LEFT THICK SUBSETS OF A TOPOLOGICAL SEMIGROUP¹

BY

H. KHARAGHANI

In this paper we will characterize the left X-thick subsets of an X-amenable topological semigroup S. Our result extends a result of T. Mitchell in [12] and Wilde and Witz [15].

1. Preliminaries

Let S be a topological semigroup with separately continuous multiplication and X a subalgebra (under pointwise multiplication) of CB(S), the space of all continuous bounded functions on S, containing constant functions. A mean m (see [5] for the definition) on X is multiplicative if m(fg) = m(f)m(g) for all f and g in X. We denote by M, the set of all means on X and by S₁, the subspace of M consisting of all multiplicative means on X.

Let X be a left translation invariant and left introverted subspace of CB(S)containing the constant functions. Let m and n be in M. We define the Arens product of m and n, denoted by $m \odot n$ to be the functional defined by $m \odot n(f) = m(n_i(f))$ for f in X, where n_i is the left introversion of n. Arens product makes M into a semigroup with the following properties. For s in S let O(s) denote the evaluation functional at X; then for fixed n in M and s in S the linear mappings $m \to m \odot n$ and $m \to O(s) \odot m$ are continuous on M, and the map O is a continuous homomorphism of the semigroup S into M, where M has the weak* topology. If in addition X is a subalgebra of CB(S), it is easy to see that S_1 is a subsemigroup of M. For more details see Day [5] and Rao [14]. Following Wilde and Witz [15], the symbols k(T), K(T) will indicate the convex hull and the weak* closed convex hull of any subset T of M. In particular when $A \subseteq S$, we write kA for k(QA) and KA for K(QA). Let L be the set of all left invariant means on X. If L is nonempty we call S X-amenable. In this case every element in L is a right zero of M (see [5] and [14]). Hence L = Ker M, where Ker M denotes the smallest two sided ideal of M (see [4, Problem 6, p. 6]).

2. The support of a left invariant mean

In this section we shall prove that the support of a left invariant mean on a left translation invariant left introverted closed subalgebra X of CB(S) is a left ideal of S_1 . We first define the support of a mean, for this purpose we need the following lemmas.

Copyright © Board of Trustees, University of Illinois

Received July 12, 1976.

¹ The results in this paper are contained in the Ph.D. thesis of the author under the direction of Dr. J. C. S. Wong at the University of Calgary.

LEMMA 2.1. Let X be a closed subalgebra of CB(S) containing the constant functions. Let S_1 be the set of all multiplicative means on X with weak* topology $(S_1 \text{ is called the maximal ideal space of } X)$.

(i) The map $Q: S \rightarrow S_1$ is continuous and Q(S) is dense in S_1 .

(ii) The induced map \tilde{Q} : $CB(S_1) \rightarrow X$ defined by $\tilde{Q}(f_1) = f_1 \circ Q$ is an isometric isomorphism.

Proof. (i) This follows from [7, Theorem 19, p. 276].

(ii) It is shown in [7, Theorem 18, pp. 274–275] that the map $U: X \rightarrow CB(S_1)$ defined by $Uf = f_1$ where $f_1(x^*) = x^*(f)$ for all x^* in S_1 , is a linear isometry from X onto $CB(S_1)$. We observe that our map \tilde{Q} is exactly U^{-1} . Hence (ii) follows from [7, Theorem 18, pp. 274–275].

LEMMA 2.2. Let X be a closed subalgebra of CB(S) containing the constant functions. Let m be a mean on X. Then the functional $m_1 = \tilde{Q}^*m$ is a mean on CB(S₁). If in addition X is left translation invariant, then m is left invariant iff $m_1(f_1 \circ L_s) = m_1(f_1)$ for all f_1 in CB(S₁) and s in S, where L_s is the restriction of operator l_s^* to S₁.

