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ON THE WEIERSTRASS POINTS OF Xo(N)

BY

A. P. OGG

Let N be a positive integer and let Fo(N) be the subgroup of the modular
group F SL(2, Z)/(+ 1) defined by the matrices

with c divisible by N. It acts on the upper half-plane ., and we let Xo(N) be the
compactification of Y(N)= Fo(N)\ obtained by adding cusps. We give
Xo(N) its standard structure of an algebraic curve over Q, let (N)denote its
genus, and suppose throughout that (N) > 2.

In his article [1], which extended previous work of Lehner and Newman [6],
Atkin showed that the cusp at is a Weierstrass point on Xo{N), abbreviated
by N e W, for various sufficiently composite values of N. Atkin concluded his
paper with: "It would be of great interest to find an instance (if one exists)of
n e W when n is quadratfrei. On the other hand, it has not yet been proved that
n W for an infinity of n." In 1973, Atkin proved that p W for any prime p (I
learned of this more recently [2], [3]), thus disposing of the second sentence just
quoted, but the first still stands, so far as I know. An examination of (what I
surmise to be an algebro-geometrization of) Atkin’s proof led to the following
generazation.

THEOREM. t N p M have g(N) 2, where ps a prime, and p M. t
P be any Q-rational point on Xo(N) whose reduction P modulo p is not supersin-
gular (e.g., any rational cusp). t c be a nongap at P, i.e., there is afunctionfon
Xo(N) with a pole of order c at P and regular elsewhere. Then

c 1 + g(N)- 2.g(M).

In particular, P is not a Weierstrass point (i.e., the gaps at P are 1, 2,..., g(N))
g(M) 0, i.e., M 1-10, 12, 13, 16, 18, 25, and so pM W in those cases.

This theorem conflicts with Theorem 1 of [5], which states that 16.p 6 W.
Most of the results of this paper are discussed (without proof) in [8]. Corre-

spondence and conversations with Atkin were very helpful.
Before giving the proof of the theorem, let us discuss briefly the modular

interpretation of Xo(N) and its reduction modulo primes. If is a good prime
(not dividing N), then by a theorem of Igusa, Xo(N) has a good reduction
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modulo l, still denoted by Xo(N), over the field F. In characteristic 0 or l, the
points of Yo(N) parameterize the isomorphism classes of pairs (E, C), where E
is an elliptic curve and C is a cyclic subgroup of order N, or if you prefer the
isomorphism classes of cyclic isogenies E E’, ofdegree N, of elliptic curves. A
point of Yo(N) is rational over a field K (of characteristic 0 or l) if and only if it
is represented by a K-rational pair (E, C).
Assuming now that N p. M as in the theorem, we will need the Igusa-

Deligne-Rapoport determination of the reduction modulo p of Xo(N). The
undesingularized reduction modulo p, which is all that we need, consists oftwo
copies Z and Z’ of Xo(M) in characteristic p, meeting transversaily in the
supersingular points"

z Xo/ t) z’= Xo/ )

(Cf. [4, p. 144]; a point of Xo(M) is supersingular if the underlying elliptic curve
is.) The points of Yo(P M) still represent cyclic isogenies of degree p M, of
elliptic curves, which we separate into subisogenies of degree M and p. There
are just as many M-isogenies in characteristic p as in characteristic 0, on an
elliptic curve, but there are (in general, and up to isomorphism) only two
p-isogenies: the Frobenius b: E Et, which is inseparable, and its transpose

" Et’ E (or rather a conjugate, to have E instead of Et as domain), which
is separable if E is not supersingular, i.e., if p b" E E is not totally
inseparable. Then Z, minus cusps, consists of points of Yo(M) together with the
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Frobenius b, and Z’, minus cusps, consists of points of Yo(M) together with ,
and Z c Z’ consists of the supersingular points, where the p-isogeny can be
thought of as either a b or a . The cusps cause no difficulty; Xo(M) has as
many cusps in characteristic p as in characteristic 0, and Xo(p M) has twice as
many cusps as Xo(M), in characteristic p or in characteristic 0.
By the specialization principle, the arithmetic genus po of Z + Z’ is the same

as the genus #(p M) in characteristic 0, so we get

1 + #(p.M)= 1 + p(Z + Z’)
po(Z) + po(Z’)+ Z. Z’

2. z. z’.

