extends in a natural way to the space LP(Iq) of/q-valued functions on [0, 1]. Now
let L be the space of all measurable functions on [0, 1], equipped with the
topology of convergence in measure. Our first result is an analog ofTheorem 1.
It implies that a continuous linear operator on L extends in the same natural
way to the space of all/-valued measurable functions on [0, 1].
THEOREM 2. Let (X,/) be a measure space and assume that la is a probability

measure on X. Let T be a linear operator defined on the space of measurable
functions on X, and assume that T is continuous with respect to the topology of
convergence in measure on X. Fix q with 0 < q <_ 2. Then for every e > 0 there
exists 6 > 0 such that for any n andfor any measurablefunctionsfl, f, on X
which satisfy

u + x. a a,
i=1

we have
1/q

Using Theorem 2 as a lemma we can prove the following theorem, which was
proved in [4] with the extra hypothesis that G be abelian.

THEOREM 3. Let G be a compact group and let L(G) be the space of all
(Haar-) measurablefunctions on G, equipped with the topology ofconvergence in
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measure. For x G define the left and right translation operators Lx and Rx on
L(G) by Lf(y) f(xy), Rf(y) f(yx) (f L(G), y G). The only continuous
linear operators on L(G) which commute with each Rxare thefinite linear combin-
ations of the L’s.
The proof of Theorem 2 rests on the following lemma.

LEMMA.
of L.

For 0 < q < 2, the space q is topologically isomorphic to a subspace

Proof. For 1 < q < 2 this is a consequence of Theorem 5.2 of [5], which
states that (for these values of q) is topologically isomorphic to a subspace of
L. But given the result of [2], the proof of Theorem 5.2 in [5] works for any q
with 0 < q < 2.

Proofof Theorem 2. Let X, #, T, q, and e be as in the statement ofTheorem
2, and let m stand for Lebesgue measure on [0, 1]. By the lemma there exist
gl, /2, e L (corresponding to the usual q basis) so that the following hold.

(1) There exists e4 > 0 such that if m{y
then ( c, I)/ < e;

(2) Given any ex > 0 there exists some
then

Let e4 be as in (1) and choose > 0 with e , e/e4 /3. Sin T is
contuous, there exists > 0 such that if the measurable function h on X
satisfies g{x X: Ih(x)l } 82, then {x: [Th(x)[ e} < e3. Choose
el > 0 such that e e2, e/(2ea) /3. Choose 6 as in (2) (corresponding to
the present e) and such that 6/(e2ea) /3. en
(3) ((6 + et)/e2 + ea)/e4 6/e2e, + ex/e2e, + ca/e, e.

Now suppose that g{x: (E [(x)[)1/ 6} 6; we will show that

{: (E rA()I)
Sin m{y: IE()g,(y)l 1} > implies (E IA(x)l)/> by (2), we

have

g{x: [m{y: IE(x)v,(y)l
Writing l(X, y) for EA(x)g,(y)and E1 for the set

{x: [m{y: [l(X,
we get g(E) 6. If x E, then m{y: [l(X, y)[ e} e. It follows (from
Fubini’s theorem) that

( x m){(x, y) S x [0, 1]" [(x, y)[ e} 6 + e.
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Since e2 > e we have ( x m){(x, y): Itpt(x, Y)I > e2} < + et. Another
application of Fubini’s theorem then yields

(4) m{y: [#{x: I(x, Y)I > } > 1} N (6 + ,)/ga.
Write 4z(x, y) for TA(x)o(y)= T(AO(y))(x)and recall that

(, y) E()0,(y).
By the choice of e2, the inequality (for fixed y) {x: [2(x,
plies the inequality #{x: [a(x, y)] e2} e2. us if we write E2 for the set

(4) .yields re(E2) (6 + ea)/e2. If y E2, though, #{x:
erefore

t, m){(, y): Oz(, y)l } [0 + )/] + 3,

and so

(# x m){(x, y): q(x, Y)I >- e,} -< [(6 + ,)/] + ,
since e, > e3. A last application of Fubini’s theorem gives

e2 I/

Taking into account (3) and the definition of 2, we have

(5) #(x: [re{y: Z Tf(x)oi(y)] >_ e,} >- e,]} <- e.

Now (1)implies that re{y: ]2 Tf(x)o,(y)[ > e,} > , if (2 rf,(x)l’)TM > ., so
(5) yields the desired result:

.{x: (E Tf(x)I")TM > ,} .
Proofof Theorem 3. Write L(G) for the Lebesgue space formed with respect

to Haar measure on G and write f I1 for the norm of a function in L(G). Let
T be as in the statement of Theorem 3. The only part of the proof in [4] which
does not go over mutatis mutandis to the present situation is the demonstration
that T is bounded on L2(G). In [4], where the compact group G was abelian, this
was an easy observation. Here we shall use Theorem 2 to show that T is
bounded on L2(G) without the hypothesis that G be abelian. Our method is
based on an adaptation of the central idea in 1]. We shall show the following.

(6) There exists a 6 > 0 such that iffand Tfare continuous and if f []2 <
6/2, then Tf II -< (1 + 6)/2.

(7) Tf is continuous wheneverf is a trigonometric polynomial on G.

From (6) and (7) it follows immediately that T is bounded on L(G).
First we establish (6). Write # for normalized Haar measure on G and let
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6 > 0 be such that

(s)
if

{ G. ( f,(x) I’)’/ _> 1/2) < 1/2

{ G. (E f,() I)’ >- a} <- 6

forf L(G). Such a 6 exists by Theorem 2. Letfbe a continuous function on G
such that Tf is continuous, and suppose that f []2-< 6/2. By the uniform
continuity off and Tf, there exists a Borel partition {E}’- of G such that

(9) f(xy) f(xy2)[, Tf(xy) Tf(xy2)] < 6/2
for any x Gwhenevery,,y2 Ei(1 < < n). For 1, n, fix xie Eiand
let f(x)=f(xx)l(E)/2. Writing for the characteristic function of E
(1 _< _< n) and, for arbitrary fixed x G, putting (y) Y’.f(xx)l.,(y), we have

( f(x)[e)/2 ( f(xx,)[2(Ei))112 g 2"

Now g- L,,f IIoo <- 6/2 by (9), and so

0112 < Lf 112 + g Lf 112 -< f II + Lf -< 6.

Thus (y’. f(x)[)/ _< 6. As this holds for any x G, we have

(10) /{x G" (Z Tf(x) 12) ’/1 > 1/2} < 1/2

by (8). Since T commutes with each R,,, Tf(x)= Tf(xx)m(E)/. If for fixed
xG we put h(y)=Tf(xxi)z(y), then we have, as before,
(y’. Tf(x)Iz)’/z h z. Since h L, Tf oo < 6/2 by (9), we get

(X rZ,()12)’/2 > rf 112 6/2,

and this holds for each x e G. Now (10)implies that Tf ]la < 1/2 + 6/2, and
so (6) is established.
We conclude the proof of Theorem 3 by establishing (7). Each trigonometric

polynomialfon G is a finite linear combination of trigonometric polynomials u
which satisfy functional equations of the form

u(xy) X u;,(x)u,(y).

Here the u’s and the uEs are again trigonometric polynomials. For such a u
and for each fixed y e G we have

(11) Tu(xy) (RyTu)(x)= (TRyu)(x)

r Z ",",(y) ()= E ru,()u,(),
1-1 1-’1

for almost all x G. Thus there exists som x in G such that (11) holds for
almost all y G, and so Tu is (equal almost everywhere to) a continuous
function on G.
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