Proof. It is easy to see that m_1 is a mean on $CB(S_1)$. To see the second assertion we observe that L_s is a continuous map from S_1 into S_1 . Hence $f_1 \circ L_s$ is in $CB(S_1)$. Since

$$l_{s}(f_{1} \circ Q)(t) = f_{1}(Q(st)) = f_{1}(L_{s}(Q(t))) = f_{1} \circ L_{s} \circ Q(t)$$

for all t in S, we have $l_s(f_1 \circ Q) = \tilde{Q}(f_1 \circ L_s)$ for all s in S and f_1 in $CB(S_1)$. Hence

$$m_1(f_1 \circ L_s) = \widetilde{Q}^*m(f_1 \circ L_s) = m(\widetilde{Q}(f_1 \circ L_s)) = m(l_s(f_1 \circ Q))$$

for all s in S and f_1 in $CB(S_1)$.

Now, assume that m is left invariant. Then

$$m_1(f_1 \circ L_s) = m(l_s(f_1 \circ Q)) = m(f_1 \circ Q) = \tilde{Q}^*m(f_1) = m(f_1)$$

for all s in S and f_1 in $CB(S_1)$.

Conversely, if $m_1(f_1 \circ L_s) = m_1(f_1)$ for each s in S and f_1 in $CB(S_1)$ then

$$m(l_s(f_1 \circ Q)) = m_1(f_1 \circ L_s) = m_1(f_1) = \tilde{Q}^*m(f_1) = m(f_1 \circ Q)$$

for all s in S and f_1 in $CB(S_1)$, and this completes the proof.

DEFINITION 2.3. Let X be a closed subalgebra of CB(S) containing the constant functions. Let m be a mean on X and m_1 the mean defined in Lemma 2.2. Then by Riesz's representation theorem, m_1 induces a unique regular probability measure μ_1 on the Borel sets of S_1 . Let s(m) be the support of μ_1 . We call s(m) the support of m. For discrete semigroups our definition agrees with one given in [15]. If E is a collection of means on X, we denote by s(E) the support of E, which is by definition the weak* closure of $U_{m \in E} s(m)$ in S_1 (see [16]).

LEMMA 2.4. Let X be a left translation invariant closed subalgebra of CB(S) containing the constant functions. Let m be a left invariant mean on X. Then $L_s(s(m)) = s(m)$ for each s in S.

Proof. For simplicity write $F_1 = s(m)$.

Let s be in S and f_1 the element in $CB(S_1)$ satisfying $f_1(L_sF_1) = 1, 0 \le f_1 \le 1$. Let μ_1 be the probability measure induced by m_1 , where m_1 is as in Lemma 2.2. Then, by Lemma 2.2,

$$\int_{F_1} f_1 \ d\mu_1 = m_1(f_1) = m_1(f_1 \circ L_s) = \int_{F_1} f_1 \circ L_s \ d\mu_1 = \int_{F_1} 1 \ d\mu_1.$$

Hence $\int_{F_1} (1 - f_1) d\mu_1 = 0$. Since $1 - f_1$ is continuous and nonnegative we have $1 - f_1 \equiv 0$ on F_1 . Therefore by Urysohn's lemma, $F_1 \subseteq L_s F_1$. A similar argument implies that $L_s F_1 \subseteq F_1$, for each s in S.

THEOREM 2.5. Let X be a left introverted and left translation invariant closed subalgebra of CB(S) containing the constant functions. Let m be a left invariant mean on X. Then $Q(s) \odot s(m) = s(m)$ for all s in S, and s(m) is a left ideal of S₁.