Since Z meets Z’ transversally, Z. Z’ is the number n,(M) of supersingular
points on Xo(M) in characteristic p, so we have

(2) n,(M) 1 + 9(p M)- 2"o(M).

We can now prove the theorem. Let P be a rational point on Xo(p’M),
whose reduction/ modulo p is not supersingular; let c be a nongap at P, and
let f be a function with a pole of order c at P and no other poles. Since P is
rational, we can assume that f is defined over Q.

Let w ws be the canonical involution on Xo(N), corresponding to the
transpose on isogenies, and defined in characteristic 0 by the matrix

Since w is defined over Q, P’= w(P) is also rational, and we assume that
f(P’) 0. On the reduced curve Z + Z’ modulo p, the involution w inter-
changes the two components Z and Z’, so/ and/’ are on different compo-
nents, say P e Z and P’ Z’. Multiplying f by a suitable rational constant if
necessary, we will have a nonconstant reduced function fmodulo p. Since we
have two components, fis really two separate functions on Z and Z’, agreeing
on the intersection Z Z’. Now on Z’, ]’has a zero at P’ and no poles, so is
identically 0, and in particular vanishes at the n,(M)supersingular points in
Z Z’. On Z, then,fhas at least n,(M) zeroes, and at most one pole of order c,
so c > n,(M), which, by (2), is the inequality of the theorem.

Since the proof involves only the reduction modulo p of X0(N), we have the
same result, assuming only that P is rational over Q.
For the rest of the paper we shall take for P the cusp . As mentioned

earlier, Atkin showed that with certain possible exceptions (see below), if N is
not square-free, then N e W (i.e., the cusp is a Weierstrass point on Xo(N)).
We can add one case to Atkin’s fist, namely 2 p2 6 W, if p is a prime > 7, since
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is a function on Xo(2.p2) with divisor ((p2_ 1)/8)((1/2)-()), so
c (p2 1)/8 is a nongap at , and it is less than 0(2 p2) for p >_ 7. (As usual,
r/= Ax/2’ is Dedekind’s function, and rl,,(z)=q(mz).) For example, for
N 2 72 98, we have c 6 and 9 7 (actually the gaps are 1-5, 7, 8), and
since 9(49) 1, c 6 is also the bound of the theorem. In view of the above, we
can restate Theorem 1" of Atkin [1] as follows:

Suppose N is not square-free, 9(N) > 2, and N is not of the form p M with
p , M and 9(M) 0. Then N W, except in case (1) below and possibly cases
(2) and (3):

(1) N 81.
(2) N p:q, where p, q are distinct odd primes, not both congruent to 1

modulo 12.
(3) N p:qr, where p, q, r are distinct primes, and neither x: + 1 0 nor

x: x + 1 0 are solvable modulo pqr.

The first square-free N not covered by the theorem is N 3 5.7 105.
We have 9(105)= 13 and 9(15)= 9(21)= 1, so the theorem only gives that a
nongap is > 12, while a computer calculation of W. Parry shows that 105 W.
The first case for (2) above is N 3 72 147, where 9 11, and the theorem
shows only that a nongap is > 10. Actually the gaps are 1-10, 17, by another
computation of Parry, so 147 W.

Finally, the bound of the theorem can be sharpened in some cases. Suppose
for example that N p.q, where p, q are distinct primes, with (say)
0 < 9(q) < 9(P). Suppose that np(q)= 1 + 9(Pq)- 2 9(q), the bound of the
theorem, is a nongap at . By the proof of the theorem, we have a linear
equivalence np(q)(), I on Xo(q)in characteristic p, where I is the sum of
the np(q) supersingular points. The canonical involution w wq fixes the set of
supersingular points and hence fixes 21, and interchanges the cusps 0 and .
Hence n(q)((0) ())~ 0. But the divisor class of (0)- () has order equal
to the numerator of (q 1)/12 (cf. [7])so we get:

PROPOSITION. lf np(q), the least possible value, is a nonoap at on Xo(p q),
then np(q) is divisible by the numerator of (q- 1)/12.

Example. Let N 11 p, where p > 17. Then g(N) p, and n p(11) p 1
is the least possible nongap at oz, and a gap if p 1 (mod 5). Also, p is a gap,
since iff(r)is the cusp form of weight 2 for Fo(11), then the old-formf(pr) for
Fo(N) has a zero of order p at . Thus 11 p W if p 1 (mod 5).
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