ON A LEMMA OF MARCINKIEWICZ

BY
Calixto P. Calderon

Introduction

Given any closed set F in R (real line), we shall call the distance from any point x to F, the distance function; it will be denoted by $\delta(x ; F)$, or simply by $\delta(x)$. Throughout this paper, we shall be concerned with operators

$$
\begin{equation*}
T(f)=\text { p.v. } \int_{-\infty}^{\infty} \frac{1}{x-y} G\left[\frac{\delta(x)-\delta(y)}{x-y}\right] f(y) d y \tag{0.1}
\end{equation*}
$$

Here, $\delta(x)$ denotes the distance function; $G(s)$ is a function satisfying

$$
\begin{equation*}
|G(s)-G(0)|<K|s|, \quad|s| \leq 1 . \tag{0.2}
\end{equation*}
$$

$f(x)$ stands for a function belonging to the Lebesgue class $L^{p}(R), 1 \leq p \leq \infty$. If $x \in F$ and $G(s)=s, T$ reduces to the classical Marcinkiewicz integral (see [3]). If we allow x to take values all over $R, T(f)$ becomes a particular case of the operator studied in [1].

Another interesting case arises when $G(s)=s^{\lambda}$ where, $\lambda>1$. When $x \in F$ this is the case of the Marcinkiewicz integral $J_{\lambda}(x)$ (see [3, p. 252]).

We may consider also the situations

$$
\begin{equation*}
G(s)=s /\left(1+s^{2}\right), \quad G(s)=1 /\left(1+s^{2}\right) \tag{0.3}
\end{equation*}
$$

These situations arise in the case of a double layer potential, more precisely, when considering the L^{p} behavior of the Cauchy-type integral

$$
\begin{equation*}
U(z)=\text { p.v. } \frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{s-z} f(s) d s \tag{0.4}
\end{equation*}
$$

where Γ is the curve $z=x+i \delta(x ; F)$. The proof shows that the boundary could be given by the more general expression

$$
z=x+i \phi(x) \delta(x, F) \quad \text { where } \phi(x) \in C^{1+\varepsilon}(R), \varepsilon>0
$$

Throughout the proof we are going to keep the notation introduced in [3] for the various Marcinkiewicz integrals. The letter A will always denote the complement of F.

The main theorem

The results are summarized as follows.
Theorem. Suppose that G satisfies condition (0.2), $G(0)=0$ and $|A|<\infty$.

Then we have the following.
(i) $\left(\int_{-\infty}^{\infty}|T(f)|^{r} d x\right)^{1 / r}<C_{r ; p}|A|^{(p-r) / p r}\|f\|_{p}$
where $1<p \leq \infty, 1 / p \leq 1 / r<1+1 / p$ and $C_{r ; p}$ depends on p and r only.
If μ is a finite Borel measure defined on R we have the following instead.
(ii) $|E(|T(\mu)|>\lambda)|<\left(C_{r} / \lambda^{r}\right)\|\mu\|^{r}$
for $1 / 2 \leq r \leq 1$. Here $\|\mu\|$ stands for the total variation of $\mu ; C_{r}$ depends on r and the measure of A.

Suppose now that either A has infinite measure or $G(0) \neq 0$. In that case we have these results.
(iii) $\|T(f)\|_{r}<C_{r}\|f\|_{r}, 1<r<\infty$. Here C_{r} depends on r only.
(iv) $|E(|T(\mu)|>\lambda)|<\left(C_{1} / \lambda\right)\|\mu\|$.