Proof. First we observe that, for s in S and μ in S₁,

$$L_s\mu(f)=\mu(l_s f)=Q(s)\odot\mu(f)$$

for any f in X. Hence $L_s \mu = Q(s) \odot \mu$ for each s in S and μ in S₁. Now we apply Lemma 2.4 to get $Q(s) \odot s(m) = s(m)$ for all s in S. Let v be any element in S₁. Then there is a net $Q(s_{\alpha})$ converging to v in S₁. Let γ be any element in s(m). Then $Q(s_{\alpha}) \odot \gamma \rightarrow v \odot \gamma$. Since each element of the net $Q(s_{\alpha}) \odot \gamma$ is in s(m) and s(m) is closed, we deduce that $v \odot \gamma$ is in s(m). But this implies that $S_1 \odot s(m) \subseteq s(m)$, that is s(m) is a left ideal of S_1 .

Remarks. (a) Applying Theorem 2.5, we can show the following formally stronger result: For any subset L_0 of L, $s(L_0)$ is a left ideal of S_1 . We omit this simple proof.

(b) By the preceding remark, for discrete cancellative semigroups S and X = B(S), Theorem 2.5 reduces to a result of Wilde and Witz [15, Theorem 4.3, p. 583].

(c) An analogue of Lemma 2.4 is shown by Argabright in [2, pp. 197–200] for completely regular semigroups S and X = C(S), the space of all continuous (not necessarily bounded) functions on S.

(d) It is possible to give a different proof of Lemma 2.4, using the techniques employed by Argabright in [1].

3. The maximal ideal space of almost periodic functions

In this section we shall improve a result due to Loomis [11] and Burckel [3], by applying Theorem 2.5. See [3] for the definition of (weakly) almost periodic functions (W(S))A(S). First we need the following lemma.

LEMMA 3.1. (i) Let S_1 be the set of all multiplicative means on X = W(S). Then for each f in W(S),

weak closure of
$$\{r_s f : s \in S\} = \{n_l(f) : n \text{ in } S_1\}$$
.

(ii) Let S_1 be the set of all multiplicative means on X = A(S). Then for each f in A(S),

norm closure of
$$\{r_s f : s \in S\} = \{n_i(f) : n \text{ in } S_1\}$$
.

Proof. (i) Let f be in W(S). Suppose s_{α} is a net in S, such that $r_{s_{\alpha}} f$ converges weakly to g. Then certainly $r_{s_{\alpha}} f$ converges pointwise to g. Since S_1 is compact, passing to a subnet if necessary, we may assume that $Q(s_{\alpha})$ converges to an element n in S_1 , that is, $Q(s_{\alpha}) \rightarrow n$ weak*. This implies that

$$r_{s_{\alpha}}f = (Q(s_{\alpha}))_l f \rightarrow n_l(f)$$
 pointwise.

Therefore $g = n_i(f)$ and consequently g is in $\{n_i(f): n \text{ in } S_1\}$. Hence weak closure of $\{r_s f: s \text{ in } S\} \subseteq \{n_i(f): n \text{ in } S_1\}$. Let n be any element in S_1 and $Q(s_\alpha)$ a net in Q(S) converging weak* to n. Then

$$(Q(s_{\alpha}))_l f = r_{s_{\alpha}} f \rightarrow n_l(f)$$
 pointwise.

Since f is in W(S), $\{r_s f: s \in S\}$ is relatively weak compact. Hence passing to a subnet if necessary we may assume that $r_{s_x} f$ converges weakly. But this implies that $r_{s_x} f$ converges to $n_l(f)$ weakly. That is,

$$\{n_l(f): n \text{ in } S_1\} \subseteq \text{weak closure of } \{r_s f: s \in S\}.$$

(ii) A similar argument as above and the fact that, for f in A(S), $\{r_s f: s \text{ in } S\}^-$ is norm compact implies this part.

The following is a well known result. (See, for example, [6], [13], or [16]). For completeness we give a different proof here.

LEMMA 3.2. (i) S_1 , the maximal ideal space of weakly almost periodic functions under Arens multiplication, is a compact semigroup.

(ii) S_1 , the maximal ideal space of almost periodic functions under Arens multiplication, is a compact semigroup with jointly continuous multiplication.

Proof. (i) All we need is to show that the map $n \in S_1 \to m \odot n \in S_1$ is continuous for each m in S_1 . Let n_α be a net in S_1 converging to n in S_1 . We should prove $m \odot n_\alpha \to m \odot n$ weak* for any m in S_1 , that is, for each f in W(S) and m in S_1 , $m \odot n_\alpha(f) \to m \odot n(f)$. Let f be any element in W(S). By Lemma 3.1 (i) and definition, $\{n_l(f): n \text{ in } S_1\}$ is weakly compact, since this set is pointwise compact we deduce that the pointwise and weak topology coincide on $\{n_l(f): n \text{ in } S_1\}$. Now since $n_\alpha \to n$ weak*, we conclude that $(n_\alpha)_l f \to n_l(f)$ pointwise and hence weakly. That is,

$$m((n_{\alpha})_{l}f) = m \odot n_{\alpha}(f) \rightarrow m(n_{l}(f)) = m \odot n(f)$$

for each m in S.

(ii) We should show that the map $(m, n) \in S_1 \times S_1 \to m \odot n \in S_1$ is continuous. Let m_{α} and n_{α} be two nets in S_1 converging to m and n in S_1 respectively and let f be in A(S). Then $(n_{\alpha})_l f \to n_l(f)$ pointwise. But the pointwise and norm topology coincide on $\{n_l(f): n \text{ in } S_1\}$ (this follows from an argument similar to one given in part (i)). Hence $(n_{\alpha})_l f \to n_l(f)$ strongly. Therefore

$$\begin{aligned} |m_{\alpha} \odot n_{\alpha}(f) - m \odot n(f)| \\ &\leq |m_{\alpha} \odot n_{\alpha}(f) - m_{\alpha} \odot n(f)| + |m_{\alpha} \odot n(f) - m \odot n(f)| \\ &\leq ||m_{\alpha}|| ||(n_{\alpha})_{l} f - n_{l}(f)|| + |m_{\alpha}(n_{l}(f)) - m(n_{l}(f))| \to 0. \end{aligned}$$

(Notice that $n_l(f)$ is in A(S) for each n in S_1 .) Since f is arbitrary this completes the proof.

Now we are ready for the main result.

THEOREM 3.3. Let S be a topological semigroup. Then the following statements are equivalent:

(i) There is a two sided invariant mean m on A(S) such that $m(f) \neq 0$ for each nonnegative nonzero f in A(S).

(ii) S_1 , the maximal ideal space of A(S), is a compact group.

Proof. (i) \rightarrow (ii). Suppose (i) holds. Let $m_1 = \tilde{Q}^*m$ and let μ_1 be the measure induced by m_1 on S_1 . We claim that s(m) equals the support of $\mu_1 = S_1$. Suppose $s(m) \subset \neq S_1$. Let ν be in $S_1 - s(m)$. Then there is a function f_1 in $CB(S_1)$ such that

$$0 \le f_1 \le 1$$
, $f_1(v) = 1$ and $f_1(s(m)) = 0$.

Now, $m(\tilde{Q}(f_1)) = \tilde{Q}^*m(f_1) = m_1(f_1) = \int_{s(m)} f_1 d\mu_1 = 0$. Since $f_1 \ge 0$ we have $\tilde{Q}(f_1) \ge 0$; therefore, by assumption, $\tilde{Q}(f_1) = 0$. But this implies that $f_1 = 0$ on S_1 , which is a contradiction. Hence $s(m) = S_1$. Since A(S) is left introverted we can apply Theorem 2.5 to get $Q(s) \odot S_1 = S_1$, for each s in S. We claim that $S_1 \subseteq \mu \odot S_1$ for each μ in S_1 . To see this let $Q(s_\alpha)$ be a net in S_1 converging to μ weak* and ν in S_1 . Since for each α , $Q(s_\alpha) \odot S_1 = S_1$. Corresponding to each α , there is an element μ_{α} in S_1 such that $Q(s_\alpha) \odot \mu_{\alpha} = \nu$.