In all the cases, $T(f)$ is defined point wise $a \cdot e$ as a principal value; furthermore the operator $T^{*}(f)=\sup _{\varepsilon>0}\left|T_{\varepsilon}(f)\right|$ where

$$
T_{\varepsilon}(f)(x)=\int_{|x-y|>\varepsilon} \frac{1}{(x-y)} G\left[\frac{\delta(x)-\delta(y)}{(x-y)}\right] f(y) d y
$$

satisfies the same inequalities as $T(f)$.
Proof. Consider $x \in F$. In that case we have

$$
\begin{equation*}
T_{\varepsilon}(f)(x)=G(0) H_{\varepsilon}(f)(x)+\tilde{T}_{\varepsilon}(f)(x) \tag{1.1}
\end{equation*}
$$

where $H_{\varepsilon}(f)(x)$ stands for the truncated Hilbert transform

$$
\begin{equation*}
H_{\varepsilon}(f)(x)=\int_{|x-y|>\varepsilon} \frac{1}{(x-y)} f(y) d y \tag{1.2}
\end{equation*}
$$

and $\tilde{T}_{d}(f)$ denotes the operator associated with $\tilde{G}(s)=G(s)-G(0)$. It follows from (0.2) that

$$
\begin{equation*}
\left|\tilde{T}_{\varepsilon}(f)\right|<K \int_{A} \frac{\delta(y)}{(x-y)^{2}}|f(y)| d y=K J_{1}(x ;|f|, F) \tag{1.3}
\end{equation*}
$$

Here J_{1} is the Marcinkiewicz integral introduced in [3, p. 252]. Letting $H^{*}(f)$ denote $\sup _{\varepsilon>0}\left|H_{\varepsilon}(f)\right|$, we have

$$
\begin{equation*}
T^{*}(f) \leq|G(0)| H^{*}(f)+K J_{1}(x ;|f|, F), \quad x \in F \tag{1.4}
\end{equation*}
$$

Suppose now that $G(0)=0$ and $|A|<\infty$. In this case we have, for $x \in F$,

$$
\begin{align*}
\left|T_{\varepsilon}(f)\right| & \leq K \int_{|x-y|>\varepsilon} \frac{\delta(y)}{(x-y)^{2}}|f(y)| d y \tag{1.5}\\
& \leq \text { p.v. }\left|K \int_{-\infty}^{\infty} \frac{\delta(y)}{(x-y)^{2}}\right| f(y)|d y| \\
& =K|C(\delta,|f|)(x)|
\end{align*}
$$

Consequently

$$
\begin{equation*}
T^{*}(f)(x) \leq K|C(\delta,|f|)(x)| \tag{1.6}
\end{equation*}
$$

Here we use the notation $C(\delta,|f|)(x)$ for the classical commutator singular integral studied in [1].

Our next step is to describe the behavior of $T^{*}(f)$ on A, that is when $x \in A$. Let us express A as $\bigcup_{1}^{\infty}\left(a_{k}, b_{k}\right)$, where the $\left(a_{k}, b_{k}\right)$ are pairwise disjoint. We shall denote by c_{k} the middle point of $\left(a_{k}, b_{k}\right)$. Without loss of generality we may assume that $x \in\left(a_{k}, c_{k}\right)$ since the case $x \in\left(c_{k}, b_{k}\right)$ could be handled in a similar manner. Consider as before, $T_{\varepsilon}(f)=G(0) H_{\varepsilon}+\widetilde{T}_{\varepsilon}(f)$ where $\tilde{T}_{\varepsilon}(f)$ could be dominated in the following way:

$$
\begin{align*}
\left|\tilde{T}_{\varepsilon}(f)(x)\right| \leq & |\tilde{G}(1)|\left|H_{\varepsilon}\left(f_{k ; 0}\right)(x)\right| \tag{1.7}\\
& +K\left|H_{\varepsilon}\left(\left|f_{k ; 1}\right|\right)(x)\right| \\
& +\sum_{j \neq k} \int_{|x-y|>\varepsilon} \frac{\delta(x)+\delta(y)}{(x-y)^{2}}\left|f_{j}(y)\right| d y .
\end{align*}
$$