Since S_1 is compact passing to a subnet if necessary, we may assume that $\mu_{\alpha} \rightarrow \gamma$ in S_1 . Now joint continuity of Arens multiplication (Lemma 3.2) implies that $Q(s_{\alpha}) \odot \mu_{\alpha} \rightarrow \mu \odot \gamma = \nu$. Hence $S_1 \subseteq \mu \odot S_1$ for μ in S_1 . Therefore $S_1 = \mu \odot S_1$ for each μ in S_1 . Similarly we can show that $S_1 \odot \mu = S_1$ for each μ in S_1 (note that due to separate continuity of Arens multiplication a right handed version of Theorem 2.5 holds for X = W(S) and X = A(S)). Therefore S_1 is a group (see Clifford and Preston [4, p. 6]). Since multiplication is jointly continuous on S_1 we deduce that S_1 is a compact group.

(ii) \rightarrow (i). Suppose (ii) holds. Let *I* be the normalized Haar integral on S_1 . Then $I(f_1 \circ L_s) = I(f_1)$ for each *s* in *S* and f_1 in $CB(S_1)$. Let $m = (\tilde{Q}^*)^{-1}I$ (note L_s and \tilde{Q} are as in Lemma 2.2). Then by Lemma 2.2, *m* is a left invariant mean on A(S). Similarly we can show that *m* is right invariant. Let *f* be a nonnegative nonzero element of A(S). Then $f_1 = \tilde{Q}^{-1}f$ is a nonnegative and nonzero element of $CB(S_1)$. Hence $I(f_1) > 0$ and consequently $m(f) = m(\tilde{Q}(\tilde{Q}^{-1}f)) = I(f_1) > 0$, and this completes the proof.

Remarks. (a) By Krein-Smulian Theorem (see [8]), for each f in W(S) (resp. A(S)), the weak (resp. norm) closure of $Co\{r_s f: s \in S\}$ is weak (resp. norm) compact. Using this and an argument similar to the proof of Lemma 3.1, we can show that for any f in W(S) (resp. A(S)), the weak closure of $Co\{r_s f: s \in S\}$, equals $\{m_l(f): m \text{ a mean on } W(S)\}$ (resp. the norm closure of $Co\{r_s f: s \in S\}$ equals $\{m_l(f): m \text{ a mean on } A(S)\}$). This together with the fact that W(S) (resp. A(S)) is a weak (resp. norm) closed subspace of CB(S) implies the known result (see [6]) that W(S) (resp. A(s)) is a left introverted subspace of CB(S).

(b) If the topological semigroup S contains an identity, then the map $n \rightarrow n_l$, where n is in S_1 and S_1 is the maximal ideal space of A(S) (resp. W(S)), designates a homeomorphism between S_1 and S^{α} (resp. S^{ω}), the deLeeuw-Glicksberg's (resp. weakly) almost periodic compactification of S (see [6] or [3] for details of this compactification). The same map is also an algebraic isomorphism, where S_1 has the Arens multiplication and S^{α} (resp. S^{ω}) the composition of operators as multiplication.

(c) Let S be a topological group. Then A(S) admits a two-sided invariant mean satisfying (i) of Theorem 3.3. (See [10, Theorem 18.8, p. 250].) Hence implication (i) \rightarrow (ii) of Theorem 3.3 reduces to a result of Loomis [11, Theorem 41C, pp. 167–168].

(d) If S is a group and a topological semigroup, then A(S) admits a twosided invariant mean satisfying (i) of Theorem 3.3 (see [3, Corollary 1.26, p. 15]). Therefore Theorem 3.3 reduces to a result of Burckel [3, Corollary 2.27, p. 32].

(e) Let S be a nontrivial regular Hausdorff space such that CB(S) consists of constant functions. (For existence of such spaces see [9].) Define a multiplication on S by st = t for s and t in S. Then S is a topological semigroup which is not a group and has no identity. Trivially A(S) admits a two-sided invariant mean satisfying (i) of Theorem 3.3. Hence we deduce from Theorem 3.3 that S_1 is a one point compact group. Neither Loomis's Theorem (due to lack of group structure on S) nor Burckel's result (due to lack of identity in S) can be applied to such a topological semigroup.

4. Left thick subsets of a topological semigroup

In this section we will characterize the left thick subsets of an X-amenable topological semigroup. Our result implies a result due to Mitchell [12].

DEFINITION 4.1. Let X be a left translation invariant, left introverted closed subalgebra of CB(S) containing the constant functions. Let S_1 be the maximal

ideal space of X. A subset A of S is called left X-thick in S if $Q(A)^-$ (weak* closure of Q(A) in S_1) contains a left ideal of S_1 .

THEOREM 4.2. Let X be as in Definition 4.1. Suppose X admits a left invariant mean. Then the following are equivalent:

(i) There is a left invariant mean m on X such that m(f) = 1 for each f in X satisfying $\chi_A \le f \le 1$.

(ii) A is left X-thick in S.

Proof. (i) \rightarrow (ii). Suppose (i) holds. We claim that $s(m) \subseteq Q(A)^-$. Let $m_1 = \tilde{Q}^*m$ and μ_1 be the measure induced by m_1 on S_1 . If we show $\mu_1(Q(A)^-) = 1$, we will have $s(m) \subseteq Q(A)^-$. For this purpose let f_1^n be a sequence of functions in $CB(S_1)$ such that $\chi_{Q(A)^-} \leq f_1^n \leq 1$ and $f_1^n \geq f_1^{n+1}$ for all n, and f_1^n converges to $\chi_{Q(A)^-} \mu_1$ -a.e. (for construction of such sequence see Hewitt and Ross [19, p. 129]). Then $f^n = f_1^n \circ Q \in X$ and $\chi_A \leq f^n \leq 1$ for each n and hence

$$\mu_1(Q(A)^-) = \int \chi_{Q(A)^-} d\mu_1 = \int \lim_n f_1^n d\mu_1 = \lim_n \int f_1^n d\mu_1$$
$$= \lim_n m_1(f_1^n) = \lim_n (\tilde{Q}^*m)(f_1^n) = \lim_n m(f^n) = 1$$

by the monotone convergence theorem and assumption. Hence $s(m) \subseteq Q(A)^-$. Since, by Theorem 2.5, s(m) is a left ideal of S_1 , we deduce that $Q(A)^-$ contains a left ideal of S_1 ; that is, A is left X-thick in S.

(ii) \rightarrow (i). Suppose (ii) holds. Let $I \subseteq Q(A)^-$ be a left ideal of S_1 , then KI is a left ideal of M. By compactness of M, every left ideal contains a minimal left ideal (see [3, Theorem 2.1, p. 19]). Since $L = \text{Ker } M = \emptyset$ (see Section 1), $L \cap KI$ is nonempty. Hence $L \cap KA \neq \emptyset$. Let m be any element in $KA \cap L$. Define $m_1 = \tilde{Q}^*m$ and let μ_1 be the measure induced by m_1 on S_1 . We show that $\mu_1(Q(A)^-) = 1$. To see this let ϕ_{α} be a net in KA converging to m weak*. Let f_1^n be the sequence introduced in the first part of the proof. Then $\tilde{Q}^*\phi_{\alpha}(f_1^n) = 1$ for each α and n. Hence

$$\mu_{1}(Q(A)^{-}) = \int \chi_{Q(A)^{-}} d\mu_{1} = \int \lim_{n} f_{1}^{n} d\mu_{1} = \lim_{n} \int f_{1}^{n} d\mu_{1}$$
$$= \lim_{n} m_{1}(f_{1}^{n}) = \lim_{n} \tilde{Q}^{*}m(f_{1}^{n}) = \lim_{n} m(f_{1}^{n} \circ Q)$$
$$= \lim_{n} \left(\lim_{\alpha} \phi_{\alpha}(f_{1}^{n} \circ Q)\right) = \lim_{n} \left(\lim_{\alpha} \tilde{Q}^{*}\phi_{\alpha}(f_{1}^{n})\right) = 1$$