Here $f_{j ; 0}=f$ if $x \in\left(a_{j}, c_{j}\right)$ and zero otherwise, $f_{j ; 1}=f$ if $x \in\left(c_{j}, b_{j}\right)$ and zero otherwise and $f_{j}=f_{j ; 0}+f_{j ; 1}$. If $x \in\left(a_{k}, c_{k}\right)$ then $\delta(x)=x-a_{k}$. On the other hand, if $y \in\left(a_{j} b_{j}\right) j \neq k$, we have $|x-y| \geq\left|x-a_{k}\right|$. Consequently

$$
\begin{equation*}
\delta(x) \sum_{j \neq k} K \int_{|x-y|>\varepsilon} \frac{\left|f_{j}(y)\right|}{(x-y)^{2}} d y \leq 2 K M(|f|)(x) \tag{1.8}
\end{equation*}
$$

Here $M(|f|)(x)$ denotes the Hardy-Littlewood maximal function. If $y \in\left(a_{j}, b_{j}\right), \quad j \neq k$, then $\delta(y)=\min \left(\left|y-a_{j}\right|,\left|y-b_{j}\right|\right) \leq|x-y|$. Consequently

$$
\begin{align*}
K \sum_{j \neq k} \int_{|x-y|>\varepsilon} & \frac{\delta(y)}{(x-y)^{2}}\left|f_{j}(y)\right| d y \tag{1.9}\\
& \leq 2 K \int \frac{\delta(y)}{(x-y)^{2}+\delta(y)^{2}}|f(y)| d y=2 K H_{1}^{\prime}(x,|f|, F)
\end{align*}
$$

where $H_{1}^{\prime}(x,|f|, F)$ is the Marcinkiewicz integral defined in [3, 2.4, p. 253]. The estimates (1.7), (1.8), and (1.9) give

$$
\begin{align*}
T^{*}(f)(x) \leq & |G(0)| H^{*}(f)(x)+K H^{*}\left(f_{k ; 0}\right)(x) \tag{1.10}\\
& +K H^{*}\left(\left|f_{k ; 1}\right|\right)(x)+2 K M(|f|)(x) \\
& +2 K H_{1}^{\prime}(x,|f|, F)
\end{align*}
$$

Similar estimates are valid for $x \in\left(c_{k}, b_{k}\right)$. Therefore

$$
\begin{align*}
\int_{a_{k}}^{b_{k}}\left(T^{*}(f)\right)^{p} d x \leq & (4 K)^{p} \int_{a_{k}}^{b_{k}}\left(H_{1}^{\prime}(|f|)\right)^{p} d x \tag{1.11}\\
& +(4 K)^{p} \int_{a_{k}}^{b_{k}} M(|f|)^{p} d x \\
& +|G(0)| \int_{a_{k}}^{b_{k}}\left(H^{*}(f)\right)^{p} d x \\
& +C_{p}^{p}|4 K|^{p} \int_{a_{k}}^{b_{k}}|f|^{p} d x, \quad 1<p<\infty .
\end{align*}
$$

Here C_{p}^{p} stands for the type constant of the maximal Hilbert transform.
By combining (1.11) and (1.4) we get (iii). Suppose now that $|A|<\infty$. Let r be such that $1 / p<1 / r<1+1 / p$. Let $1 / q=1 / r-1 / p, 1<p \leq \infty$. If $G(0)=0$, (1.11) yields

$$
\begin{equation*}
\left(\int_{A}\left(T^{*}(f)\right)^{l} d x\right)^{1 / l} \leq C_{l}\left(\int_{A}|f|^{l} d x\right)^{1 / l}, \quad 1<l<\infty \tag{1.12}
\end{equation*}
$$

In turn, if $f \in L^{\infty}(R)$, we have, from (1.12),

$$
\begin{equation*}
\left(\int_{A}\left(T^{*}(f)\right)^{l} d x\right)^{1 / l} \leq C_{l}|A|^{1 / l}\|f\|_{\infty} \tag{1.13}
\end{equation*}
$$

Holder's inequality yields

$$
\begin{align*}
\left(\int_{A} T^{*}(f)^{r} d x\right) & \leq\left(\int_{A} T^{*}(f)^{p} d x\right)^{r / p}(|A|)^{r / q} \tag{1.14}\\
& \leq|A|^{r / q} C_{p}^{r / p}\left(\int_{A}|f|^{p} d x\right)^{r / p}
\end{align*}
$$