Now let f be any element in X satisfying $\chi_A \leq f \leq 1$. Let $f_1 = \tilde{Q}^{-1}f$. Then by continuity of f_1 , $\chi_{Q(A)^-} \leq f_1 \leq 1$ and therefore

$$m(f) = m(\tilde{Q}(\tilde{Q}^{-1}f)) = \tilde{Q}^*m(f_1) = m_1(f_1) = \int_{Q(A)^-} f_1 \ d\mu_1 = 1,$$

which completes the proof.

Remarks. (a) Let S be a discrete semigroup. In [12, p. 256], T. Mitchell defines the left thick subsets of S as follows: a subset, A, of S is called left thick in S if for each finite subset F of S there exists s in S such that $Fs \subseteq A$. According to Wilde and Witz [15, Lemma 5.1, p. 589] this definition agrees with our definition and hence for discrete semigroups S and X = B(S), Theorem 4.2 reduces to a result of Mitchell [12, Theorem 7, p. 257].

(b) Due to antisymmetry of Arens product the right handed version of Theorem 4.2 may not be true in general.

(c) Let S be an X-amenable topological semigroup, I any left ideal of S. Then $Q(I)^-$ is a left ideal of S_1 and therefore I is left X-thick in S.

BIBLIOGRAPHY

- L. ARGABRIGHT, A note on invariant integrals on locally compact semigroups, Proc. Amer. Math. Soc., vol. 17 (1966), pp. 377–382.
- 2. , Invariant means on topological semigroups, Pacific J. Math., vol. 16 (1966), pp. 193-204.
- 3. R. B. BURCKEL, Weakly almost periodic functions on semigroups, Gordon and Breach, New York, 1970.
- 4. A. H. CLIFFORD AND G. B. PRESTON, The algebraic theory of semigroups, vol. 1, Amer. Math. Society, Providence, R.I., 1961.
- 5. M. M. DAY, Amenable semigroups, Illinois J. Math., vol. 1 (1957), pp. 509-544.
- K. DELEEUW AND I. GLICKSBERG, Applications of almost periodic compactifications, Acta. Math., vol. 105 (1961), pp. 63–97.
- 7. N. DUNFORD AND J. T. SCHWARTZ, Linear operators, Part I, Interscience, New York, 1958.
- 8. I. GLICKSBERG, Weak compactness and separate continuity, Pacific J. Math., vol. 11 (1961), pp. 205-214.
- 9. E. HEWITT, On two problems of Urysohn, Ann. of Math. (2), vol. 47 (1946), pp. 503-509.
- 10. E. HEWITT AND K. A. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin, 1963.
- 11. L. H. LOOMIS, Abstract harmonic analysis, Van Nostrand, New York, 1953.
- 12. T. MITCHELL, Constant functions and left invariant means on semigroups, Trans. Amer. Math. Soc., vol. 119 (1965), pp. 244-261.
- 13. J. S. PYM, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. (3), vol. 15 (1965), pp. 84–104.
- 14. C. R. RAO, Invariant means on spaces of continuous or measurable functions, Trans. Amer. Math. Soc., vol. 114 (1965), pp. 187–196.
- 15. C. WILDE AND K. G. WITZ, Invariant means and the Stone-Čech compactification, Pacific J. Math., vol. 21 (1967), pp. 577–586.
- 16. J. WILLIAMSON, Harmonic analysis on semigroups, J. London Math. Soc., vol. 42 (1967), pp. 1-41.

Pahlavi University Shiraz, Iran