An application of Theorems A and B in [2] to $|C(\delta, f)|$ yields similar results for $T^{*}(f)$ in F (see 1.6). Collecting results we get (i). In order to prove (iv) we have to consider (1.10) specialized for the case of a measure μ, namely

$$
\begin{align*}
T^{*}(\mu)(x) \leq & |G(0)| H^{*}(\mu)(x)+K H^{*}\left(\mu_{k ; 0}\right)(x) \tag{1.15}\\
& +K H^{*}\left(V_{k ; 1}\right)(x)+2 K M(V)(x) \\
& +2 K H_{1}^{\prime}(x ; V, F)(x), \quad x \in\left(a_{k}, c_{k}\right),
\end{align*}
$$

where

$$
\begin{equation*}
\mu_{k ; 0}(I)=\mu\left[I \cap\left(a_{k}, c_{k}\right)\right], \quad \mu_{k ; 1}(I)=\mu\left[I \cap\left(c_{k}, b_{k}\right)\right] \tag{1.16}
\end{equation*}
$$

for all intervals I.
Similar definitions hold for $V_{k ; i}, i=0,1$, where V denotes the variation of μ.

We also have $\mu_{k}=\mu_{k ; 0}+\mu_{k ; 1}$ and $V_{k}=V_{k ; 0}+V_{k ; 1}$. Letting

$$
L(\mu)(x)=|G(0)| H^{*}(\mu)(x)+2 K M(V)(x)+2 K H_{1}^{\prime}(x, V, \dot{F})
$$

and taking (1.15) into account we have

$$
\begin{equation*}
\left|E\left(T^{*}(\mu)>\lambda\right) \cap\left(a_{k}, b_{k}\right)\right| \leq\left|E(L(\mu)>\lambda / 2) \cap\left(a_{k}, b_{k}\right)\right|+\frac{C}{\lambda} \int_{a_{k}}^{b_{k}} d V \tag{1.17}
\end{equation*}
$$

The above inequality and (1.4) specialized to the case of a measure give (iv). In order to show (ii) consider first $x \in A$ and $1 / r=1 / q+1,1 \leq q<\infty$. We assume in this case that $|A|<\infty$ and $G(0)=0$. Consider $\lambda>0$ and suppose that $\lambda /\|\mu\|<1$. Then

$$
\begin{equation*}
|A|<(\|\mu\| / \lambda)^{r}|A| . \tag{1.18}
\end{equation*}
$$

If $\lambda /\|\mu\| \geq 1$ then

$$
\begin{equation*}
T^{*}(\mu) \leq\left(\frac{\lambda}{\|\mu\|}\right)^{r / q} T^{*}(\mu) \tag{1.19}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\left|E\left(T^{*}(\mu)>\lambda\right)\right| \leq \mid E\left(T^{*}(\mu)>\lambda^{1-(r / q)}\|\mu\|^{r / q} \mid \leq\left(C / \lambda^{r}\right)\|\mu\|^{r} .\right. \tag{1.20}
\end{equation*}
$$

The last inequality follows from the case $r=1$. By combining (1.18) and (1.20) we have

$$
\begin{equation*}
\left|A \cap E\left(T^{*}(\mu)>\lambda\right)\right|<\left(C / \lambda^{r}\right)\|\mu\|^{r} . \tag{1.21}
\end{equation*}
$$

In $A, T(\mu) \leq K|C(\delta, v)|$ and the corresponding inequality follows from Theorem B in [2]. This concludes the proof of (ii).

References

1. A. P. Calderon, Commutators of singular integral operators, Proc. Nat. Acad. Sci., vol. 53 (1965), pp. 1092-1099.
2. Calixto P. Calderon, On commutators of singular integrals, Studia Math., vol. 53 (1975), pp. 139-174.
3. A. Zygmund, On certain lemmas of Marcinkiewicz and Carleson, J. Approximation Theory, vol. 2 (1969), pp. 249-257.

University of Illinois at Chicago Circle
Chicago, Illinois

